High-Spatial-Resolution Methane Emissions Calculation Using TROPOMI Data by a Divergence Method
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.1.1. Surface Atmospheric XCH4 from TROPOMI
2.1.2. Wind Data
2.1.3. CH4 Emissions from EDGAR
2.1.4. Wetland CH4 Emissions
2.2. Methodology
2.2.1. Surface Atmospheric XCH4 Model
2.2.2. A Divergence Method to Quantify CH4 Emissions
2.2.3. Validation by EDGAR Anthropogenic CH4 Emissions
3. Results
3.1. Spatial Distribution Patterns of Surface Atmospheric XCH4 across China
3.2. Analysis of Divergence Method of Calculating CH4 Emissions in China
3.3. CH4 Emissions in China
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shindell, D.; Kuylenstierna, J.C.; Vignati, E.; van Dingenen, R.; Amann, M.; Klimont, Z.; Anenberg, S.C.; Muller, N.; Janssens-Maenhout, G.; Raes, F.; et al. Simultaneously mitigating near-term climate change and improving human health and food security. Science 2012, 335, 183–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saunois, M.; Bousquet, P.; Poulter, B.; Peregon, A.; Ciais, P.; Canadell, J.G.; Dlugokencky, E.J.; Etiope, G.; Bastviken, D.; Houweling, S.; et al. The global methane budget 2000–2012. Earth Syst. Sci. Data 2016, 8, 697–751. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization. WMO Greenhouse Gas Bulletin (GHG Bulletin)—No.18: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2021; World Meteorological Organization: Geneva, Switzerland, 2022. [Google Scholar]
- Alexander, L.; Allen, S.; Bindoff, N.; Breon, F.-M.; Church, J.; Cubasch, U.; Emori, S.; Forster, P.; Friedlingstein, P.; Gillett, N.; et al. Climate Change 2013: The Physical Science Basis, in Contribution of Working Group I (WGI) to the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC); IPCC: Geneva, Switzerland, 2013. [Google Scholar]
- Zhang, Y.; Fang, S.; Chen, J.; Lin, Y.; Chen, Y.; Liang, R.; Jiang, K.; Parker, R.J.; Boesch, H.; Steinbacher, M.; et al. Observed changes in China’s methane emissions linked to policy drivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2202742119. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.I.N.; Viyol, S.V. Short-term diurnal and temporal measurement of methane emission in relation to organic carbon, phosphate and sulphate content of two rice fields of central Gujarat, India. Paddy Water Environ. 2009, 7, 11–16. [Google Scholar] [CrossRef]
- Singh, A.K.; Kumar, J. Fugitive methane emissions from Indian coal mining and handling activities: Estimates, mitigation and opportunities for its utilization to generate clean energy. Energy Procedia 2016, 90, 336–348. [Google Scholar] [CrossRef]
- Gao, Z.L.; Yuan, H.J.; Ma, W.Q.; Liu, X.J.; Desjardins, R.L. Methane emissions from a dairy feedlot during the fall and winter seasons in Northern China. Environ. Pollut. 2011, 159, 1183–1189. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, P.; Shah, G.; Chandra, R.; Sahota, S.; Kumar, H.; Vijay, V.K.; Thakur, I.S. Assessment of methane emissions and energy recovery potential from the municipal solid waste landfills of Delhi, India. Bioresour. Technol. 2019, 272, 611–615. [Google Scholar] [CrossRef] [PubMed]
- Koffi, E.N.; Bergamaschi, P.; Alkama, R.; Cescatti, A. An observation-constrained assessment of the climate sensitivity and future trajectories of wetland methane emissions. Sci. Adv. 2020, 6, eaay4444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.X.; Zhou, L.X.; Wen, M.; Zhang, F.; Fang, S.X.; Yao, B. Characteristics of Atmospheric CH4 Concentration Variations at Four National Baseline Observatories in China. Adv. Clim. Chang. Res. 2009, 5, 285–290. [Google Scholar]
- Fang, S.-X.; Zhou, L.-X.; Xu, L.; Yao, B.; Liu, L.-X.; Xia, L.-J.; Wang, H.-Y. CH4 concentrations and the variation characteristics at the four WMO/GAW background stations in China. Huan Jing Ke Xue Huanjing Kexue 2012, 33, 2917–2923. [Google Scholar] [PubMed]
- Xiong, X.; Houweling, S.; Wei, J.; Maddy, E.; Sun, F.; Barnet, C. Methane plume over south Asia during the monsoon season: Satellite observation and model simulation. Atmos. Chem. Phys. 2009, 9, 783–794. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Bai, W.G.; Zhang, P.; Wang, W.H. Spatiotemporal variations in mid-upper tropospheric methane over China from satellite observations. Chin. Sci. Bull. 2011, 56, 3321–3327. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Jiang, H.; Wang, Y.Q.; Han, Y.; Buchwitz, M.; Schneising, O.; Burrows, J.P. Spatial variations of atmospheric methane concentrations in China. Int. J. Remote Sens. 2011, 32, 833–847. [Google Scholar] [CrossRef]
- Wu, X.D.; Zhang, X.Y.; Chuai, X.W.; Huang, X.J.; Wang, Z. Long-Term Trends of Atmospheric CH4 Concentration across China from 2002 to 2016. Remote Sens. 2019, 11, 538. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.L.; Xiao, X.M.; Dong, J.W.; Xin, F.F.; Zhang, Y.; Qin, Y.W.; Doughty, R.B.; Moore, B. Fingerprint of rice paddies in spatial-temporal dynamics of atmospheric methane concentration in monsoon Asia. Nat. Commun. 2020, 11, 554. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.Q.; Zhang, L.F.; Wu, T.X.; Duan, Y.N.; Cen, Y. Analysis on the Spatial-Temporal Variations of Methane over China Using Sciamachy Data. In Proceedings of the 2013 IEEE International Geoscience and Remote Sensing Symposium—IGARSS, Melbourne, VIC, Australia, 21–26 July 2013; pp. 1786–1789. [Google Scholar] [CrossRef]
- Miller, S.M.; Michalak, A.M.; Detmers, R.G.; Hasekamp, O.P.; Bruhwiler, L.M.P.; Schwietzke, S. China’s coal mine methane regulations have not curbed growing emissions. Nat. Commun. 2019, 10, 303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, J.Y.; Zhang, X.Y.; Zhang, L.J.; Cheng, M.M.; Lu, X.H. Spatiotemporal Variations of XCH4 across China during 2003-2021 Based on Observations from Multiple Satellites. Atmosphere 2022, 13, 1362. [Google Scholar] [CrossRef]
- Chen, Z.C.; Jacob, D.J.; Nesser, H.; Sulprizio, M.P.; Lorente, A.; Varon, D.J.; Lu, X.; Shen, L.; Qu, Z.; Penn, E.; et al. Methane emissions from China: A high-resolution inversion of TROPOMI satellite observations. Atmos. Chem. Phys. 2022, 22, 10809–10826. [Google Scholar] [CrossRef]
- The European State of the Climate 2017 Was Compiled by the Copernicus Services of the European Centre for Medium-Range Weather Forecasts (ECMWF)—The Climate Change Service (C3S) and the Atmosphere Monitoring Service (CAMS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 19 January 2023).
- Crippa, M.; Guizzardi, D.; Solazzo, E.; Muntean, M.; Schaaf, E.; Monforti-Ferrario, F.; Banja, M.; Olivier, J.; Grassi, G.; Rossi, S.; et al. GHG Emissions of All World: 2021 Report; Publications Office of the European Union: Brussels, Belgium, 2021. [Google Scholar]
- Crippa, M.; Guizzardi, D.; Banja, M.; Solazzo, E.; Muntean, M.; Schaaf, E.; Pagani, F.; Monforti, F.; Olivier, J.; Quadrelli, R.; et al. CO2 Emissions of All World Countries. JRC/IEA/PBL 2022 Report; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Bloom, A.A.; Bowman, K.W.; Lee, M.; Turner, A.J.; Schroeder, R.; Worden, J.R.; Weidner, R.J.; McDonald, K.C.; Jacob, D.J. CMS: Global 0.5-Deg Wetland Methane Emissions and Uncertainty (WetCHARTs v1.3.1); NASA: Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Beirle, S.; Borger, C.; Dorner, S.; Li, A.; Hu, Z.K.; Liu, F.; Wang, Y.; Wagner, T. Pinpointing nitrogen oxide emissions from space. Sci. Adv. 2019, 5, eaax9800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, M.Y.; van der, A.R.; van Weele, M.; Eskes, H.; Lu, X.; Veefkind, P.; de Laat, J.; Kong, H.; Wang, J.X.; Sun, J.Y.T.; et al. A New Divergence Method to Quantify Methane Emissions Using Observations of Sentinel-5P TROPOMI. Geophys. Res. Lett. 2021, 48, e2021GL094151. [Google Scholar] [CrossRef]
Dataset | Parameter(s) | Resolution | Time Range | Download Link |
---|---|---|---|---|
TROPOMI CH4 | Priori CH4 profile | 7 km × 7 km | 2019.03–2022.09 | https://s5phub.copernicus.eu/dhus/#/home accessed on 8 October 2022. |
Dry air columns | ||||
ECMWF Wind | 10 m u-component of wind | 0.25° × 0.25° | 2019.03–2022.09 | https://cds.climate.copernicus.eu/ accessed on 1 October 2022. |
10 m v-component of wind | ||||
EDGAR CH4 | CH4 emissions | 0.1° × 0.1° | 2019–2021 | https://edgar.jrc.ec.europa.eu/ accessed on 1 August 2022. |
WetCHARTs v1.3.1 | Wetlands CH4 emissions | 0.5° × 0.5° | 2019 | https://doi.org/10.3334/ORNLDAAC/1915 accessed on 1 October 2022. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Wang, C.; Gao, P.; Zhao, B.; Jin, C.; Zhao, L.; He, B.; Xue, Y. High-Spatial-Resolution Methane Emissions Calculation Using TROPOMI Data by a Divergence Method. Atmosphere 2023, 14, 388. https://doi.org/10.3390/atmos14020388
Li S, Wang C, Gao P, Zhao B, Jin C, Zhao L, He B, Xue Y. High-Spatial-Resolution Methane Emissions Calculation Using TROPOMI Data by a Divergence Method. Atmosphere. 2023; 14(2):388. https://doi.org/10.3390/atmos14020388
Chicago/Turabian StyleLi, Shengwei, Chunbo Wang, Pengyuan Gao, Bingjie Zhao, Chunlin Jin, Liang Zhao, Botao He, and Yong Xue. 2023. "High-Spatial-Resolution Methane Emissions Calculation Using TROPOMI Data by a Divergence Method" Atmosphere 14, no. 2: 388. https://doi.org/10.3390/atmos14020388
APA StyleLi, S., Wang, C., Gao, P., Zhao, B., Jin, C., Zhao, L., He, B., & Xue, Y. (2023). High-Spatial-Resolution Methane Emissions Calculation Using TROPOMI Data by a Divergence Method. Atmosphere, 14(2), 388. https://doi.org/10.3390/atmos14020388