Quantifying the Impact of Canopy Structural Characteristics on Soil Temperature Variations in Different Bamboo Communities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Measurements
2.3. Data Analysis
3. Results
3.1. Air Temperature
3.2. Soil Temperature
3.3. Influence of Air Temperature on Soil Temperature
3.4. Influence of Canopy Structural Characteristics on Soil Temperature
4. Discussion
4.1. Temperature Differences between the Communities
4.2. Effects of the Air Temperature on the Soil Temperature
4.3. Effects of Canopy Structural Characteristics on Soil Temperature
4.4. Relationship between Canopy Structure, Soil Temperature and Carbon Storage
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pand, D.N. Global climate change and carbon management in multifunctional forests. J. Econ. Sci. Assocjes. 2002, 83, 593–602. [Google Scholar]
- Yadvinder, M.; Patrick, M.; Sandra, B. Forests, carbon and global climate. Phil. Trans. R. Soc. Lond. 2002, 360, 1567–1591. [Google Scholar]
- Lianhua, Z.; Zhongting, W.; Wei, Z.; Xiaoyu, Y.; Shaohua, Z.; Qing, L. GOSAT Mapping of Global Greenhouse Gas in 2020 and 2021. Atmosphere 2022, 13, 1814. [Google Scholar]
- Houghton, E. Climate Change 1995: The Science of Climate Change: Contribution of Working Group I to the Second Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Houghton, E. Climate Change 2007: Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Laurens, M.B. Have Disaster Losses Increased Due to Anthropogenic Climate Change? B Am. Meteorol. Soc. 2011, 92, 39–46. [Google Scholar]
- McCarty, J.P. Ecological Consequences of Recent Climate Change. Conserv. Biol. 2001, 15, 320–331. [Google Scholar] [CrossRef]
- Helen, F.D.; Nicholas, R.M. Ecological consequences of global climate change for freshwater ecosystems in South Africa. S. Afr. J. Sci. 2014, 110, 1–11. [Google Scholar]
- Zhu, Z.; Mirong, S. Impacts of Observed Extreme Antarctic Sea Ice Conditions on the Southern Hemisphere Atmosphere. Atmosphere 2023, 14, 36. [Google Scholar] [CrossRef]
- Shope, R. Global Climate Change and Infectious Diseases. Environ. Health Perspect. 1991, 96, 171–174. [Google Scholar] [CrossRef]
- Lawrence, A.P.; Marleen, W. Global climate change and mental health. Curr. Opin. Psychol. 2020, 32, 12–16. [Google Scholar]
- Scharlemann, J.P.W.; Tanner, E.V.J.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon management and climate change. Carbon Manag. 2014, 4, 439–462. [Google Scholar] [CrossRef]
- Susan, E.T.; Oliver, A.C.; Ronald, A. Rapid Exchange Between Soil Carbon and Atmospheric Carbon Dioxide Driven by Temperature Change. Science 1996, 272, 393–396. [Google Scholar]
- Jenkinson, D.S.; Adams, D.E.; Wild, A. Model estimates of CO2 emissions from soil in response to global warming. Nature 1991, 351, 304–306. [Google Scholar] [CrossRef]
- James, W.; Raich, C.S.P. Global patterns of carbon dioxide emissions from soil. Glob. Biogeochem. Cycles 1995, 9, 23–36. [Google Scholar]
- Kang, S.; Doh, S.; Lee, D.; Lee, D.; Jin, V.L.; Kimball, J.S. Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes, Korea. Glob. Chang. Biol. 2003, 9, 1427–1437. [Google Scholar] [CrossRef] [Green Version]
- Paul, G.; Sven, J. Temperature and substrate controls on intra-annual variation in ecosystem respiration in two subarctic vegetation types. Glob. Chang. Biol. 2005, 11, 465–475. [Google Scholar]
- David, G.G.; Andrew, B.T.; Tim, J.G.; Alan, G.B.; Rachhpal, S.J.; Zoran, N. Interpreting the dependence of soil respiration on soil temperature and water content in a boreal aspen stand. Agric. For. Meteorol. 2006, 140, 220–235. [Google Scholar]
- Jia, B.; Zhou, G.; Wang, Y.; Wang, F.; Wang, X. Effects of temperature and soil water-content on soil respiration of grazed and ungrazed Leymus chinensis steppes, Inner Mongolia. J. Arid Environ. 2006, 67, 60–76. [Google Scholar] [CrossRef]
- Yohannes, Y.; Shibistova, O.; Abate, A.; Fetene, M.; Guggenberger, G. Soil CO2 efflux in an Afromontane forest of Ethiopia as driven by seasonality and tree species. For. Ecol. Manag. 2011, 261, 1090–1098. [Google Scholar] [CrossRef]
- Canan, S.; Ozan, O. The Relationship between Soil Moisture and Temperature Vegetation on Kirklareli City Luleburgaz District A Natural Pasture Vegetation. Int. J. Environ. Agric. Res. 2017, 3, 21–29. [Google Scholar]
- Hasfurther, V.; Burman, R.D.; Nunn, J. A Model for Predicting Soil Temperature from Air Temperature; Natural Resource Ecology Laboratory, Colorado State University: Colorado, CO, USA, 1972. [Google Scholar]
- Hinkel, K.M.; Paetzold, F.; Nelson, F.E.; Bockheim, J.G. Patterns of soil temperature and moisture in the active layer and upper permafrost at Barrow, Alaska: 1993–1999. Glob. Planet. Chang. 2001, 29, 293–309. [Google Scholar] [CrossRef]
- Mihalakakou, G. On estimating soil surface temperature profiles. Energ. Build. 2002, 34, 251–259. [Google Scholar] [CrossRef]
- Paul, K.I.; Polglase, P.J.; Smethurst, P.J.; O’Connell, A.M.; Carlyle, C.J.; Khanna, P.K. Soil temperature under forests: A simple model for predicting soil temperature under a range of forest types. Agric. For. Meteorol. 2004, 121, 167–182. [Google Scholar] [CrossRef]
- Wigneron, J.P.; Chanzy, A.; de Rosnay, P.; Rudiger, C.; Calvet, J.C. Estimating the Effective Soil Temperature at L-Band as a Function of Soil Properties. IEEE T Geosci. Remote 2008, 46, 797–807. [Google Scholar] [CrossRef]
- Daolan, Z.; Raymond, H.J.E.; Steven, W.R. A daily soil temperature model based on air temperature and precipitation for continental applications. Clim. Res. 1993, 2, 183–191. [Google Scholar]
- Kang, S.; Kim, S.; Oh, S.; Lee, D. Predicting spatial and temporal patterns of soil temperature based on topography, surface cover and air temperature. For. Ecol. Manag. 2000, 136, 173–184. [Google Scholar] [CrossRef]
- Hashimoto, S.; Suzuki, M. The impact of forest clear-cutting on soil temperature: A comparison between before and after cutting, and between clear-cut and control sites. J. For. Res. 2017, 9, 125–132. [Google Scholar] [CrossRef]
- Junjun, N.; Yifeng, C.; Qinhua, W.; Charles, W.W.N.; Ankit, G. Effects of vegetation on soil temperature and water content: Field monitoring and numerical modelling. J. Hydrol. 2019, 571, 494–502. [Google Scholar]
- Peters, E.B.; McFadden, J.P. Influence of seasonality and vegetation type on suburban microclimates. Urban Ecosyst. 2010, 13, 443–460. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Fei, B.; Chen, X. Bamboo and Rattan in the World; China Forestry Publishing House: Beijing, China, 2007. [Google Scholar]
- Vorontsova, M.S.; Clark, L.G.; Dransfield, J.; Govaerts, R.; Baker, W.J. World Checklist of Bamboos and Rattans: In Celebration of INBAR’s 20th Anniversary; International Centre for Bamboo and Rattan: Beijing, China, 2016. [Google Scholar]
- Ohrnberger, D. The Bamboos of the World: Annotated Nomenclature and Literature of the Species and the Higher and Lower Taxa; Elsevier: Amsterdam, The Netherlands; Beijing, China, 1999. [Google Scholar]
- Benzhi, Z.; Maoyi, F.; Jinzhong, X.; Xiaosheng, Y.; Zhengcai, L. Ecological functions of bamboo forest: Research and Application. J. For. Res. 2005, 16, 143–147. [Google Scholar] [CrossRef]
- Effendi, T.B.; Asep, D.; Gustian, R.P. Multi-culm bamboo composites as sustainable materials for green constructions: Section properties and column behavior. Results Eng. 2023, 17, 100911. [Google Scholar]
- Effendi, T.B.; Naresworo, N.; Lina, K.; Surjono, S. Human Comfort Period Outside and Inside Bamboo Stands. Int. J. Environ. Sci. Technol. 2014, 7, 245–265. [Google Scholar]
- Peel, M.C.; Finlayson, B.L.; McMahon, T.A. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 2007, 11, 1633–1644. [Google Scholar] [CrossRef] [Green Version]
- National Earth System Science Data Center, National Science & Technology Infrastructure of China. Available online: http://www.geodata.cn (accessed on 14 February 2023).
- Oliveira, S.; Andrade, H.; Vaz, T. The cooling effect of green spaces as a contribution to the mitigation of urban heat: A case study in Lisbon. Build. Environ. 2011, 46, 2186–2194. [Google Scholar] [CrossRef]
- Yan, H.; Hao, P.Y.; Dong, L. Study on the Diurnal Change of Microclimate and Human Comfort in Five Types of Land Covers. In Proceedings of the III International Conference on Landscape and Urban Horticulture, Beijing, China, 25 June 2013; Volume 999, pp. 193–197. [Google Scholar]
- Yan, H.; Wang, X.; Hao, P.; Dong, L. Study on the microclimatic characteristics and human comfort of park plant communities in summer. Procedia Environ. Sci. 2012, 13, 755–765. [Google Scholar] [CrossRef] [Green Version]
- Zhanga, Z.; Yingmin, L.; Huitang, P. Cooling and humidifying effect of plant communities in subtropical urban parks. Urban For. Urban Green. 2013, 12, 323–329. [Google Scholar] [CrossRef]
- Skelhorn, C.; Lindley, S.; Levermore, G. The impact of vegetation types on air and surface temperatures in a temperate city: A fine scale assessment in Manchester, UK. Landsc. Urban Plan. 2014, 121, 129–140. [Google Scholar] [CrossRef]
- Mohammad, A.R.; Astrid, M.; Thomas, R.; Stephan, P. Microclimatic differences and their influence on transpirational cooling of Tilia cordata in two contrasting street canyons in Munich, Germany. Agric. For. Meteorol. 2017, 232, 443–456. [Google Scholar]
- An-Shik, Y.; Yu-Hsuan, J.; Chih-Yung, W.; Chao-Jui, C. Numerical simulation of cooling effect of vegetation enhancement in a subtropical urban park. Appl. Energy 2017, 192, 178–200. [Google Scholar]
- Zhong, Q.; Zhandong, L.; Fangyun, C.; Jianfang, C.; Bing, L. Influence of canopy structural characteristics on cooling and humidifying effects of Populus tomentosa community on calm sunny summer days. Landsc. Urban Plan. 2014, 127, 75–82. [Google Scholar]
- Bo, X.; Huifang, W.; Jun, F.; Thomas, F.; Maik, V. Biological soil crusts decrease soil temperature in summer and increase soil temperature in winter in semiarid environment. Ecol. Eng. 2013, 58, 52–56. [Google Scholar]
- Byrne, L.B.; Bruns, M.A.; Kim, K.C. Ecosystem Properties of Urban Land Covers at the Aboveground–Belowground Interface. Ecosystems 2008, 11, 1065–1077. [Google Scholar] [CrossRef]
- Kätterer, T.; Andrén, O. Predicting daily soil temperature profiles in arable soils in cold temperate regions from air temperature and leaf area index. Acta Agric. Scand. Sect. B Soil Plant Sci. 2009, 59, 77–86. [Google Scholar] [CrossRef]
- Brian, H.; Ross, C. A weighted coefficient model for estimation of Australian daily soil temperature at depths of 5 cm to 100 cm based on air temperature and rainfall. Soil Res. 2011, 49, 305–314. [Google Scholar]
- Bocock, K.L.; Jeffers, J.N.R.; Lindley, D.K.; Adamson, J.K.; Gill, C.A. Estimating woodland soil temperature from air temperature and other climatic variables. J. Agric. Meteorol. 1977, 18, 351–372. [Google Scholar] [CrossRef]
- Gehrig-Fasel, J.; Guisan, A.; Zimmermann, N.E. Evaluating thermal treeline indicators based on air and soil temperature using an air-to-soil temperature transfer model. Ecol. Model. 2008, 213, 345–355. [Google Scholar] [CrossRef]
- Wu, S.H.; Jansson, P.E.; Kolari, P. The role of air and soil temperature in the seasonality of photosynthesis and transpiration in a boreal Scots pine ecosystem. Agr. For. Meteorol. 2012, 156, 85–103. [Google Scholar] [CrossRef]
- Ozgener, O.; Ozgener, L.; Tester, J.W. A practical approach to predict soil temperature variations for geothermal (ground) heat exchangers applications. Int. J. Heat Mass Transf. 2013, 62, 473–480. [Google Scholar] [CrossRef]
- Souch, C.A.; Souch, C. The effect of trees on summertime below canopy urban climates: A case study bloomington, Indiana. J. Arboric. 1993, 19, 303–312. [Google Scholar] [CrossRef]
- Abu-Hamdeh, N.H.; Reeder, R.C. Soil Thermal Conductivity Effects of Density, Moisture, Salt Concentration, and Organic Matter. Soil Sci. Soc. Am. J. 2000, 64, 1285–1290. [Google Scholar] [CrossRef]
- van Donk, S.J.; Tollner, E.W. Measurement and modeling of heat transfer mechanisms in mulch materials. Am. Soc. Agric. Eng. 2000, 43, 919–925. [Google Scholar] [CrossRef]
- Liu, P.; Xia, Y.; Shang, M. A bench-scale assessment of the effect of soil temperature on bare soil evaporation in winter. Hydrol. Res. 2020, 51, 1349–1357. [Google Scholar] [CrossRef]
- Lloyd, J.; Taylor, J.A. On the Temperature Dependence of Soil Respiration. Funct. Ecol. 1994, 8, 315–323. [Google Scholar] [CrossRef]
- Churkina, G. Modeling the carbon cycle of urban systems. Ecol. Model. 2008, 216, 107–113. [Google Scholar] [CrossRef]
- Mamde, K.H.; Abdullah, A.M.; Zaharin, A.A.; Ainuddin, A.N. Drivers of Soil Carbon Dioxide Efflux in a 70 years Mixed Trees Species of Tropical Lowland Forest, Peninsular Malaysia. Sains Malays. 2014, 43, 1843–1853. [Google Scholar] [CrossRef]
- Song, X.; Zhou, G.; Jiang, H.; Yu, S.; Fu, J.; Li, W.; Wang, W.; Ma, Z.; Peng, C. Carbon sequestration by Chinese bamboo forests and their ecological benefits: Assessment of potential, problems, and future challenges. Environ. Rev. 2011, 19, 418–428. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.; Meng, C.; Jiang, P.; Xu, Q. Review of Carbon Fixation in Bamboo Forests in China. Bot. Rev. 2011, 77, 262–270. [Google Scholar] [CrossRef]
Bamboo Communities | Morphological Indicators | Canopy Structure | Fish-Eye Photos | |||||
---|---|---|---|---|---|---|---|---|
AH | DBH | PD | LAI | CC | SVF | |||
Phyllostachys praecox ‘Prevernalis’ (PP) | 4.5 | 4.2 | 3.5 | 1.60 | 74.3 | 17.8 | ||
Phyllostachys aureosulcata ‘Spectabilis’ (PAS) | 5.3 | 2.0 | 9.2 | 1.35 | 68.2 | 20.4 | ||
Phyllostachys nigra (PN) | 4.7 | 1.1 | 9.2 | 1.15 | 62.0 | 30.2 | ||
Sinobambusa tootsikvar. laeta (ST) | 5.0 | 1.8 | 15.8 | 2.61 | 85.1 | 14.5 | ||
Indosasa gigantea (IG) | 7.4 | 3.8 | 6.8 | 1.67 | 76.6 | 22.3 | ||
Phyllostachys bambusoidesf. lacrima-deae (PB) | 7.0 | 3.0 | 6.0 | 1.66 | 73.5 | 18.1 | ||
Oligostachyum lubricum (OL) | 3.7 | 0.8 | 15.2 | 1.47 | 72.8 | 21.3 | ||
Pseudosasa amabilis (PA) | 5.0 | 1.9 | 21.0 | 2.32 | 86.7 | 14.5 | ||
Phyllostachys heterocycla ‘Pubescens’ (PH) | 8.9 | 8.3 | 2.0 | 1.33 | 72.3 | 26.3 | ||
Unshaded lawn (CK) | / | / | / | 0.49 | 91.0 | 76.0 | / |
Temperature | PP | PAS | PN | ST | IG | PB | OL | PA | PH | CK | |
---|---|---|---|---|---|---|---|---|---|---|---|
AT/°C | X | 36.2 | 36.6 | 36.8 | 35.9 | 36.2 | 36.3 | 36.4 | 35.7 | 36.6 | 38.3 |
α | 38.8 | 39.2 | 39.4 | 38.2 | 38.3 | 38.7 | 39.0 | 38.1 | 39.1 | 40.9 | |
β1 | 2.1 | 1.7 | 1.5 | 2.4 | 2.1 | 2.0 | 1.9 | 2.6 | 1.7 | / | |
γ | 5.5 | 4.4 | 4.0 | 6.4 | 5.7 | 5.2 | 5.1 | 6.8 | 4.7 | / | |
ST5/°C | X | 27.6 | 27.5 | 27.5 | 26.9 | 27.4 | 27.4 | 27.7 | 27.0 | 27.6 | 30.7 |
α | 28.0 | 28.1 | 28.1 | 27.4 | 28.0 | 28.0 | 28.2 | 27.5 | 28.0 | 31.8 | |
β2 | 3.1 | 3.2 | 3.2 | 3.8 | 3.3 | 3.3 | 3.0 | 3.7 | 3.1 | / | |
γ | 10.0 | 10.3 | 10.3 | 12.3 | 10.5 | 10.5 | 9.6 | 11.9 | 9.9 | / | |
ST10/°C | X | 26.6 | 26.7 | 26.8 | 26.1 | 26.3 | 26.4 | 27.0 | 26.1 | 26.7 | 29.5 |
α | 27.0 | 27.3 | 27.2 | 26.4 | 26.7 | 26.8 | 27.3 | 26.4 | 27.0 | 30.3 | |
β2 | 2.9 | 2.8 | 2.7 | 3.4 | 3.2 | 3.1 | 2.5 | 3.4 | 2.8 | / | |
γ | 9.7 | 9.4 | 9.0 | 11.5 | 10.7 | 10.4 | 8.3 | 11.4 | 9.6 | / | |
ST20/°C | X | 25.0 | 25.3 | 25.2 | 24.7 | 25.0 | 25.0 | 25.5 | 24.8 | 25.1 | 27.7 |
α | 25.1 | 25.5 | 25.3 | 24.8 | 25.2 | 25.2 | 25.8 | 24.9 | 25.2 | 28.2 | |
β2 | 2.7 | 2.4 | 2.5 | 3.0 | 2.7 | 2.7 | 2.2 | 2.9 | 2.6 | / | |
γ | 9.9 | 8.6 | 9.3 | 10.9 | 9.9 | 10.0 | 8.1 | 10.8 | 9.7 | / |
Temperature | PP | PAS | PN | ST | IG | PB | OL | PA | PH | CK | |
---|---|---|---|---|---|---|---|---|---|---|---|
AT/°C | X | 7.7 | 7.5 | 7.3 | 8.0 | 7.6 | 7.6 | 7.7 | 8.0 | 7.2 | 7.5 |
α | 4.0 | 2.9 | 2.9 | 3.5 | 3.0 | 2.7 | 3.1 | 3.3 | 2.4 | 2.2 | |
β1 | 0.2 | 0 | 0.2 | 0.5 | 0.1 | 0.1 | 0.2 | 0.5 | 0.3 | / | |
γ | 3.3 | 0.6 | –2.4 | 7.2 | 1.5 | 1.7 | 3.3 | 7.0 | –3.8 | / | |
ST5/°C | X | 5.5 | 5.5 | 5.5 | 5.8 | 5.7 | 5.6 | 5.5 | 5.7 | 5.4 | 5.4 |
α | 4.1 | 4.2 | 4.0 | 4.6 | 4.4 | 4.3 | 4.0 | 4.5 | 4.0 | 3.4 | |
β2 | 0.1 | 0.1 | 0.1 | 0.4 | 0.3 | 0.2 | 0.1 | 0.3 | 0 | / | |
γ | 2.9 | 3.1 | 2.0 | 8.7 | 7.0 | 5.2 | 2.2 | 7.2 | 1.8 | / | |
ST10/°C | X | 6.2 | 6.0 | 6.1 | 6.5 | 6.3 | 6.2 | 6.1 | 6.4 | 6.2 | 5.9 |
α | 5.1 | 4.7 | 4.9 | 5.5 | 5.2 | 5.1 | 4.9 | 5.3 | 5.0 | 3.7 | |
β2 | 0.3 | 0.1 | 0.2 | 0.6 | 0.4 | 0.3 | 0.2 | 0.5 | 0.3 | / | |
γ | 1.8 | 2.1 | 1.7 | 1.8 | 1.8 | 1.9 | 1.7 | 1.5 | 1.5 | / | |
ST20/°C | X | 7.0 | 7.0 | 6.9 | 7.4 | 7.0 | 6.9 | 6.9 | 7.3 | 7.0 | 6.7 |
α | 5.3 | 5.4 | 5.0 | 5.8 | 5.2 | 5.1 | 4.9 | 5.7 | 5.6 | 4.4 | |
β2 | 0.3 | 0.3 | 0.2 | 0.7 | 0.3 | 0.2 | 0.2 | 0.6 | 0.3 | / | |
γ | 3.4 | 4.2 | 2.7 | 9.9 | 3.1 | 2.8 | 2.4 | 8.5 | 5.0 | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, T.; Nan, X.; Wu, R.; Yan, H.; Wu, N.; She, J.; Bao, Z. Quantifying the Impact of Canopy Structural Characteristics on Soil Temperature Variations in Different Bamboo Communities. Atmosphere 2023, 14, 445. https://doi.org/10.3390/atmos14030445
Ma T, Nan X, Wu R, Yan H, Wu N, She J, Bao Z. Quantifying the Impact of Canopy Structural Characteristics on Soil Temperature Variations in Different Bamboo Communities. Atmosphere. 2023; 14(3):445. https://doi.org/10.3390/atmos14030445
Chicago/Turabian StyleMa, Tingting, Xinge Nan, Renwu Wu, Hai Yan, Na Wu, Juan She, and Zhiyi Bao. 2023. "Quantifying the Impact of Canopy Structural Characteristics on Soil Temperature Variations in Different Bamboo Communities" Atmosphere 14, no. 3: 445. https://doi.org/10.3390/atmos14030445
APA StyleMa, T., Nan, X., Wu, R., Yan, H., Wu, N., She, J., & Bao, Z. (2023). Quantifying the Impact of Canopy Structural Characteristics on Soil Temperature Variations in Different Bamboo Communities. Atmosphere, 14(3), 445. https://doi.org/10.3390/atmos14030445