Comparison of Atmospheric Circulation Anomalies between Daytime and Nighttime Extreme High Temperature in North China
Abstract
1. Introduction
2. Data and Methods
2.1. Data
2.2. Definition of EHT
3. Results
3.1. Local Temperature and Circulation Anomalies
3.2. Large-Scale Circulation Anomalies and Their Evolutions
4. Conclusions and Discussions
4.1. Conclusions
4.2. Discussions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- McGregor, G.R.; Ferro, C.A.T.; Stephenson, D.B. Projected changes in extreme weather and climate events in Europe. In Extreme Weather Events and Public Health Responses; Springer: Berlin/Heidelberg, Germany, 2005; pp. 13–23. [Google Scholar]
- Mcmichael, A.J.; Lindgren, E. Climate change: Present and future risks to health, and necessary responses. J. Intern. Med. 2011, 270, 401–413. [Google Scholar] [CrossRef]
- Yatim, A.N.M.; Latif, M.T.; Ahamad, F.; Khan, M.F.; Nadzir, M.S.M.; Juneng, L. Observed Trends in Extreme Temperature over the Klang Valley, Malaysia. Adv. Atmos. Sci. 2019, 36, 1355–1370. [Google Scholar] [CrossRef]
- Pi, Y.; Yu, Y.; Zhang, Y.; Xu, C.; Yu, R. Extreme Temperature Events during 1960–2017 in the Arid Region of Northwest China: Spatiotemporal Dynamics and Associated Large-Scale Atmospheric Circulation. Sustainability 2020, 12, 1198. [Google Scholar] [CrossRef]
- Forster, M.A.; Englefield, A. The water uses and growth response of grapevines to extreme temperature events. Theor. Exp. Plant Physiol. 2021, 33, 187–203. [Google Scholar] [CrossRef]
- Yang, H.Y.; Lee, J.K.W.; Chio, C.P. Extreme temperature increases the risk of stillbirth in the third trimester of pregnancy. Sci. Rep. 2022, 12, 18474. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Zwiers, F.W.; Song, L.; Wan, H.; Hu, T.; Yin, H.; Ren, G. Rapid increase in the risk to extreme summer heat in Eastern China. Nat. Clim. Chang. 2014, 4, 1082–1085. [Google Scholar] [CrossRef]
- Su, Y.-W. The Effects of Extreme High Temperature Day Off on Electricity Conservation. Weather Clim. Soc. 2021, 13, 769–782. [Google Scholar] [CrossRef]
- Kovats, R.S.; Hajat, S. Heat stress and public health: A critical review. Annu. Rev. Public Health 2008, 29, 41–55. [Google Scholar] [CrossRef]
- Westcott, N.E. The Prolonged 1954 Midwestern, U.S. Heat Wave: Impacts and Responses. Weather Clim. Soc. 2011, 3, 165–176. [Google Scholar] [CrossRef]
- Campbell, S.; Remenyi, T.A.; White, C.J.; Johnston, F.H. Heatwave and health impact research: A global review. Health Place 2018, 53, 210–218. [Google Scholar] [CrossRef]
- Almendra, R.; Loureiro, A.; Silva, G.; Vasconcelos, J.; Santana, P. Short-term impacts of air temperature on hospitalizations for mental disorders in Lisbon. Sci. Total Environ. 2019, 647, 127–133. [Google Scholar] [CrossRef]
- Zhang, G.; Zeng, G.; Li, C.; Yang, X. Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40-year period. Clim. Dyn. 2020, 54, 3003–3020. [Google Scholar] [CrossRef]
- Qian, C.; Zhou, T. Multidecadal Variability of North China Aridity and Its Relationship to PDO during 1900-2010. J. Clim. 2014, 27, 1210–1222. [Google Scholar] [CrossRef]
- Zhang, G.; Zeng, G.; Yang, X.; Iyakaremye, V. Two spatial types of North China heatwaves and their possible links to Barents-Kara Sea ice changes. Int. J. Climatol. 2022, 42, 6876–6889. [Google Scholar] [CrossRef]
- Lu, C.; Ye, J.; Wang, S.; Yang, M.; Li, Q.; He, W.; Qin, Y.; Cai, J.; Mao, J. An Unusual Heat Wave in North China During Midsummer, 2018. Front. Earth Sci. 2020, 8, 238. [Google Scholar] [CrossRef]
- Gershunov, A.; Cayan, D.R.; Iacobellis, S.F. The Great 2006 Heat Wave over California and Nevada: Signal of an Increasing Trend. J. Clim. 2009, 22, 6181–6203. [Google Scholar] [CrossRef]
- Deng, K.; Yang, S.; Ting, M.; Lin, A.; Wang, Z. An Intensified Mode of Variability Modulating the Summer Heat Waves in Eastern Europe and Northern China. Geophys. Res. Lett. 2018, 45, 11361–11369. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, W.; Wang, D.; Wang, C. The impacts of the summer Asian Jet Stream biases on surface air temperature in mid-eastern China in IPCC AR4 models. Int. J. Climatol. 2013, 33, 265–276. [Google Scholar] [CrossRef]
- Ding, Z.; Wang, Y.; Lu, R. An analysis of changes in temperature extremes in the Three River Headwaters region of the Tibetan Plateau during 1961–2016. Atmos. Res. 2018, 209, 103–114. [Google Scholar] [CrossRef]
- Tao, P.; Zhang, Y. Large-scale circulation features associated with the heat wave over Northeast China in summer 2018. Atmos. Ocean. Sci. Lett. 2019, 12, 254–260. [Google Scholar] [CrossRef]
- Freychet, N.; Tett, S.; Wang, J.; Hegerl, G. Summer heat waves over Eastern China: Dynamical processes and trend attribution. Environ. Res. Lett. 2017, 12, 024015. [Google Scholar] [CrossRef]
- Chen, R.; Lu, R. Large-scale circulation anomalies associated with ‘tropical night’ weather in Beijing, China. Int. J. Climatol. 2014, 34, 1980–1989. [Google Scholar] [CrossRef]
- Lin, W.; Chen, R.; Wen, Z.; Chen, W. Large-scale circulation features responsible for different types of extreme high temperatures with extreme coverage over South China. Int. J. Climatol. 2022, 42, 974–992. [Google Scholar] [CrossRef]
- Chen, R.; Lu, R. Role of Large-Scale Circulation and Terrain in Causing Extreme Heat in Western North China. J. Clim. 2016, 29, 2511–2527. [Google Scholar] [CrossRef]
- Wu, J.; Gao, X. A gridded daily observation dataset over China region and comparison with the other datasets. Chin. J. Geophys. 2013, 56, 1102–1111. [Google Scholar]
- Chen, Y.; Li, Y. An Inter-comparison of Three Heat Wave Types in China during 1961–2010: Observed Basic Features and Linear Trends. Sci. Rep. 2017, 7, 45619. [Google Scholar] [CrossRef]
- Galanaki, E.; Emmanouil, G.; Lagouvardos, K.; Kotroni, V. Long-Term Patterns and Trends of Shortwave Global Irradiance over the Euro-Mediterranean Region. Atmosphere 2021, 12, 1431. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K.E.; Karl, T.R. Effects of Clouds, Soil Moisture, Precipitation, and Water Vapor on Diurnal Temperature Range. J. Clim. 1999, 12, 2451–2473. [Google Scholar] [CrossRef]
- Muelmenstaedt, J.; Salzmann, M.; Kay, J.E.; Zelinka, M.D.; Ma, P.-L.; Nam, C.; Kretzschmar, J.; Hörnig, S.; Quaas, J. An underestimated negative cloud feedback from cloud lifetime changes. Nat. Clim. Chang. 2021, 11, 508–513. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, N.; Sun, J. Spatiotemporal Variations of Cloud Amount over the Yangtze River Delta, China. J. Meteorol. Res. 2014, 28, 371–380. [Google Scholar] [CrossRef]
- Su, T.; Xue, F. The intraseasonal variation of summer monsoon circulation and rainfall in East Asia (in Chinese). Chin. J. Atmos. Sci. 2010, 34, 611–628. [Google Scholar]
- Ge, H.; Zeng, G.; Iyakaremye, V.; Yang, X.; Wang, Z. Comparison of Atmospheric Circulation Anomalies between Dry and Wet Extreme High-Temperature Days in the Middle and Lower Reaches of the Yellow River. Atmosphere 2021, 12, 1265. [Google Scholar] [CrossRef]
- Liang, X.; Wang, W. Associations between China monsoon rainfall and tropospheric jets. Q. J. R. Meteorol. Soc. 1998, 124, 2597–2623. [Google Scholar] [CrossRef]
- Kuang, X.Y.; Zhang, Y.C. Seasonal variation of the East Asian Subtropical Westerly Jet and its association with the heating field over East Asia. Adv. Atmos. Sci. 2005, 22, 831–840. [Google Scholar]
- Lai, X.; Gong, Y.; Cen, S.; Tian, H.; Zhang, H. Impact of the Westerly Jet on Rainfall/Runoff in the Source Region of the Yangtze River during the Flood Season. Adv. Meteorol. 2020, 2020, 6726347. [Google Scholar] [CrossRef]
- Zhou, Y.; Yuan, J.; Wen, Z.; Huang, S.; Chen, X.; Guo, Y.; Lin, Q. The impacts of the East Asian subtropical westerly jet on weather extremes over China in early and late summer. Atmos. Ocean. Sci. Lett. 2022, 15, 100212. [Google Scholar] [CrossRef]
- Yang, X.; Zeng, G.; Zhang, G.; Li, J.; Li, Z.; Hao, Z. Interdecadal Variations of Different Types of Summer Heat Waves in Northeast China Associated with AMO and PDO. J. Clim. 2021, 34, 7783–7797. [Google Scholar] [CrossRef]
- Zhou, F.; Zhang, R.; Han, J. Relationship between the Circumglobal Teleconnection and Silk Road Pattern over Eurasian continent. Sci. Bull. 2019, 64, 374–376. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, P.; Zeng, G.; Yang, X.; Iyakaremye, V. Comparison of Atmospheric Circulation Anomalies between Daytime and Nighttime Extreme High Temperature in North China. Atmosphere 2023, 14, 495. https://doi.org/10.3390/atmos14030495
Chen P, Zeng G, Yang X, Iyakaremye V. Comparison of Atmospheric Circulation Anomalies between Daytime and Nighttime Extreme High Temperature in North China. Atmosphere. 2023; 14(3):495. https://doi.org/10.3390/atmos14030495
Chicago/Turabian StyleChen, Peng, Gang Zeng, Xiaoye Yang, and Vedaste Iyakaremye. 2023. "Comparison of Atmospheric Circulation Anomalies between Daytime and Nighttime Extreme High Temperature in North China" Atmosphere 14, no. 3: 495. https://doi.org/10.3390/atmos14030495
APA StyleChen, P., Zeng, G., Yang, X., & Iyakaremye, V. (2023). Comparison of Atmospheric Circulation Anomalies between Daytime and Nighttime Extreme High Temperature in North China. Atmosphere, 14(3), 495. https://doi.org/10.3390/atmos14030495