Magnetic Assessment of Transplanted Tillandsia spp.: Biomonitors of Air Particulate Matter for High Rainfall Environments
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Magnetic Properties
3.2. Magnetic Measurements over Time
4. Discussion
4.1. Magnetic Particle Accumulation on Tillandsia spp.
4.2. Exposure Periods, Rainfall Influence and Comparison between Species
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manisalidis, I.; Stavropoulou, E.; Stavropoulos, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Chaparro, M.A.E. Estudio de Parámetros Magnéticos de Distintos Ambientes Relativamente Contaminados En Argentina y Antártida, 1st ed.; Geofísica UNAM: Mexico City, Mexico, 2006; p. 107. ISBN 970323567-0. [Google Scholar]
- Calderón-Garcidueñas, L.; González-Maciel, A.; Mukherjee, P.S.; Reynoso-Robles, R.; Pérez-Guillé, B.; Gayosso-Chávez, C.; Torres-Jardón, R.; Cross, J.V.; Ahmed, I.A.M.; Karloukovski, V.V.; et al. Combustion- and Friction-Derived Magnetic Air Pollution Nanoparticles in Human Hearts. Environ. Res. 2019, 176, 108567. [Google Scholar] [CrossRef]
- Maher, B.A.; Ahmed, I.A.M.; Karloukovski, V.; MacLaren, D.A.; Foulds, P.G.; Allsop, D.; Mann, D.M.A.; Torres-Jardón, R.; Calderon-Garciduenas, L. Magnetite Pollution Nanoparticles in the Human Brain. Proc. Natl. Acad. Sci. USA 2016, 113, 10797–10801. [Google Scholar] [CrossRef] [Green Version]
- He, C.; Qiu, K.; Pott, R. Reduction of Urban Traffic–Related Particulate Matter—Leaf Trait Matters. Environ. Sci. Pollut. Res. 2020, 27, 5825–5844. [Google Scholar] [CrossRef]
- Li, X.; Jin, L.; Kan, H. Air Pollution: A Global Problem Needs Local Fixes. Nature 2019, 570, 437–439. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Xue, D.; Liu, Y.; Liu, P.; Chen, H. The Relationship between Air Pollution and Depression in China: Is Neighbourhood Social Capital Protective? Int. J. Environ. Res. Public Health 2018, 15, 1160. [Google Scholar] [CrossRef] [Green Version]
- Gribov, S.K.; Shcherbakov, V.P.; Aphinogenova, N.A. Magnetic Properties of Artificial CRM Created on Titanomagnetite-Bearing Oceanic Basalts. In Recent Advances in Environmental Magnetism and Paleomagnetism, Proceedings of the International Conference on Geomagnetism, Paleomagnetism and Rock Magnetism, Kazan, Russia, October 2017; Nurgaliev, D., Shcherbakov, V., Kosterov, A., Spassov, S., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 501–511. [Google Scholar] [CrossRef]
- Chaparro, M.A.E. Airborne Particle Accumulation and Loss in Pollution-Tolerant Lichens and Its Magnetic Quantification. Environ. Pollut. 2021, 288, 117807. [Google Scholar] [CrossRef]
- Brunialti, G.; Frati, L.; Carrillo, W.; Calva, J.; Benítez, Á. The Use of Bryophytes, Lichens and Bromeliads for Evaluating Air and Water Pollution in an Andean City. Forests 2022, 13, 1607. [Google Scholar] [CrossRef]
- Leite, A.d.S.; Rousse, S.; Léon, J.F.; Trindade, R.I.F.; Haoues-Jouve, S.; Carvallo, C.; Dias-Alves, M.; Proietti, A.; Nardin, E.; Macouin, M. Barking up the Right Tree: Using Tree Bark to Track Airborne Particles in School Environment and Link Science to Society. GeoHealth 2022, 6, e2022GH000633. [Google Scholar] [CrossRef]
- Préndez, M.; Carvallo, C.; Godoy, N.; Egas, C.; Aguilar Reyes, B.O.; Calzolai, G.; Fuentealba, R.; Lucarelli, F.; Nava, S. Magnetic and Elemental Characterization of the Particulate Matter Deposited on Leaves of Urban Trees in Santiago, Chile. Environ. Geochem. Health 2022, 3, 1–15. [Google Scholar] [CrossRef]
- Mitchell, R.; Maher, B.A.; Kinnersley, R. Rates of Particulate Pollution Deposition onto Leaf Surfaces: Temporal and Inter-Species Magnetic Analyses. Environ. Pollut. 2010, 158, 1472–1478. [Google Scholar] [CrossRef]
- Chaparro, M.A.E.; Chaparro, M.A.E.; Castañeda Miranda, A.G.; Marié, D.C.; Gargiulo, J.D.; Lavornia, J.M.; Natal, M.; Böhnel, H.N. Fine Air Pollution Particles Trapped by Street Tree Barks: In Situ Magnetic Biomonitoring. Environ. Pollut. 2020, 266, 115229. [Google Scholar] [CrossRef]
- Chaparro, A.E.; M.A.E.; Chaparro, M.A.E.; Castañeda Miranda, A.G.; Böhnel, H.N.; Sinito, A.M. An Interval Fuzzy Model for Magnetic Biomonitoring Using the Specie Tillandsia recurvata L. Ecol. Indic. 2015, 54, 238–245. [Google Scholar] [CrossRef]
- de la Cruz, A.R.H.; Ayuque, R.F.O.; de la Cruz, R.W.H.; López-Gonzales, J.L.; Gioda, A. Air Quality Biomonitoring of Trace Elements in the Metropolitan Area of Huancayo, Peru Using Transplanted Tillandsia Capillaris as a Biomonitor. An. Acad. Bras. Cienc. 2020, 92, 20180813. [Google Scholar] [CrossRef]
- Morera-Gómez, Y.; Alonso-Hernández, C.M.; Armas-Camejo, A.; Viera-Ribot, O.; Morales, M.C.; Alejo, D.; Elustondo, D.; Lasheras, E.; Santamaría, J.M. Pollution Monitoring in Two Urban Areas of Cuba by Using Tillandsia recurvata (L.) L. and Top Soil Samples: Spatial Distribution and Sources. Ecol. Indic. 2021, 126, 107667. [Google Scholar] [CrossRef]
- Zotz, G. Plants on Plants—The Biology of Vascular Epiphytes; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Wester, S.; Zotz, G. Growth and Survival of Tillandsia Flexuosa on Electrical Cables in Panama. J. Trop. Ecol. 2010, 26, 123–126. [Google Scholar] [CrossRef] [Green Version]
- Benzing, D.H. Vascular Epiphytes: General Biology and Related Biota; Cambridge Tropical Biology Series; Cambridge University Press: Cambridge, UK, 1990; p. 354. [Google Scholar] [CrossRef]
- Castañeda Miranda, A.G.; Chaparro, M.A.E.; Chaparro, M.A.E.; Böhnel, H.N. Magnetic Properties of Tillandsia recurvata L. and Its Use for Biomonitoring a Mexican Metropolitan Area. Ecol. Indic. 2016, 60, 125–136. [Google Scholar] [CrossRef]
- Betancur Betancur, J.; Universidad Nacional deColombia. Guía de Campo: Santa María, Pintada de Flores. In St. María, Pint. Flores; Instituto de Ciencias Naturales Universidad Nacional de Colombia: Bogotá, Colombia, 2007; p. 172. [Google Scholar]
- de Souza Pereira, M.; Heitmann, D.; Reifenhäuser, W.; Meire, R.O.; Santos, L.S.; Torres, J.P.M.; Malm, O.; Körner, W. Persistent Organic Pollutants in Atmospheric Deposition and Biomonitoring with Tillandsia usneoides (L.) in an Industrialized Area in Rio de Janeiro State, Southeast Brazil—Part II: PCB and PAH. Chemosphere 2007, 67, 1736–1745. [Google Scholar] [CrossRef]
- Filho, G.M.A.; Andrade, L.R.; Farina, M.; Malm, O. Hg Localisation in Tillandsia usneoides L. (Bromeliaceae), an Atmospheric Biomonitor. Atmos. Environ. 2002, 36, 881–887. [Google Scholar] [CrossRef]
- Markert, B. Determination of Trace Elements in Tillandsia Usneoides by Neutron Activation Analysis for Environmental Biomonitoring. J. Radioanal. Nucl. Chem. 2001, 249, 391–395. [Google Scholar] [CrossRef]
- Secretaría de Movilidad de Medellín SIMM Sistema Inteligente de Movilidad de Medellín. Available online: https://www.medellin.gov.co/movilidad/observatorio/indicadores#2-velocidad-e-intensidad-promedio-en-los-principales-corredores-viales (accessed on 1 December 2022).
- King, J.; Banerjee, S.K.; Marvin, J.; Özdemir, Ö. A Comparison of Different Magnetic Methods for Determining the Relative Grain Size of Magnetite in Natural Materials: Some Results from Lake Sediments. Earth Planet. Sci. Lett. 1982, 59, 404–419. [Google Scholar] [CrossRef]
- Conover, W.J. Practical Nonparametric Statistics, 3rd ed.; John Wiley & Sons Inc.: New York, NY, USA, 1999; p. 608. [Google Scholar]
- Peters, C.; Dekkers, M.J. Selected Room Temperature Magnetic Parameters as a Function of Mineralogy, Concentration and Grain Size. Phys. Chem. Earth 2003, 28, 659–667. [Google Scholar] [CrossRef]
- IDEAM Instituto de Hidrología, Meteorología y Estudios Ambientales. Available online: http://institucional.ideam.gov.co/precipitacionTipos/precipitacionTipos.html (accessed on 1 October 2020).
- Marié, D.C.; Chaparro, M.A.E.; Irurzun, M.A.; Lavornia, J.M.; Marinelli, C.; Cepeda, R.; Böhnel, H.N.; Castañeda Miranda, A.G.; Sinito, A.M. Magnetic Mapping of Air Pollution in Tandil City (Argentina) Using the Lichen Parmotrema Pilosum as Biomonitor. Atmos. Pollut. Res. 2016, 7, 513–520. [Google Scholar] [CrossRef]
- Chaparro, M.A.E.; Lavornia, J.M.; Chaparro, M.A.E.; Sinito, A.M. Biomonitors of Urban Air Pollution: Magnetic Studies and SEM Observations of Corticolous Foliose and Microfoliose Lichens and Their Suitability for Magnetic Monitoring. Environmental Pollution. 2013;1. Environ. Pollut. 2013, 172, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Mejía-Echeverry, D.; Chaparro, M.A.E.; Duque-Trujillo, J.F.; Chaparro, M.A.E.; Castañeda Miranda, A.G. Magnetic Biomonitoring as a Tool for Assessment of Air Pollution Patterns in a Tropical Valley Using Tillandsia Sp. Atmosphere 2018, 9, 283. [Google Scholar] [CrossRef] [Green Version]
- Sagnotti, L.; Taddeucci, J.; Winkler, A.; Cavallo, A. Compositional, Morphological, and Hysteresis Characterization of Magnetic Airborne Particulate Matter in Rome, Italy. Geochem. Geophys. Geosystems 2009, 10. [Google Scholar] [CrossRef]
- Winkler, A.; Contardo, T.; Vannini, A.; Sorbo, S.; Basile, A.; Loppi, S. Magnetic Emissions from Brake Wear Are the Major Source of Airborne Particulate Matter Bioaccumulated by Lichens Exposed in Milan (Italy). Appl. Sci. 2020, 10, 2073. [Google Scholar] [CrossRef]
- Fusaro, L.; Salvatori, E.; Winkler, A.; Frezzini, M.A.; De Santis, E.; Sagnotti, L.; Canepari, S.; Manes, F. Urban Trees for Biomonitoring Atmospheric Particulate Matter: An Integrated Approach Combining Plant Functional Traits, Magnetic and Chemical Properties. Ecol. Indic. 2021, 126, 107707. [Google Scholar] [CrossRef]
- Rai, P.K. Impacts of Particulate Matter Pollution on Plants: Implications for Environmental Biomonitoring. Ecotoxicol. Environ. Saf. 2016, 129, 120–136. [Google Scholar] [CrossRef]
- Joshi, P.; Swami, A. Air Pollution Induced Changes in the Photosynthetic Pigments of Selected Plant Species. J. Environ. Biol. 2009, 30, 295–298. [Google Scholar]
- Zotz, G.; Bogusch, W.; Hietz, P.; Ketteler, N. Growth of Epiphytic Bromeliads in a Changing World: The Effects of CO2, Water and Nutrient Supply. Acta Oecologica 2010, 36, 659–665. [Google Scholar] [CrossRef]
- Zotz, G. Size-Related Intraspecific Variability in Physiological Traits of Vascular Epiphytes and Its Importance for Plant Physiological Ecology. Perspect. Plant Ecol. Evol. Syst. 2000, 3, 19–28. [Google Scholar] [CrossRef] [Green Version]
- de la Rosa-Manzano, E.; Andrade, J.L.; Zotz, G.; Reyes-García, C. Physiological Plasticity of Epiphytic Orchids from Two Contrasting Tropical Dry Forests. Acta Oecologica 2017, 85, 25–32. [Google Scholar] [CrossRef]
- Zhang, R.; Ma, K. The Impact of Climate Factors on Airborne Particulate Matter Removal by Plants. J. Clean. Prod. 2021, 310, 127559. [Google Scholar] [CrossRef]
- Zhou, S.; Cong, L.; Liu, Y.; Xie, L.; Zhao, S.; Zhang, Z. Rainfall Intensity Plays an Important Role in the Removal of PM from the Leaf Surfaces. Ecol. Indic. 2021, 128, 107778. [Google Scholar] [CrossRef]
- Chávez-García, E.; González-Méndez, B. Particulate Matter and Foliar Retention: Current Knowledge and Implications for Urban Greening. Air Qual. Atmos. Health 2021, 14, 1433–1454. [Google Scholar] [CrossRef]
- Liu, J.; Cao, Z.; Zou, S.; Liu, H.; Hai, X.; Wang, S.; Duan, J.; Xi, B.; Yan, G.; Zhang, S.; et al. An Investigation of the Leaf Retention Capacity, Efficiency and Mechanism for Atmospheric Particulate Matter of Five Greening Tree Species in Beijing, China. Sci. Total Environ. 2018, 616–617, 417–426. [Google Scholar] [CrossRef]
- Li, X.; Zhang, T.; Sun, F.; Song, X.; Zhang, Y.; Huang, F.; Yuan, C.; Yu, H.; Zhang, G.; Qi, F.; et al. The Relationship between Particulate Matter Retention Capacity and Leaf Surface Micromorphology of Ten Tree Species in Hangzhou, China. Sci. Total Environ. 2021, 771, 144812. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, Z.; Meng, H.; Zhang, T. How Does Leaf Surface Micromorphology of Different Trees Impact Their Ability to Capture Particulate Matter? Forests 2018, 9, 681. [Google Scholar] [CrossRef] [Green Version]
- Zambrano, A.R.C.; Linis, V.C.; Nepacina, M.R.J.; Silvestre, M.L.T.; Foronda, J.R.F.; Janairo, J.I.B. Wetting Properties and Foliar Water Uptake of Tillandsia L. Biotribology 2019, 19, 100103. [Google Scholar] [CrossRef]
- Amato-Lourenco, L.F.; Moreira, T.C.L.; de Oliveira Souza, V.C.; Barbosa, F.J.; Saiki, M.; Saldiva, P.H.N.; Mauad, T. The Influence of Atmospheric Particles on the Elemental Content of Vegetables in Urban Gardens of Sao Paulo, Brazil. Environ. Pollut. 2016, 216, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Carrillo, M.A.; Solís, C.; Andrade, E.; Isaac-Olivé, K.; Rocha, M.; Murillo, G.; Beltrán-Hernández, R.I.; Lucho-Constantino, C.A. PIXE Analysis of Tillandsia Usneoides for Air Pollution Studies at an Industrial Zone in Central Mexico. Microchem. J. 2010, 96, 386–390. [Google Scholar] [CrossRef]
- Pellegrini, E.; Lorenzini, G.; Loppi, S.; Nali, C. Evaluation of the Suitability of Tillandsia usneoides (L.) L. As Biomonitor of Airborne Elements in an Urban Area of Italy, Mediterranean Basin. Atmos. Pollut. Res. 2014, 5, 226–235. [Google Scholar] [CrossRef]
- Vianna, N.A.; Gonçalves, D.; Brandão, F.; de Barros, R.P.; Filho, G.M.A.; Meire, R.O.; Torres, J.P.M.; Malm, O.; Júnior, A.D.; Andrade, L.R. Assessment of Heavy Metals in the Particulate Matter of Two Brazilian Metropolitan Areas by Using Tillandsia Usneoides as Atmospheric Biomonitor. Environ. Sci. Pollut. Res. 2011, 18, 416–427. [Google Scholar] [CrossRef]
- Schreck, E.; Viers, J.; Blondet, I.; Auda, Y.; Macouin, M.; Zouiten, C.; Freydier, R.; Dufréchou, G.; Chmeleff, J.; Darrozes, J. Tillandsia Usneoides as Biomonitors of Trace Elements Contents in the Atmosphere of the Mining District of Cartagena-La Unión (Spain): New Insights for Element Transfer and Pollution Source Tracing. Chemosphere 2020, 241, 124955. [Google Scholar] [CrossRef]
- Sun, X.; Li, P.; Zheng, G. Biomarker Responses of Spanish Moss Tillandsia Usneoides to Atmospheric Hg and Hormesis in This Species. Front. Plant Sci. 2021, 12, 50. [Google Scholar] [CrossRef]
- Beringui, K.; Huamán De La Cruz, A.R.; Maia, L.F.P.G.; Gioda, A. Atmospheric Metal Biomonitoring Along a Highway Near Atlantic Rainforest Environmental Protection Areas in Southeastern Brazil. Bull. Environ. Contam. Toxicol. 2021, 107, 84–91. [Google Scholar] [CrossRef]
Magnetic Parameter | n | Mean | Standard Deviation | Minimum | Median | Maximum |
---|---|---|---|---|---|---|
χ (10−8 m3 kg−1) | 118 | 24.6 | 31.2 | −2.5 | 13.7 | 164.2 |
χARM (10−8 m3 kg−1) | 118 | 47.3 | 47.3 | 6.0 | 31.4 | 285.0 |
ARM (10−6 A m2 kg−1) | 118 | 33.8 | 33.9 | 4.1 | 21.7 | 202.2 |
SIRM (10−3 A m2 kg−1) | 117 | 2.4 | 2.6 | 0.3 | 1.6 | 14.2 |
Hcr (mT) | 117 | 36.5 | 3.1 | 27.7 | 37.1 | 53.4 |
S-ratio (a.u.) | 117 | -- | -- | 0.68 | -- | 1 |
χARM/χ (a.u.) | 114 | 3.8 | 8.4 | 0.1 | 2.0 | 85.6 |
ARM/SIRM (a.u.) | 117 | 0.015 | 0.008 | 0.006 | 0.014 | 0.093 |
Exposure Condition | χ (10−8 m3 kg−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
T. recurvata | T. usneoides | ||||||||||
n | Median | Mean (s.d.) | Min–Max | Increase (of Mean) | n | Median | Mean (s.d.) | Min–Max | Increase (of Mean) | ||
Control | -- | 21 | −5.1 | −5.8 (3.9) | −13.3–0.0 | 0 | |||||
P1 | C | 9 | 1.2 | 4.8 (6.2) | −0.7–15.9 | 1.8 | 9 | 4.5 | 5.9 (5.1) | 0.4–14.8 | 2.0 |
UC | 9 | 4.9 | 6.9 (8.7) | −2.5–25.9 | 2.2 | 9 | 6.3 | 7.0 (6.2) | 1.2–17.7 | 2.2 | |
P2 | C | 9 | 8.7 | 13.0 (15.8) | 1.3–51.8 | 3.2 | 9 | 8.5 | 12.7 (9.5) | 3.8–34.2 | 3.2 |
UC | 9 | 12.7 | 15.0 (19.6) | 1.2–65.4 | 3.6 | 9 | 9.3 | 12.8 (10.5) | 3.4–31.6 | 3.2 | |
P3 | C | 22 | 45.9 | 48.5 (33.5) | 10.6–126.9 | 9.4 | -- | -- | -- | -- | -- |
UC | 24 | 32.9 | 47.4 (41.8) | 8.0–164.2 | 9.2 | -- | -- | -- | -- | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buitrago Posada, D.; Chaparro, M.A.E.; Duque-Trujillo, J.F. Magnetic Assessment of Transplanted Tillandsia spp.: Biomonitors of Air Particulate Matter for High Rainfall Environments. Atmosphere 2023, 14, 213. https://doi.org/10.3390/atmos14020213
Buitrago Posada D, Chaparro MAE, Duque-Trujillo JF. Magnetic Assessment of Transplanted Tillandsia spp.: Biomonitors of Air Particulate Matter for High Rainfall Environments. Atmosphere. 2023; 14(2):213. https://doi.org/10.3390/atmos14020213
Chicago/Turabian StyleBuitrago Posada, Daniela, Marcos A. E. Chaparro, and José F. Duque-Trujillo. 2023. "Magnetic Assessment of Transplanted Tillandsia spp.: Biomonitors of Air Particulate Matter for High Rainfall Environments" Atmosphere 14, no. 2: 213. https://doi.org/10.3390/atmos14020213
APA StyleBuitrago Posada, D., Chaparro, M. A. E., & Duque-Trujillo, J. F. (2023). Magnetic Assessment of Transplanted Tillandsia spp.: Biomonitors of Air Particulate Matter for High Rainfall Environments. Atmosphere, 14(2), 213. https://doi.org/10.3390/atmos14020213