Variations in Infrared Complex Refractive Index Spectra of Surface Soils from Global Dust Entrainment Regions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Samples and Their Transmission Measurements
2.2. Calculation of IR Refractive Indices
3. Results
3.1. Code Validation
3.2. Variability of IR Refractive Indices of Global Surface Soils
4. Comparison with Past Studies
4.1. k Using Dust-KBr Pellets
4.2. k and n from Suspended Dust Aerosols
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sample Code | Country | Collection Coordinates | Transmission and Refractive Indices in Figures |
---|---|---|---|
S1009 | Mali | 12°41′17″ N, 8°01′39″ W | - |
S1010 | Mali | 12°41′17″ N, 8°01′39″ W | - |
S1014 | China | 45°03′47.4″ N, 84°42′11″ E | Figure 2 and Figure 6 |
S1017 | China | 46°07′30.8″ N, 85°44′11.6″ E | Figure 6 |
S1019 | USA | 36°28′2.86″ N, 118°1′41.49″ W | Figure 2 |
S1022 | Namibia | 18°43′35.92″ S, 17°0′43.89″ E | Figure 2 and Figure 6 |
S1034 | Spain-Las Canarias | 28°19′40.47″ N, 13°54′43.63″ W | Figure 2 |
S1038 | Botswana | 21°12′32.42″ S, 24°51′30.47″ E | Figure 4 |
S1045 | USA | 40°45′10.57″ N, 119°13′59.38″ W | - |
S1049 | Chad | 16°08′08.34″ N, 18°35′55.80″ E | Figure 4 |
S1051 | Chad | 16°13′16.38″ N, 18°36′23.82″ E | Figure 2 and Figure 6 |
S1052 | USA | 39°32′50.58″ N, 119°54′46.53″ W | Figure 4 |
S1053 | USA | 39°32′45.30″ N, 119°54′56.62″ W | - |
S1065 | USA | NA | Figure 4 and Figure 5 |
S1066 | USA | NA | Figure 2 and Figure 6 |
S1069 | Saudi Arabia | 23°19′55.99″ N, 38°56′53.30″ E | Figure 6 |
S2001 | Djibouti | 11°32′34.32″ N, 43°09′35.72″ E | - |
S2002 | Afghanistan | 34°56′25.59″ N, 69°17′6.87″ E | Figure 4 and Figure 6 |
S2004 | Qatar | 25° 7′4.50″ N, 51°18′59.63″ E | - |
S2006 | Iraq | 33°56′38.64″ N, 44°21′23.37″ E | - |
S2009 | Iraq | 34°40′31.27″ N, 43°33′16.94″ E | - |
S2011 | Iraq | 33°47′28.25″ N, 42°27′24.38″ E | - |
S2016 | Afghanistan | 31°51′50.13″ N, 64°11′42.75″ E | - |
S2017 | Kuwait | 29°02′30.66″ N, 48°07′04.79″ E | Figure 6 |
S3008 | USA | 32°54′25.43″ N, 114°21′20.72″ W | Figure 4 and Figure 5 |
S3016 | USA | 40°04′36.84″ N, 113°10′14.88″ W | Figure 4 |
References
- Tanaka, T.Y.; Chiba, M. A numerical study of the contributions of dust source regions to the global dust budget. Glob. Planet. Chang. 2006, 52, 88–104. [Google Scholar] [CrossRef]
- Gillies, J.A. Fundamentals of Aeolian Sediment Transport: Dust Emissions and Transport—Near Surface. In Treatise on Geomorphology; John, F.S., Lancaster, N., Eds.; Academic Press: San Diego, CA, USA, 2013; Volume 11, pp. 43–63. [Google Scholar]
- Goudie, A.; Middleton, N. Desert Dust in the Global System; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1–287. [Google Scholar] [CrossRef]
- Miller, R.L.; Tegen, I. Climate Response to Soil Dust Aerosols. J. Clim. 1998, 11, 3247–3267. [Google Scholar] [CrossRef]
- Liao, H.; Seinfeld, J.H. Radiative forcing by mineral dust aerosols: Sensitivity to key variables. J. Geophys. Res. Atmos. 1998, 103, 31637–31645. [Google Scholar] [CrossRef]
- Tegen, I.; Lacis, A.A. Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol. J. Geophys. Res. Atmos. 1996, 101, 19237–19244. [Google Scholar] [CrossRef] [Green Version]
- Lafon, S.; Sokolik, I.N.; Rajot, J.L.; Caquineau, S.; Gaudichet, A. Characterization of iron oxides in mineral dust aerosols: Implications for light absorption. J. Geophys. Res. Atmos. 2006, 111, 19. [Google Scholar] [CrossRef]
- Linke, C.; Möhler, O.; Veres, A.; Mohácsi, Á.; Bozóki, Z.; Szabó, G.; Schnaiter, M. Optical properties and mineralogical composition of different Saharan mineral dust samples: A laboratory study. Atmos. Chem. Phys. 2006, 6, 3315–3323. [Google Scholar] [CrossRef] [Green Version]
- Sokolik, I.N.; Toon, O.B.; Bergstrom, R.W. Modeling the radiative characteristics of airborne mineral aerosols at infrared wavelengths. J. Geophys. Res. Atmos. 1998, 103, 8813–8826. [Google Scholar] [CrossRef] [Green Version]
- Sokolik, I.N.; Toon, O.B. Incorporation of mineralogical composition into models of the radiative properties of mineral aerosol from UV to IR wavelengths. J. Geophys. Res. Atmos. 1999, 104, 9423–9444. [Google Scholar] [CrossRef]
- Tegen, I.; Lacis, A.A.; Fung, I. The influence on climate forcing of mineral aerosols from disturbed soils. Nature 1996, 380, 419–422. [Google Scholar] [CrossRef]
- Hansen, J.E.; Sato, M.; Lacis, A.; Ruedy, R.; Tegen, I.; Matthews, E. Climate forcings in the Industrial era. Proc. Natl. Acad. Sci. USA 1998, 95, 12753–12758. [Google Scholar] [CrossRef] [Green Version]
- Durant, A.J.; Harrison, S.P.; Watson, I.M.; Balkanski, Y. Sensitivity of direct radiative forcing by mineral dust to particle characteristics. Prog. Phys. Geogr. Earth Environ. 2009, 33, 80–102. [Google Scholar] [CrossRef]
- Sadrian, M.R.; Calvin, W.M.; Engelbrecht, J.P.; Moosmüller, H. Spectral Characterization of Parent Soils from Globally Important Dust Aerosol Entrainment Regions. J. Geophys. Res. Atmos. 2023, 128, e2022JD037666. [Google Scholar] [CrossRef]
- Hess, M.; Koepke, P.; Schult, I. Optical Properties of Aerosols and Clouds: The Software Package OPAC. Bull. Am. Meteorol. Soc. 1998, 79, 831–844. [Google Scholar] [CrossRef]
- Volz, F.E. Infrared Refractive Index of Atmospheric Aerosol Substances. Appl. Opt. 1972, 11, 755–759. [Google Scholar] [CrossRef]
- Volz, F.E. Infrared Optical Constants of Ammonium Sulfate, Sahara Dust, Volcanic Pumice, and Flyash. Appl. Opt. 1973, 12, 564–568. [Google Scholar] [CrossRef]
- Fouquart, Y.; Bonnel, B.; Brogniez, G.; Buriez, J.C.; Smith, L.; Morcrette, J.J.; Cerf, A. Observations of Saharan Aerosols—Results of ECLATS Field Experiment. 2. Broad-Band Radiative Characteristics of the Aerosols and Vertical Radiative Flux Divergence. J. Clim. Appl. Meteorol. 1987, 26, 38–52. [Google Scholar] [CrossRef]
- Di Biagio, C.; Boucher, H.; Caquineau, S.; Chevaillier, S.; Cuesta, J.; Formenti, P. Variability of the infrared complex refractive index of African mineral dust: Experimental estimation and implications for radiative transfer and satellite remote sensing. Atmos. Chem. Phys. 2014, 14, 11093–11116. [Google Scholar] [CrossRef] [Green Version]
- Di Biagio, C.; Formenti, P.; Balkanski, Y.; Caponi, L.; Cazaunau, M.; Pangui, E.; Journet, E.; Nowak, S.; Caquineau, S.; Andreae, M.O.; et al. Global scale variability of the mineral dust long-wave refractive index: A new dataset of in situ measurements for climate modeling and remote sensing. Atmos. Chem. Phys. 2017, 17, 1901–1929. [Google Scholar] [CrossRef] [Green Version]
- Highwood, E.J.; Haywood, J.M.; Silverstone, M.D.; Newman, S.; Taylor, J.P. Radiative properties and direct effect of Saharan dust measured by the C-130 aircraft during Saharan Dust Experiment (SHADE): 2. Terrestrial spectrum. J. Geophys. Res. Atmos. 2003, 108, 13. [Google Scholar] [CrossRef] [Green Version]
- Hale, G.M.; Querry, M.R. Optical Constants of Water in the 200-nm to 200-μm Wavelength Region. Appl. Opt. 1973, 12, 555–563. [Google Scholar] [CrossRef] [Green Version]
- Ginoux, P.; Prospero, J.M.; Gill, T.E.; Hsu, N.C.; Zhao, M. Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 2012, 50, 36. [Google Scholar] [CrossRef]
- Prospero, J.M.; Ginoux, P.; Torres, O.; Nicholson, S.E.; Gill, T.E. Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Rev. Geophys. 2002, 40, 31. [Google Scholar] [CrossRef]
- Washington, R.; Todd, M.; Middleton, N.J.; Goudie, A.S. Dust-Storm Source Areas Determined by the Total Ozone Monitoring Spectrometer and Surface Observations. Ann. Assoc. Am. Geogr. 2003, 93, 297–313. [Google Scholar] [CrossRef]
- Engelbrecht, J.P.; Moosmüller, H.; Pincock, S.; Jayanty, R.K.M.; Lersch, T.; Casuccio, G. Technical note: Mineralogical, chemical, morphological, and optical interrelationships of mineral dust re-suspensions. Atmos. Chem. Phys. 2016, 16, 10809–10830. [Google Scholar] [CrossRef] [Green Version]
- Mahowald, N.; Albani, S.; Kok, J.F.; Engelstaeder, S.; Scanza, R.; Ward, D.S.; Flanner, M.G. The size distribution of desert dust aerosols and its impact on the Earth system. Aeolian Res. 2014, 15, 53–71. [Google Scholar] [CrossRef] [Green Version]
- Adebiyi, A.A.; Kok, J.F. Climate models miss most of the coarse dust in the atmosphere. Sci. Adv. 2020, 6, eaaz9507. [Google Scholar] [CrossRef] [Green Version]
- Clark, R.N.; Roush, T.L. Reflectance spectroscopy: Quantitative analysis techniques for remote sensing applications. J. Geophys. Res. Solid Earth 1984, 89, 6329–6340. [Google Scholar] [CrossRef]
- Salisbury, J.W.; Walter, L.S.; Vergo, N.; DAria, D.M. Infrared (2.1–25 μm) Spectra of Minerals; Johns Hopkins University Press: Baltimore, Maryland, 1991; ISBN 978-0801844232. [Google Scholar]
- Salisbury, J.W.; Hapke, B.; Eastes, J.W. Usefulness of weak bands in midinfrared remote sensing of particulate planetary surfaces. J. Geophys. Res. Atmos. 1987, 92, 702–710. [Google Scholar] [CrossRef]
- Salisbury, J.W.; Wald, A. The role of volume scattering in reducing spectral contrast of reststrahlen bands in spectra of powdered minerals. Icarus 1992, 96, 121–128. [Google Scholar] [CrossRef]
- Spitzer, W.G.; Kleinman, D.A. Infrared Lattice Bands of Quartz. Phys. Rev. 1961, 121, 1324–1335. [Google Scholar] [CrossRef]
- Petty, G.W. Reflection and Refraction. In A First Course in Atmospheric Radiation, 2nd ed.; Sundog Publishing: Madison, WI, USA, 2006; pp. 55–69. ISBN 978-0-9729033-1-8. [Google Scholar]
- Estep-Barnes, P.A. Infrared spectroscopy. In Physical Methods in Determinative Mineralogy; Zussman, J., Ed.; Academic Press: London, UK, 1977; pp. 529–603. [Google Scholar]
- Bohren, C.F.; Huffman, D.R. Absorption and Scattering of Light by Small Particles; Wiley-Interscience: New York, NY, USA, 1983; ISBN 0-471-05772-X. [Google Scholar]
- Warren, S.G. Optical constants of ice from the ultraviolet to the microwave. Appl. Opt. 1984, 23, 1206–1225. [Google Scholar] [CrossRef]
- Dalton, J.B.; Pitman, K.M. Low temperature optical constants of some hydrated sulfates relevant to planetary surfaces. J. Geophys. Res. Atmos. 2012, 117, 15. [Google Scholar] [CrossRef]
- Pitman, K.M.; Dobrea, E.Z.N.; Jamieson, C.S.; Dalton, I.J.B.; Abbey, W.J.; Joseph, E. Reflectance spectroscopy and optical functions for hydrated Fe-sulfates. Am. Miner. 2014, 99, 1593–1603. [Google Scholar] [CrossRef]
- Roush, T.L.; Esposito, F.; Rossman, G.R.; Colangeli, L. Estimated optical constants of gypsum in the regions of weak absorptions: Application of scattering theories and comparisons to independent measurements. J. Geophys. Res. Atmos. 2007, 112, 17. [Google Scholar] [CrossRef] [Green Version]
- Roush, T.L. Estimation of visible, near-, and mid-infrared complex refractive indices of calcite, dolomite, and magnesite. Icarus 2020, 354, 114056. [Google Scholar] [CrossRef]
- Di Biagio, C.; Formenti, P.; Balkanski, Y.; Caponi, L.; Cazaunau, M.; Pangui, E.; Journet, E.; Nowak, S.; Andreae, M.O.; Kandler, K.; et al. Complex refractive indices and single-scattering albedo of global dust aerosols in the shortwave spectrum and relationship to size and iron content. Atmos. Chem. Phys. 2019, 19, 15503–15531. [Google Scholar] [CrossRef] [Green Version]
- Osborne, S.R.; Johnson, B.T.; Haywood, J.M.; Baran, A.J.; Harrison, M.A.J.; McConnell, C.L. Physical and optical properties of mineral dust aerosol during the Dust and Biomass-burning Experiment. J. Geophys. Res. Atmos. 2008, 113, 14. [Google Scholar] [CrossRef] [Green Version]
- McConnell, C.L.; Formenti, P.; Highwood, E.J.; Harrison, M.A.J. Using aircraft measurements to determine the refractive index of Saharan dust during the DODO Experiments. Atmos. Chem. Phys. 2010, 10, 3081–3098. [Google Scholar] [CrossRef] [Green Version]
- Wenrich, M.L.; Christensen, P.R. Optical constants of minerals derived from emission spectroscopy: Application to quartz. J. Geophys. Res. Solid Earth 1996, 101, 15921–15931. [Google Scholar] [CrossRef]
- Herbin, H.; Deschutter, L.; Deguine, A.; Petitprez, D. Complex refractive index of crystalline quartz particles from UV to thermal infrared. Aerosol Sci. Technol. 2023, 57, 255–265. [Google Scholar] [CrossRef]
- Querry, M.R. Optical Constants of Minerals and Other Materials from the Millimeter to the Ultraviolet, Report CRDEC-CR-88009; US Army Armament Munitions Chemical Command: Kansas City, MO, USA, 1987. [Google Scholar]
- Glotch, T.D.; Rossman, G.R.; Aharonson, O. Mid-infrared (5–100 μm) reflectance spectra and optical constants of ten phyllosilicate minerals. Icarus 2007, 192, 605–622. [Google Scholar] [CrossRef]
- Li, L.; Mahowald, N.M.; Miller, R.L.; García-Pando, C.P.; Klose, M.; Hamilton, D.S.; Ageitos, M.G.; Ginoux, P.; Balkanski, Y.; Green, R.O.; et al. Quantifying the range of the dust direct radiative effect due to source mineralogy uncertainty. Atmos. Chem. Phys. 2021, 21, 3973–4005. [Google Scholar] [CrossRef]
- Scanza, R.A.; Mahowald, N.; Ghan, S.; Zender, C.S.; Kok, J.F.; Liu, X.; Zhang, Y.; Albani, S. Modeling dust as component minerals in the Community Atmosphere Model: Development of framework and impact on radiative forcing. Atmos. Chem. Phys. 2015, 15, 537–561. [Google Scholar] [CrossRef] [Green Version]
- Cawse-Nicholson, K.; Townsend, P.A.; Schimel, D.; Assiri, A.M.; Blake, P.L.; Buongiorno, M.F.; Campbell, P.; Carmon, N.; Casey, K.A.; Correa-Pabón, R.E.; et al. NASA's surface biology and geology designated observable: A perspective on surface imaging algorithms. Remote Sens. Environ. 2021, 257, 112349. [Google Scholar] [CrossRef]
- Green, R.O.; Thompson, D.R.; the EMIT Team. An Earth science imaging spectroscopy mission: The Earth surface mineral dust source investigation (EMIT). In Proceedings of the IGARSS 2020–2020 IEEE International Geoscience and Remote Sensing Symposium, Waikoloa, HI, USA, 26 September–2 October 2020; pp. 6262–6265. [Google Scholar] [CrossRef]
- Hapke, B. Bidirectional reflectance spectroscopy: 1. Theory. J. Geophys. Res. Solid Earth 1981, 86, 3039–3054. [Google Scholar] [CrossRef] [Green Version]
- Mustard, J.F.; Pieters, C.M. Quantitative abundance estimates from bidirectional reflectance measurements. J. Geophys. Res. Solid Earth 1987, 92, E617–E626. [Google Scholar] [CrossRef] [Green Version]
- Mustard, J.F.; Pieters, C.M. Photometric phase functions of common geologic minerals and applications to quantitative analysis of mineral mixture reflectance spectra. J. Geophys. Res. Solid Earth 1989, 94, 13619–13634. [Google Scholar] [CrossRef]
- Hiroi, T.; Pieters, C.M. Estimation of grain sizes and mixing ratios of fine powder mixtures of common geologic minerals. J. Geophys. Res. Planets 1994, 99, 10867–10879. [Google Scholar] [CrossRef]
- Lucey, P.G. Model near-infrared optical constants of olivine and pyroxene as a function of iron content. J. Geophys. Res. Planets 1998, 103, 1703–1713. [Google Scholar] [CrossRef]
- Cheek, L.C.; Pieters, C.M. Reflectance spectroscopy of plagioclase-dominated mineral mixtures: Implications for characterizing lunar anorthosites remotely. Am. Miner. 2014, 99, 1871–1892. [Google Scholar] [CrossRef]
- Robertson, K.; Milliken, R.; Li, S. Estimating mineral abundances of clay and gypsum mixtures using radiative transfer models applied to visible-near infrared reflectance spectra. Icarus 2016, 277, 171–186. [Google Scholar] [CrossRef]
- Lapotre, M.G.A.; Ehlmann, B.L.; Minson, S.E. A probabilistic approach to remote compositional analysis of planetary surfaces. J. Geophys. Res. Planets 2017, 122, 983–1009. [Google Scholar] [CrossRef] [Green Version]
- Sadrian, M.R.; Calvin, W.M. Infrared Transmission Spectra and Complex Refractive Indices of Surface Soils from Global Dust Entrainment Regions [Dataset]. Zenodo 2023. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadrian, M.R.; Calvin, W.M.; Perrin, A.E.; Engelbrecht, J.P.; Moosmüller, H. Variations in Infrared Complex Refractive Index Spectra of Surface Soils from Global Dust Entrainment Regions. Atmosphere 2023, 14, 675. https://doi.org/10.3390/atmos14040675
Sadrian MR, Calvin WM, Perrin AE, Engelbrecht JP, Moosmüller H. Variations in Infrared Complex Refractive Index Spectra of Surface Soils from Global Dust Entrainment Regions. Atmosphere. 2023; 14(4):675. https://doi.org/10.3390/atmos14040675
Chicago/Turabian StyleSadrian, Mohammad R., Wendy M. Calvin, Andrew E. Perrin, Johann P. Engelbrecht, and Hans Moosmüller. 2023. "Variations in Infrared Complex Refractive Index Spectra of Surface Soils from Global Dust Entrainment Regions" Atmosphere 14, no. 4: 675. https://doi.org/10.3390/atmos14040675
APA StyleSadrian, M. R., Calvin, W. M., Perrin, A. E., Engelbrecht, J. P., & Moosmüller, H. (2023). Variations in Infrared Complex Refractive Index Spectra of Surface Soils from Global Dust Entrainment Regions. Atmosphere, 14(4), 675. https://doi.org/10.3390/atmos14040675