Quantifying the Source Attribution of PM10 Measured Downwind of the Oceano Dunes State Vehicular Recreation Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. PM10 Sampling and Analyses
2.2. Laboratory Chemical Analysis
2.3. Data Analysis
3. Results
3.1. Data Quality Assurance
3.2. Fresh and Aged Sea Salt
3.3. PM10 Major Chemical Composition and Mass Reconstruction
3.4. Source Attribution of PM10 at the CDF
3.4.1. Compiled Source Attribution for Exceedance Days in 2021
3.4.2. Compiled Source Attribution for Non-Exceedance Days in 2021
3.5. Exceedance Days Related to Wind Speed Magnitude, Duration, and Wind Direction Persistence at the CDF and the S1 Tower, 2019–2022
4. Discussion
4.1. Exceedance Days Related to Wind Speed Magnitude and Duration and Wind Direction Persistence
4.2. Source Attribution on Exceedance Days
4.3. Source Attribution for Non-Exceedance Days in 2021
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gillies, J.A.; Etyemezian, V.; Nikolich, G.; Glick, R.; Rowland, P.; Pesce, T.; Skinner, M. Effectiveness of an array of porous fences to reduce sand flux: Oceano Dunes, Oceano CA. J. Wind. Eng. Ind. Aerodyn. 2017, 168, 247–259. [Google Scholar] [CrossRef]
- Gillies, J.A.; Furtak-Cole, E.; Nikolich, G.; Etyemezian, V. The role of off-highway vehicle activity in augmenting dust emissions at the Oceano Dunes State Vehicular Recreation Area, Oceano, CA. Atmos. Environ. X 2022, 13, 100146. [Google Scholar] [CrossRef]
- Huang, Y.; Kok, J.F.; Martin, R.L.; Swet, N.; Katra, I.; Gill, T.E.; Reynolds, R.L.; Freire, L.S. Fine dust emissions from active sands at coastal Oceano Dunes, California. Atmos. Chem. Phys. 2019, 19, 2947–2964. [Google Scholar] [CrossRef]
- Mejia, J.F.; Gillies, J.A.; Etyemezian, V.; Glick, R. A very-high resolution (20 m) measurement-based dust emissions and dispersion modeling approach for the Oceano Dunes, California. Atmos. Environ. 2019, 218, 116977. [Google Scholar] [CrossRef]
- Swet, N.; Hilgendorf, Z.; Walker, I. UCSB Historical Vegetation Cover Change Analysis (1930–2020) within the Oceano Dunes SVRA 2022. Available online: https://ohv.parks.ca.gov/pages/1140/files/Memo%20Scientific%20Basis%20for%20Possible%20Revision%20of%20the%20Stipulated%20Order%20of%20Abatement%20(SOA).pdf (accessed on 3 January 2023).
- Walker, I.J.; Hilgendorf, Z.; Gillies, J.A.; Turner, C.M.; Furtak-Cole, E.; Nikolich, G. Assessing performance of a “nature-based” foredune restoration project, Oceano Dunes, California, USA. Earth Surf. Process. Landf. 2022, 48, 143–162. [Google Scholar] [CrossRef]
- Furtak-Cole, E.; Gillies, J.A.; Hilgendorf, Z.; Walker, I.J.; Nikolich, G. Simulation of flow and shear stress distribution on the Oceano Dunes, implications for saltation and dust emissions. Environ. Fluid Mech. 2022, 22, 1399–1420. [Google Scholar] [CrossRef]
- Wolfe, S.A.; Nickling, W.G. The protective role of sparse vegetation in wind erosion. Prog. Phys. Geogr. 1993, 17, 50–68. [Google Scholar] [CrossRef]
- San Luis Obispo County; Air Pollution Control District. Nipomo Mesa Particulate Study, San Luis Obispo Air Pollution Control District. 2007. Available online: https://storage.googleapis.com/slocleanair-org/images/cms/upload/files/Phase1PMStudyReport2.pdf (accessed on 4 January 2023).
- Craig, J.; Cahill, T.A.; Ono, D. South County Phase 2 Particulate Study. San Luis Obispo County Air Pollution Control District. 2010. Available online: https://storage.googleapis.com/slocleanair-org/images/cms/upload/files/PM2-final_report_with_appendices.pdf (accessed on 5 January 2023).
- San Luis Obispo County; Air Pollution Control District. 2018 Annual Air Quality Report, San Luis Obispo Air Pollution Control District. 2019. Available online: https://storage.googleapis.com/slocleanair-org/images/cms/upload/files/2018aqrt-FINAL.pdf (accessed on 5 January 2023).
- Swet, N.; Elperin, T.; Kok, J.F.; Martin, R.L.; Yizhaq, H.; Katra, I. Can active sands generate dust particles by wind-induced processes? Earth Planet. Sci. Lett. 2019, 506, 371–380. [Google Scholar] [CrossRef]
- Lewis, S.L.; Russell, L.M.; McKinsey, J.A.; Harris, W.J. Small contributions of dust to PM2.5 and PM10 concentrations measured downwind of Oceano Dunes. Atmos. Environ. 2022, 294, 119515. [Google Scholar] [CrossRef]
- US Environmental Protection Agency. List of Designated Reference and Equivalent Methods, United States Environmental Protection Agency. 15 December 2022. Available online: https://www.epa.gov/system/files/documents/2022-12/ListofFRMandFEM.pdf (accessed on 5 January 2023).
- California Air Resources Board. AQSB SOP 404: Standard Operating Procedures for Thermo Scientific Partisol Model 2025i Sequential Air Sampler, California Air Resources Board, Monitoring and Laboratory Division, 2020; California Air Resources Board: Sacramento, CA, USA, 2020. [Google Scholar]
- San Luis Obispo County; Air Pollution Control District. Standard Operating Procedures for MetOne Instruments BAM 1020 Beta Attenuation Particulate Matter Monitor, San Luis Obispo Air Pollution Control District, 2014; San Luis ObispoCounty Air Pollution Control District: San Luis Obispo, CA, USA, 2014. [Google Scholar]
- Chow, J.C.; Watson, J.G. Chemical Analyses of Particle Filter Deposits. In Aerosols Handbook: Measurement, Dosimetry, and Health Effects, 2nd ed.; Ruzer, L., Harley, N.H., Eds.; CRC Press/Taylor & Francis: New York, NY, USA, 2013; pp. 179–204. [Google Scholar]
- Watson, J.G.; Chow, J.C.; Engling, G.; Chen, L.-W.A.; Wang, X.L. Source Apportionment: PRINCIPLES and Methods. In Airborne Particulate Matter: Sources, Atmospheric Processes and Health; Harrison, R.M., Ed.; Royal Society of Chemistry: London, UK, 2016; pp. 72–125. [Google Scholar]
- Watson, J.G.; Tropp, R.J.; Kohl, S.D.; Wang, X.L.; Chow, J.C. Filter processing and gravimetric analysis for suspended particulate matter samples. Aerosol Sci. Eng. 2017, 1, 93–105. [Google Scholar] [CrossRef]
- South Coast Air Quality Management District. SOP 00104: Standard Operating Procedure for Weigh Room Operations and Weighing of PM2.5 Samples; South Coast Air Quality Management District: Diamond Bar, CA, USA, 2018. [Google Scholar]
- Watson, J.G.; Chow, J.C.; Frazier, C.A. X-ray fluorescence analysis of ambient air samples. In Elemental Analysis of Airborne Particles; Landsberger, S., Creatchman, M., Eds.; Gordon and Breach Science: Amsterdam, The Netherlands, 1999; Volume 1, pp. 67–96. [Google Scholar]
- Chow, J.C.; Watson, J.G. Enhanced ion chromatographic speciation of water-soluble PM2.5 to improve aerosol source apportionment. Aerosol Sci. Eng. 2017, 1, 7–24. [Google Scholar] [CrossRef]
- Chen, L.-W.A.; Chow, J.C.; Wang, X.L.; Robles, J.A.; Sumlin, B.; Lowenthal, D.H.; Zimmermann, R.; Watson, J.G. Multi-wavelength optical measurement to enhance thermal/optical analysis for carbonaceous aerosol. Atmos. Meas. Tech. 2015, 8, 451–461. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Chen, L.-W.A.; Chang, M.C.O.; Robinson, N.F.; Trimble, D.; Kohl, S. The IMPROVE_A temperature protocol for thermal/optical carbon analysis: Maintaining consistency with a long-term database. J. Air Waste Manag. Assoc. 2007, 57, 1014–1023. [Google Scholar] [CrossRef]
- Martin, R.F. General Deming regression for estimating systematic bias and its confidence interval in method-comparison studies. Clin. Chem. 2002, 46, 100–104. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 15 December 2022).
- Therneau, T.; Deming, T.-S. Passing-Bablock and Total Least Squares Regression, R package version 1.4. 2018. Available online: https://CRAN.R-project.org/package=deming (accessed on 15 December 2022).
- Wang, X.L.; Chen, L.-W.A.; Lu, M.; Ho, K.-F.; Lee, S.-C.; Ho, S.S.H.; Chow, J.C.; Watson, J.G. Apportionment of vehicle fleet emissions by linear regression, positive matrix factorization, and emission modeling. Atmosphere 2022, 13, 1066. [Google Scholar] [CrossRef]
- Veron, F. Ocean spray. Annu. Rev. Fluid Mech. 2015, 47, 507–538. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2012. [Google Scholar]
- McInnes, L.M.; Covert, D.S.; Quinn, P.K.; Germani, M.S. Measurements of chloride depletion and sulfur enrichment in individual sea-salt particles collected from the remote marine boundary layer. J. Geophys. Res. Atmos. 1994, 99, 8257–8268. [Google Scholar] [CrossRef]
- Cheung, K.; Daher, N.; Shafer, M.M.; Ning, Z.; Schauer, J.J.; Sioutas, C. Diurnal trends in coarse particulate matter composition in the Los Angeles Basin. J. Environ. Monit. 2011, 13, 3277–3287. [Google Scholar] [CrossRef]
- Lowenthal, D.; Kumar, N. Light Scattering from Sea-Salt Aerosols at Interagency Monitoring of Protected Visual Environments (IMPROVE) Sites. J. Air Waste Manag. Assoc. 2006, 56, 636–642. [Google Scholar] [CrossRef] [PubMed]
- Zhuang, H.; Chan, C.K.; Fang, M.; Wexler, A.S. Formation of nitrate and non-sea-salt sulfate on coarse particles. Atmos. Environ. 1999, 33, 4223. [Google Scholar] [CrossRef]
- Bardouki, H.; Liakakou, H.; Economou, C.; Sciare, J.; Smolík, J.; Ždímal, V.; Eleftheriadis, K.; Lazaridis, M.; Dye, C.; Mihalopoulos, N. Chemical composition of size-resolved atmospheric aerosols in the eastern Mediterranean during summer and winter. Atmos. Environ. 2003, 37, 195–208. [Google Scholar] [CrossRef]
- Chow, J.C.; Lowenthal, D.H.; Chen, L.-W.A.; Wang, X.L.; Watson, J.G. Mass reconstruction methods for PM2.5: A review. Air Qual. Atmos. Health 2015, 8, 243–263. [Google Scholar] [CrossRef] [PubMed]
- Simon, H.; Bhave, P.V.; Swall, J.L.; Frank, N.H.; Malm, W.C. Determining the spatial and seasonal variability in OM/OC ratios across the US using multiple regression. Atmos. Chem. Phys. 2011, 11, c2933–c2949. [Google Scholar] [CrossRef]
- Hand, J.L.; Copeland, S.A.; McDade, C.E.; Day, D.E.; Moore, J.C.T.; Dillner, A.M.; Pitchford, M.L.; Indresand, H.; Schichtel, B.A.; Malm, W.C.; et al. Spatial and Seasonal Patterns and Temporal Variability of Haze and Its Constituents in the United States, IMPROVE Report, V. Cooperative Institute for Research in the Atmosphere, Fort Collins, CO. 2011. Available online: https://vista.cira.colostate.edu/Improve/spatial-and-seasonal-patterns-and-temporal-variability-of-haze-and-its-constituents-in-the-united-states-report-v-june-2011/ (accessed on 7 January 2023).
- Pakkanen, T.A. Study of formation of coarse particle nitrate aerosol. Atmos. Environ. 1996, 30, 2475–2482. [Google Scholar] [CrossRef]
- Usher, C.R.; Michel, A.E.; Grassian, V.H. Reactions on mineral dust. Chem. Rev. 2003, 103, 4883–4940. [Google Scholar] [CrossRef]
- San Luis Obispo County; Air Pollution Control District. 2021 Ambient Air Monitoring Network Plan, San Luis Obispo Air Pollution Control District. 2021. Available online: https://storage.googleapis.com/slocleanair-org/images/cms/upload/files/2021-network-plan-for-publication.pdf (accessed on 5 January 2023).
- Lu, H.; Shao, Y. A new model for dust emission by saltation bombardment. J. Geophys. Res. Atmos. 1999, 104, 16827–16842. [Google Scholar] [CrossRef]
- Shao, Y. Physics and Modelling of Wind Erosion; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Shao, Y. A model for mineral dust emission. J. Geophys. Res. 2001, 106, 20239–20254. [Google Scholar] [CrossRef]
- Ovadnevaite, J.; Manders, A.; de Leeuw, G.; Ceburnis, D.; Manahan, C.; Partanen, A.-I.; Korhonen, H.; O’Dowd, C.D. A sea spray aerosol flux parameterization encapsulating wave state. Atmos. Chem. Phys. 2014, 14, 1837–1852. [Google Scholar] [CrossRef]
- Erinin, M.A.; Wang, S.D.; Liu, R.; Towle, D.; Liu, X.; Duncan, J.H. Spray generation by a plunging breaker. Geophys. Res. Lett. 2019, 46, 8244–8251. [Google Scholar] [CrossRef]
- Martin, S.T. Phase transitions of aqueous atmospheric particles. Chem. Rev. 2000, 100, 3403–3454. [Google Scholar] [CrossRef]
- McInnes, L.M.; Quinn, P.K.; Covert, D.S.; Anderson, T.L. Gravimetric analysis, ionic composition, and associated water mass of the marine aerosol. Atmos. Environ. 1996, 30, 869–884. [Google Scholar] [CrossRef]
- King, J.; Etyemezian, V.; Sweeney, M.; Buck, B.J.; Nikolich, G. Dust emission variability at the Salton Sea, California, USA. Aeolian Res. 2011, 3, 67–79. [Google Scholar] [CrossRef]
- Malm, W.; Sisler, J.; Huffman, D.; Eldred, R.; Cahill, T. Spatial and seasonal trends in particle concentration and optical extinction in the United States. J. Geophys. Res. 1994, 99, 1347–1370. [Google Scholar] [CrossRef]
Comparison | Sample Size | Linear Regression | Linear Regression through the Origin | |||
---|---|---|---|---|---|---|
Slope | Intercept | R2 | Slope | R2 | ||
(95% CI) | (95% CI) | (95% CI) | ||||
SLOAPCD BAM vs. DRI Gravimetric | 53 | 1.047 | −0.421 | 0.993 | 1.038 | 0.997 |
(1.023–1.071) | (−1.323–0.481) | (1.024–1.053) | ||||
SLOAPCD BAM vs. SCAQMD Gravimetric | 24 | 1.004 | −0.128 | 0.987 | 1 | 0.996 |
(0.956–1.051) | (−1.675–1.419) | (0.973–1.027) |
Comparison | Sample Size | Deming Regression | Deming Regression through the Origin | CVUB | |
---|---|---|---|---|---|
Slope | Intercept | Slope | |||
(95% CI) | (95% CI) | (95% CI) | |||
SLOAPCD BAM vs. DRI Gravimetric | 53 | 1.014 | 0.307 | 1.032 | 6.44% |
(0.981–1.046) | (−0.129–0.907) | (1.010–1.054) | |||
SLOAPCD BAM vs. SCAQMD Gravimetric | 24 | 1.003 | −0.236 | 0.987 | 7.05% |
(0.947–1.060) | (−1.076–0.605) | (0.947–1.027) |
Date | 24 h PM10 (µg m−3) | Wind Rose | PM10 Rose | Source Attribution | % Mass from Direction of ODSVRA |
---|---|---|---|---|---|
4 May 2021 | 50 | 58 | |||
7 May 2021 | 70 | 84 | |||
19 May 2021 | 103 | 89 | |||
12 June 2021 | 61 | 71 | |||
15 June 2021 | 90 | 93 | |||
19 September 2021 | 78 | 85 | |||
28 September 2021 | 82 | 92 | |||
13 October 2021 | 53 | 63 (one hour of missing BAM data) | |||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Gillies, J.A.; Kohl, S.; Furtak-Cole, E.; Tupper, K.A.; Cardiel, D.A. Quantifying the Source Attribution of PM10 Measured Downwind of the Oceano Dunes State Vehicular Recreation Area. Atmosphere 2023, 14, 718. https://doi.org/10.3390/atmos14040718
Wang X, Gillies JA, Kohl S, Furtak-Cole E, Tupper KA, Cardiel DA. Quantifying the Source Attribution of PM10 Measured Downwind of the Oceano Dunes State Vehicular Recreation Area. Atmosphere. 2023; 14(4):718. https://doi.org/10.3390/atmos14040718
Chicago/Turabian StyleWang, Xiaoliang, John A. Gillies, Steven Kohl, Eden Furtak-Cole, Karl A. Tupper, and David A. Cardiel. 2023. "Quantifying the Source Attribution of PM10 Measured Downwind of the Oceano Dunes State Vehicular Recreation Area" Atmosphere 14, no. 4: 718. https://doi.org/10.3390/atmos14040718
APA StyleWang, X., Gillies, J. A., Kohl, S., Furtak-Cole, E., Tupper, K. A., & Cardiel, D. A. (2023). Quantifying the Source Attribution of PM10 Measured Downwind of the Oceano Dunes State Vehicular Recreation Area. Atmosphere, 14(4), 718. https://doi.org/10.3390/atmos14040718