The Impact of Atmospheric Synoptic Weather Condition and Long-Range Transportation of Air Mass on Extreme PM10 Concentration Events
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.1.1. Data Collection and Analysis
2.1.2. Backpropagation (BP) Neural Network
2.1.3. Classification Method for the Meteorological Condition of PM10 Pollution Levels
2.1.4. Relationship between Meteorology Patterns and Extreme Concentration of PM10
2.1.5. Training
2.1.6. Classification
2.1.7. Long-Range Transportation of Air Mass HYSPLIT Model
3. Results
3.1. Characteristics of Surface PM10 Concentration
3.1.1. Atmospheric Regional and Local Weather Circulation
3.1.2. Classification of Meteorological Weather Conditions Influencing the PM10 Extreme Concentration Events
3.1.3. Weather Conditions associated with PM10 Concentration Categories (WC)
3.1.4. Synoptic Weather Changes and their Impact on Ground Concentration
3.1.5. Long-Range Transportation of Air Mass
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Demuzere, M.; Trigo, R.M.; Vila-Guerau de Arellano, J.; van Lipzig, N.P. The impact of weather and atmospheric circulation on o3 and PM10 levels at a rural mid-latitude site. Atmos. Chem. Phys. 2009, 9, 2695–2714. [Google Scholar] [CrossRef] [Green Version]
- Lockwood, A.H. Air Pollution, air quality, and climate change. Heat Advis. 2016, 109–130. [Google Scholar] [CrossRef]
- Tong, C.H.; Yim, S.H.; Rothenberg, D.; Wang, C.; Lin, C.-Y.; Chen, Y.D.; Lau, N.C. Assessing the impacts of seasonal and vertical atmospheric conditions on air quality over the Pearl River Delta Region. Atmos. Environ. 2018, 180, 69–78. [Google Scholar] [CrossRef]
- Ramos Torre, R. El Futuro Climático del IPCC: Una Aproximación sociológica / The climatic future of the ipcc: A sociological approach. Rev. Española De Investig. Sociológicas 2021. [Google Scholar] [CrossRef]
- Aryal, R.K.; Lee, B.-K.; Karki, R.; Gurung, A.; Kandasamy, J.; Pathak, B.K.; Sharma, S.; Giri, N. Seasonal PM10 dynamics in Kathmandu Valley. Atmos. Environ. 2008, 42, 8623–8633. [Google Scholar] [CrossRef]
- Wang, R.; Liu, B.; Li, H.; Zou, X.; Wang, J.; Liu, W.; Cheng, H.; Kang, L.; Zhang, C. Variation of strong dust storm events in northern China during 1978–2007. Atmos. Res. 2017, 183, 166–172. [Google Scholar] [CrossRef]
- Sarant, L. Red Sea corals will stand the test of Time. Nat. Middle East 2017. [CrossRef]
- Ohara, T. Long-range transport and deposition of Air Pollution. Encycl. Environ. Health 2019, 126–130. [Google Scholar] [CrossRef]
- Tiwari, S.; Kun, L.; Chen, B. Spatial variability of sedimentary carbon in South Yellow Sea, China: Impact of anthropogenic emission and long-range transportation. Environ. Sci. Pollut. Res. 2020, 27, 23812–23823. [Google Scholar] [CrossRef]
- Katoto, P.D.M.C.; Byamungu, L.; Brand, A.S.; Mokaya, J.; Strijdom, H.; Goswami, N.; De Boever, P.; Nawrot, T.S.; Nemery, B. Ambient air pollution and health in Sub-Saharan Africa: Current evidence, Perspectives and a call to action. Environ. Res. 2019, 173, 174–188. [Google Scholar] [CrossRef]
- Jury, M.R. Statistics and meteorology of air pollution episodes over the South African Highveld based on satellite–model datasets. J. Appl. Meteorol. Climatol. 2017, 56, 1583–1594. [Google Scholar] [CrossRef]
- Tshehla, C.; Wright, C.Y. 15 years after the National Environmental Management Air Quality Act: Is legislation failing to reduce air pollution in South Africa? S. Afr. J. Sci. 2019, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jury, M.R.; Buthelezi, M.S. Air pollution dispersion over Durban, South Africa. Atmosphere 2022, 13, 811. [Google Scholar] [CrossRef]
- Nchaba, T.; Mpholo, M.; Lennard, C. Long-term austral summer wind speed trends over Southern Africa. Int. J. Climatol. 2016, 37, 2850–2862. [Google Scholar] [CrossRef]
- Feig, G.T.; Vertue, B.; Naidoo, S.; Ncgukana, N.; Mabaso, D. Measurement of atmospheric black carbon in the Vaal Triangle and Highveld Priority Areas. Clean Air J. 2015, 25. [Google Scholar] [CrossRef]
- Altieri, K.E.; Keen, S.L. Public health benefits of reducing exposure to ambient fine particulate matter in South Africa. Sci. Total Environ. 2019, 684, 610–620. [Google Scholar] [CrossRef]
- Wernecke, B.; Language, B.; Piketh, S.J.; Burger, R.P. Indoor and outdoor particulate matter concentrations on the Mpumalanga highveld–A case study. Clean Air J. 2015, 25, 12. [Google Scholar] [CrossRef]
- Venter, A.; De Vos, S. Ambient air quality data reported at Sasol Secunda Monitoring Stations during COVID-19 lockdown–Mpumalanga, South Africa. Clean Air J. 2021, 31. [Google Scholar] [CrossRef]
- Olutola, B.; Claassen, N.; Voyi, K.; Wichmann, J. Apparent temperature as a modifier of the effects of air pollution on respiratory disease hospital admissions in Secunda, South Africa. Environ. Epidemiol. 2019, 3, 439. [Google Scholar] [CrossRef]
- Morris, D.R.; Boardman, W.S.; Swanepoel, L.H.; Simpson, G.; Coetzee, J.; Camacho, G.J.; McWhorter, T.J. Population density estimate of leopards (Panthera pardus) in north-western Mpumalanga, South Africa, determined using spatially explicit capture–recapture methods. Mamm. Biol. 2021. [CrossRef]
- Hou, Z.; Li, J.; Wang, L.; Zhang, Y.; Liu, T. Improving the forecast accuracy of ECMWF 2-m air temperature using a historical dataset. Atmos. Res. 2022, 273, 106177. [Google Scholar] [CrossRef]
- ECMWF Reanalysis v5 | Ecmwf. (n.d.). Available online: https://www.ecmwf.org/en/forecasts/dataset/ecmwf-reanalysis-v5 (accessed on 18 January 2023).
- Saaqis. (n.d.). Available online: https://saaqis.environment.gov.za/ (accessed on 18 January 2023).
- Agustine, I.; Yulinawati, H.; Suswantoro, E.; Gunawan, D. Application of open air model (R package) to analyze air pollution data. Indones. J. Urban Environ. Technol. 2017, 1, 94–109. [Google Scholar] [CrossRef] [Green Version]
- Berman, F.; Chien, A.; Cooper, K.; Dongarra, J.; Foster, I.; Gannon, D.; Johnsson, L.; Kennedy, K.; Kesselman, C.; Mellor-Crumme, J.; et al. The Grads Project: Software support for high-level grid application development. Int. J. High Perform. Comput. Appl. 2001, 15, 327–344. [Google Scholar] [CrossRef]
- Li, J.; Cheng, J.-H.; Shi, J.-Y.; Huang, F. Brief introduction of back propagation (BP) Neural Network algorithm and its improvement. Adv. Intell. Soft Comput. 2012, 169, 553–558. [Google Scholar] [CrossRef]
- Elminir, H.K. Dependence of urban air pollutants on meteorology. Sci. Total Environ. 2005, 350, 225–237. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Cheng, F.-Y. Synoptic weather patterns and associated air pollution in Taiwan. Aerosol Air Qual. Res. 2019, 19, 1139–1151. [Google Scholar] [CrossRef] [Green Version]
- Rainham, D.G.; Smoyer-Tomic, K.E.; Sheridan, S.C.; Burnett, R.T. Synoptic Weather Patterns and modification of the association between Air Pollution and human mortality. Int. J. Environ. Health Res. 2005, 15, 347–360. [Google Scholar] [CrossRef]
- Vanos, J.K.; Cakmak, S.; Bristow, C.; Brion, V.; Tremblay, N.; Martin, S.L.; Sheridan, S.S. Synoptic weather typing applied to air pollution mortality among the elderly in 10 Canadian cities. Environ. Res. 2013, 126, 66–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, L.-W.; Cheng, W.-L. Air quality influenced by urban heat island coupled with synoptic weather patterns. Sci. Total Environ. 2009, 407, 2724–2733. [Google Scholar] [CrossRef] [PubMed]
- Vautard, R.; Colette, A.; van Meijgaard, E.; Meleux, F.; Jan van Oldenborgh, G.; Otto, F.; Tobin, I.; Yiou, P. Attribution of wintertime anticyclonic stagnation contributing to air pollution in Western Europe. Bull. Am. Meteorol. Soc. 2018, 99, S70–S75. [Google Scholar] [CrossRef] [Green Version]
- Kallos, G.; Kassomenos, P.; Pielke, R.A. Synoptic and mesoscale weather conditions during air pollution episodes in Athens, Greece. In Transport and Diffusion in Turbulent Fields; Springer: Dordrecht, The Netherlands, 1993; pp. 163–184. [Google Scholar] [CrossRef]
- Kumar, V.S.; Naseef, T.M. Performance of ERA-Interim wave data in the nearshore waters around India. J. Atmos. Ocean. Technol. 2015, 32, 1257–1269. [Google Scholar] [CrossRef]
- Mamun, M.I. The seasonal variability of aerosol optical depth over Bangladesh based on satellite data and Hysplit Model. Am. J. Remote Sens. 2014, 2, 20. [Google Scholar] [CrossRef] [Green Version]
- Gustin, M.S.; Dunham-Cheatham, S.M.; Zhang, L.; Lyman, S.; Choma, N.; Castro, M. Use of membranes and detailed HYSPLIT analyses to understand atmospheric particulate, gaseous oxidized, and reactive mercury chemistry. Environ. Sci. Technol. 2021, 55, 893–901. [Google Scholar] [CrossRef]
- Sharif, F.; Alam, K.; Afsar, S. Spatio-temporal distribution of aerosol and cloud properties over Sindh using MODIS satellite data and a HYSPLIT model. Aerosol Air Qual. Res. 2015, 15, 657–672. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Fan, J.; Chen, X.; Ashkenazy, Y.; Havlin, S. Significant impact of rossby waves on air pollution detected by network analysis. Geophys. Res. Lett. 2019, 46, 12476–12485. [Google Scholar] [CrossRef] [Green Version]
- Tagaris, E.; Manomaiphiboon, K.; Liao, K.-J.; Leung, L.R.; Woo, J.-H.; He, S.; Amar, P.; Russell, A.G. Impacts of global climate change and emissions on regional ozone and fine particulate matter concentrations over the United States. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef]
- Zelenka, M.P. An analysis of the meteorological parameters affecting ambient concentrations of acid aerosols in Uniontown, Pennsylvania. Atmos. Environ. 1997, 31, 869–878. [Google Scholar] [CrossRef]
- Hien, P.D.; Bac, V.T.; Tham, H.C.; Nhan, D.D.; Vinh, L.D. Influence of meteorological conditions on PM2.5 and PM2.5−10 concentrations during the monsoon season in Hanoi, Vietnam. Atmos. Environ. 2002, 36, 3473–3484. [Google Scholar] [CrossRef]
- Laakso, L.; Hussein, T.; Aarnio, P.; Komppula, M.; Hiltunen, V.; Viisanen, Y.; Kulmala, M. Diurnal and annual characteristics of particle mass and number concentrations in urban, rural and Arctic Environments in Finland. Atmos. Environ. 2003, 37, 2629–2641. [Google Scholar] [CrossRef]
- Beaver, S.; Palazoglu, A.; Singh, A.; Soong, S.-T.; Tanrikulu, S. Identification of weather patterns impacting 24-H average fine particulate matter pollution. Atmos. Environ. 2010, 44, 1761–1771. [Google Scholar] [CrossRef]
- Wang, Q.; Gu, J.; Wang, X. The impact of Sahara Dust on air quality and public health in European countries. Atmos. Environ. 2021, 241, 117771. [Google Scholar] [CrossRef]
- Scott, A. Polar Winds Stir Desert Dust. Nat. Middle East 2019. [CrossRef]
- Filonchyk, M. Characteristics of the severe March 2021 Gobi Desert Dust Storm and its impact on air pollution in China. Chemosphere 2022, 287, 132219. [Google Scholar] [CrossRef] [PubMed]
Weather Classification | ||
---|---|---|
Categories | PM10 Concentration Level | The Corresponding Weather Condition |
Category 1 | 0–50 | Non-supportive |
Category 2 | 51–100 | Moderate supportive |
Category 3 | 101–200 | Very Supportive |
Category 4 | >201 | Extreme supportive |
Model Number | City | Sample Number of Four Levels for Training and Test | Classification Accuracy of Test Samples | ||||
---|---|---|---|---|---|---|---|
C1 | C2 | C3 | C4 | Selected Sample Numbers | Classification Accuracy (%) | ||
No.1 | Balfour | 19,590 | 10,918 | 5320 | 1199 | 3320 | 77.2 |
No.2 | Ermelo | 18,820 | 10,639 | 3342 | 1173 | 3075 | 86.2 |
No.3 | eMalahleni | 17,230 | 10,489 | 1249 | 999 | 3120 | 72.9 |
No.4 | Hendrina | 16,992 | 10,733 | 582 | 199 | 992 | 82.4 |
No.5 | Middelburg | 17,117 | 10,992 | 669 | 109 | 993 | 79.5 |
No.6 | Secunda | 10,022 | 10,999 | 9548 | 2302 | 3359 | 89.4 |
No.7 | All cities | 22,590 | 19,918 | 5320 | 1199 | 5932 | 83.9 |
Classification Accuracy | ||
---|---|---|
City | 6 Models Trained Models % | Single Train Model % |
Balfour | 60.4 | 80.8 |
Ermelo | 77.5 | 85.3 |
eMalahleni | 76.2 | 82.5 |
Hendrina | 62.8 | 70.1 |
Middelburg | 60.3 | 73.8 |
Secunda | 79.4 | 90.4 |
Weather Classification | ||||||||
---|---|---|---|---|---|---|---|---|
Weather Associated with Each Categories | Synoptic Weather System | Temp | W/S | HR | PBL | Occurrence | PM10 | |
Associated Weather | °C | m/s−1 | % | m | % | μg/m−3 | ||
WC1 | Humid heat, strong breeze | TRP-LP | 30 | 6 | 80 | 1100 | 69% | <50 |
WC2 | Warm, humid, and moderate breeze | TRP-LP + SAT-HP | 25 | 3 | 70 | 940 | 78% | <100 |
WC3 | Cold, moist, light wind speed, stable | SAT-HP + TRP-HP | 15 | 1.12 | 51 | 300 | 82% | >101 |
WC4 | dry, cold, and calm | SIND-HP + TRP-HP | 5 | 0.05 | 33 | 280 | 67% | >200 |
Air mass Trace Origin | ||||
---|---|---|---|---|
Trace. Source | Meters above the Ground Level | Location 1 (%) | Location 2 (%) | Location 3 (%) |
Within the Province | Nearby Province | Outside the Country | ||
Secunda City | 10 MAGL | 30 | 68 | 2 |
500 MAGL | 32 | 60 | 23 | |
1000 MAGL | 21 | 60 | 19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, H.-C.; Dai, Y.-T.; Mkasimongwa, S.W.; Hsiao, M.-C.; Lai, L.-W. The Impact of Atmospheric Synoptic Weather Condition and Long-Range Transportation of Air Mass on Extreme PM10 Concentration Events. Atmosphere 2023, 14, 406. https://doi.org/10.3390/atmos14020406
Lai H-C, Dai Y-T, Mkasimongwa SW, Hsiao M-C, Lai L-W. The Impact of Atmospheric Synoptic Weather Condition and Long-Range Transportation of Air Mass on Extreme PM10 Concentration Events. Atmosphere. 2023; 14(2):406. https://doi.org/10.3390/atmos14020406
Chicago/Turabian StyleLai, Hsin-Chih, Yu-Tung Dai, Simon William Mkasimongwa, Min-Chuan Hsiao, and Li-Wei Lai. 2023. "The Impact of Atmospheric Synoptic Weather Condition and Long-Range Transportation of Air Mass on Extreme PM10 Concentration Events" Atmosphere 14, no. 2: 406. https://doi.org/10.3390/atmos14020406
APA StyleLai, H. -C., Dai, Y. -T., Mkasimongwa, S. W., Hsiao, M. -C., & Lai, L. -W. (2023). The Impact of Atmospheric Synoptic Weather Condition and Long-Range Transportation of Air Mass on Extreme PM10 Concentration Events. Atmosphere, 14(2), 406. https://doi.org/10.3390/atmos14020406