Diurnal Cycle of Tropospheric Winds over West Sumatra and Its Variability Associated with Various Climate and Weather Modes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equatorial Atmospheric Radar
2.2. Soundings Data
2.3. Precipitation Data
2.4. Tracking the Activity of Large-Scale Phenomena
2.5. Decomposition of Sub-Diurnal Variability
2.6. Linking Variability in Vertical Wind Profiles with Cloud Population Changes
3. Results
3.1. Typical Vertical Profiles of Tropospheric Winds over West Sumatra
3.1.1. The Mean Vertical Profiles of Wind
3.1.2. The Typical Diurnal Cycle of Tropospheric Winds
3.2. Variability in Tropospheric Winds in Sumatra on Sub-Seasonal to Interannual Time Scale
3.2.1. Precipitation
3.2.2. ENSO
3.2.3. QBO
3.2.4. MJO
3.2.5. CCKW
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Ramage, C.S. Role of a Tropical “Maritime Continent” in the Atmospheric Circulation 1. Mon. Weather Rev. 1968, 96, 365–370. [Google Scholar] [CrossRef]
- Simpson, J.; Keenan, T.D.; Ferrier, B.; Simpson, R.H.; Holland, G.J. Cumulus Mergers in the Maritime Continent Region. Meteorol. Atmos. Phys. 1993, 51, 73–99. [Google Scholar] [CrossRef]
- Janowiak, J.E.; Arkin, P.A.; Morrissey, M. An Examination of the Diurnal Cycle in Oceanic Tropical Rainfall Using Satellite and In Situ Data. Mon. Weather Rev. 1994, 122, 2296–2311. [Google Scholar] [CrossRef]
- Qian, J.H. Why Precipitation Is Mostly Concentrated over Islands in the Maritime Continent. J. Atmos. Sci. 2008, 65, 1428–1441. [Google Scholar] [CrossRef]
- Marzuki, M.; Suryanti, K.; Yusnaini, H.; Tangang, F.; Muharsyah, R.; Vonnisa, M.; Devianto, D. Diurnal Variation of Precipitation from the Perspectives of Precipitation Amount, Intensity and Duration over Sumatra from Rain Gauge Observations. Int. J. Climatol. 2021, 41, 4386–4397. [Google Scholar] [CrossRef]
- Timmermann, A.; An, S.I.; Kug, J.S.; Jin, F.F.; Cai, W.; Capotondi, A.; Cobb, K.; Lengaigne, M.; McPhaden, M.J.; Stuecker, M.F.; et al. El Niño–Southern Oscillation Complexity. Nature 2018, 559, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Fitriany, A.A.; Flatau, P.J.; Khoirunurrofik, K.; Riama, N.F. Assessment on the Use of Meteorological and Social Media Information for Forest Fire Detection and Prediction in Riau, Indonesia. Sustainability 2021, 13, 11188. [Google Scholar] [CrossRef]
- Peatman, S.C.; Schwendike, J.; Birch, C.E.; Marsham, J.H.; Matthews, A.J.; Yang, G.Y. A Local-to-Large Scale View of Maritime Continent Rainfall: Control by ENSO, MJO, and Equatorial Waves. J. Clim. 2021, 34, 8933–8953. [Google Scholar] [CrossRef]
- Saji, N.H.; Goswami, B.N.; Vinayachandran, P.N.; Yamagata, T. A Dipole Mode in the Tropical Indian Ocean. Nature 1999, 401, 360–363. [Google Scholar] [CrossRef]
- Webster, P.J.; Moore, A.M.; Loschnigg, J.P.; Leben, R.R. Coupled Ocean-Atmosphere Dynamics in the Indian Ocean during 1997–98. Nature 1999, 401, 356–360. [Google Scholar] [CrossRef]
- Lau, K.M.; Sheu, P.J. Annual Cycle, Quasi-Biennial Oscillation, and Southern Oscillation in Global Precipitation. J. Geophys. Res. 1988, 93, 10975–10988. [Google Scholar] [CrossRef]
- Madden, R.A.; Julian, P.R. Description of Global-Scale Circulation Cells in the Tropics with a 40–50 Day Period. J. Atmos. Sci. 1972, 29, 1109–1123. [Google Scholar] [CrossRef]
- Zhang, C. Madden-Julian Oscillation: Bridging Weather and Climate. Bull. Am. Meteorol. Soc. 2013, 94, 1849–1870. [Google Scholar] [CrossRef]
- Zhang, C. Madden-Julian Oscillation. Rev. Geophys. 2005, 43, 1–36. [Google Scholar] [CrossRef]
- Jiang, X.; Adames, Á.F.; Kim, D.; Maloney, E.D.; Lin, H.; Kim, H.; Zhang, C.; DeMott, C.A.; Klingaman, N.P. Fifty Years of Research on the Madden-Julian Oscillation: Recent Progress, Challenges, and Perspectives. J. Geophys. Res. Atmos. 2020, 125, e2019JD030911. [Google Scholar] [CrossRef]
- Roundy, P.E.; Frank, W.M. A Climatology of Waves in the Equatorial Region. J. Atmos. Sci. 2004, 61, 2105–2132. [Google Scholar] [CrossRef]
- Kiladis, G.N.; Wheeler, M.C.; Haertel, P.T.; Straub, K.H.; Roundy, P.E. Convectively Coupled Equatorial Waves. Rev. Geophys. 2009, 47, RG2003. [Google Scholar] [CrossRef]
- Sakaeda, N.; Kiladis, G.; Dias, J. The Diurnal Cycle of Rainfall and the Convectively Coupled Equatorial Waves over the Maritime Continent. J. Clim. 2020, 33, 3307–3331. [Google Scholar] [CrossRef]
- Peatman, S.C.; Matthews, A.J.; Stevens, D.P. Propagation of the Madden-Julian Oscillation through the Maritime Continent and Scale Interaction with the Diurnal Cycle of Precipitation. Q. J. R. Meteorol. Soc. 2014, 140, 814–825. [Google Scholar] [CrossRef]
- Baranowski, D.B.; Flatau, M.K.; Flatau, P.J.; Matthews, A.J. Phase Locking between Atmospheric Convectively Coupled Equatorial Kelvin Waves and the Diurnal Cycle of Precipitation over the Maritime Continent. Geophys. Res. Lett. 2016, 43, 8269–8276. [Google Scholar] [CrossRef]
- Baranowski, D.B.; Flatau, M.K.; Flatau, P.J.; Karnawati, D.; Barabasz, K.; Labuz, M.; Latos, B.; Schmidt, J.M.; Paski, J.A.I. Marzuki Social-Media and Newspaper Reports Reveal Large-Scale Meteorological Drivers of Floods on Sumatra. Nat. Commun. 2020, 11, 2503. [Google Scholar] [CrossRef] [PubMed]
- Mori, S.; Jun-Ichi, H.; Tauhid, Y.I.; Yamanaka, M.D.; Okamoto, N.; Murata, F.; Sakurai, N.; Hashiguchi, H.; Sribimawati, T. Diurnal Land-Sea Rainfall Peak Migration over Sumatera Island, Indonesian Maritime Continent, Observed by TRMM Satellite and Intensive Rawinsonde Soundings. Mon. Weather Rev. 2004, 132, 2021–2039. [Google Scholar] [CrossRef]
- Love, B.S.; Matthews, A.J.; Lister, G.M.S. The Diurnal Cycle of Precipitation over the Maritime Continent in a High-Resolution Atmospheric Model. Q. J. R. Meteorol. Soc. 2011, 137, 934–947. [Google Scholar] [CrossRef]
- Hassim, M.E.E.; Lane, T.P.; Grabowski, W.W. The Diurnal Cycle of Rainfall over New Guinea in Convection-Permitting WRF Simulations. Atmos. Chem. Phys. 2016, 16, 161–175. [Google Scholar] [CrossRef]
- Peatman, S.C.; Birch, C.E.; Schwendike, J.; Marsham, J.H.; Dearden, C.; Webster, S.; Neely, R.R.; Matthews, A.J. The Role of Density Currents and Gravity Waves in the Offshore Propagation of Convection over Sumatra. Mon. Weather Rev. 2023, 151, 1757–1777. [Google Scholar] [CrossRef]
- Baranowski, D.B.; Waliser, D.E.; Jiang, X.; Ridout, J.A.; Flatau, M.K. Contemporary GCM Fidelity in Representing the Diurnal Cycle of Precipitation Over the Maritime Continent. J. Geophys. Res. Atmos. 2019, 124, 747–769. [Google Scholar] [CrossRef]
- Lindzen, R.S.; Chapman, S. Atmospheric Tides. Space Sci. Rev. 1969, 10, 3–188. [Google Scholar] [CrossRef]
- Lindzen, R.S.; Hong, S. Effects of Mean Winds and Horizontal Temperature Gradients on Solar and Lunar Semidiurnal Tides in the Atmosphere. J. Atmos. Sci. 1974, 31, 1421–1446. [Google Scholar] [CrossRef]
- Greenfield, R.S.; Krishnamurti, T.N. The Winter Monsoon Experiment—Report of December 1978 Field Phase. Bull. Am. Meteorol. Soc. 1979, 60, 439–444. [Google Scholar] [CrossRef]
- Webster, P.J.; Lukas, R. TOGA COARE: The Complex Ocean-Atmosphere Response Experiment. Bull. Am. Meteorol. Soc. 1992, 73, 1377–1416. [Google Scholar] [CrossRef]
- Gottschalck, J.; Roundy, P.E.; Schreck, C.J.; Vintzileos, A.; Zhang, C. Large-Scale Atmospheric and Oceanic Conditions during the 2011–12 DYNAMO Field Campaign. Mon. Weather Rev. 2013, 141, 4173–4196. [Google Scholar] [CrossRef]
- Yoneyama, K.; Zhang, C.; Long, C.N. Tracking Pulses of the Madden-Julian Oscillation. Bull. Am. Meteorol. Soc. 2013, 94, 1871–1891. [Google Scholar] [CrossRef]
- Yoneyama, K.; Zhang, C. Years of the Maritime Continent. Geophys. Res. Lett. 2020, 47, e2020GL087182. [Google Scholar] [CrossRef]
- Fukao, S.; Hashiguchi, H.; Yamamoto, M.; Tsuda, T.; Nakamura, T.; Yamamoto, M.K.; Sato, T.; Hagio, M.; Yabugaki, Y. Equatorial Atmosphere Radar (EAR): System Description and First Results. Radio Sci. 2003, 38, 1053. [Google Scholar] [CrossRef]
- Gage, K.S.; McAfee, J.R.; Reid, G.C. Diurnal Variation in Vertical Motion over the Central Equatorial Pacific from VHF Wind-profiling Doppler Radar Observations at Christmas Island (2° N, 157° W). Geophys. Res. Lett. 1992, 19, 1827–1830. [Google Scholar] [CrossRef]
- Uma, K.N.; Rao, T.N. Diurnal Variation in Vertical Air Motion over a Tropical Station, Gadanki (13.5° N, 79.2° E), and Its Effect on the Estimation of Mean Vertical Air Motion. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef]
- Uma, K.N.; Shankar Das, S.; Venkat Ratnam, M.; Viswanathan Suneeth, K. Assessment of Vertical Air Motion among Reanalyses and Qualitative Comparison with Very-High-Frequency Radar Measurements over Two Tropical Stations. Atmos. Chem. Phys. 2021, 21, 2083–2103. [Google Scholar] [CrossRef]
- Huffman, G.; Bolvin, D.; Nelkin, E. Integrated Multi-SatellitE Retrievals for GPM (IMERG) Technical Documentation. Math. Teach. 2017, 612, 54. [Google Scholar]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–472. [Google Scholar] [CrossRef]
- 50 Mb Zonal Wind Index—CDAS. Available online: https://ftp.cpc.ncep.noaa.gov/wd52dg/data/indices/qbo.u50.index (accessed on 11 August 2023).
- Wheeler, M.C.; Hendon, H.H. An All-Season Real-Time Multivariate MJO Index: Development of an Index for Monitoring and Prediction. Mon. Weather Rev. 2004, 132, 1917–1932. [Google Scholar] [CrossRef]
- RMM Values up to “Real Time”. Available online: http://www.bom.gov.au/climate/mjo/graphics/rmm.74toRealtime.txt (accessed on 11 August 2023).
- Baranowski, D.B.; Flatau, M.K.; Flatau, P.J.; Matthews, A.J. Impact of Atmospheric Convectively Coupled Equatorial Kelvin Waves on Upper Ocean Variability. J. Geophys. Res. 2016, 121, 2045–2059. [Google Scholar] [CrossRef]
- Wheeler, M.; Kiladis, G.N. Convectively Coupled Equatorial Waves: Analysis of Clouds and Temperature in the Wavenumber-Frequency Domain. J. Atmos. Sci. 1999, 56, 374–399. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.; Wolff, D.B. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Siebesma, P.; Bony, S.; Jacob, C.; Stevens, B. Tropical and Subtropical Cloud Systems. In Clouds and Climate; Cambridge University Press: Cambridge, UK, 2020; pp. 251–278. [Google Scholar]
- Uma, K.N.; Rao, T.N. Characteristics of Vertical Velocity Cores in Different Convective Systems Observed over Gadanki, India. Mon. Weather Rev. 2009, 137, 954–975. [Google Scholar] [CrossRef]
- Ciesielski, P.E.; Haerte, P.T.; Johnson, R.H.; Wang, J.; Loehrer, S.M. Developing High-Quality Field Program Sounding Datasets. Bull. Am. Meteorol. Soc. 2012, 93, 325–336. [Google Scholar] [CrossRef]
- Johnson, R.H.; Rickenbach, T.M.; Rutledge, S.A.; Ciesielski, P.E.; Schubert, W.H. Trimodal Characteristics of Tropical Convection. J. Clim. 1999, 12, 2397–2418. [Google Scholar] [CrossRef]
- Houze, R.A. Mesoscale Convective Systems. Rev. Geophys. 2004, 42, 1–43. [Google Scholar] [CrossRef]
- Drager, A.J.; van den Heever, S.C. Characterizing Convective Cold Pools. J. Adv. Model. Earth Syst. 2017, 9, 1091–1115. [Google Scholar] [CrossRef]
- Johnson, R.H. Vertical Motion in Near-Equatorial Winter Monsoon Convection. J. Meteorol. Soc. Japan. Ser. II 1982, 60, 682–690. [Google Scholar] [CrossRef]
- Gage, K.S.; Mcafee, J.R.; Carter, D.A.; Ecklund, W.L.; Riddle, A.C.; Reid, G.C.; Balsley, B.B. Long-Term Mean Vertical Motion over the Tropical Pacific: Wind-Profiling Doppler Radar Measurements. Science 1991, 254, 1771–1773. [Google Scholar] [CrossRef]
- Nastrom, G.D.; Vanzandt, T.E. Mean Vertical Motions Seen by Radar Wind Profilers. J. Appl. Meteorol. 1994, 33, 984–995. [Google Scholar] [CrossRef]
- Schumacher, C.; Houze, R.A.; Kraucunas, I. The Tropical Dynamical Response to Latent Heating Estimates Derived from the TRMM Precipitation Radar. J. Atmos. Sci. 2004, 61, 1341–1358. [Google Scholar] [CrossRef]
- Marzuki, M.; Yusnaini, H.; Tangang, F.; Muharsyah, R.; Vonnisa, M.; Harmadi, H. Land—Sea Contrast of Diurnal Cycle Characteristics and Rain Event Propagations over Sumatra According to Different Rain Duration and Seasons. Atmos. Res. 2022, 270, 106051. [Google Scholar] [CrossRef]
- May, P.T.; Rajopadhyaya, D.K. Vertical Velocity Characteristics of Deep Convection over Darwin, Australia. Mon. Weather Rev. 1999, 127, 1056–1071. [Google Scholar] [CrossRef]
- Da Silva, N.A.; Muller, C.; Shamekh, S.; Fildier, B. Significant Amplification of Instantaneous Extreme Precipitation With Convective Self-Aggregation. J. Adv. Model. Earth Syst. 2021, 13, e2021MS002607. [Google Scholar] [CrossRef] [PubMed]
- Marzuki; Randeu, W.L.; Kozu, T.; Shimomai, T.; Hashiguchi, H.; Schönhuber, M. Raindrop Axis Ratios, Fall Velocities and Size Distribution over Sumatra from 2D-Video Disdrometer Measurement. Atmos. Res. 2013, 119, 23–27. [Google Scholar] [CrossRef]
- Lu, J.; Li, T.; Shen, X. Precipitation Diurnal Cycle over the Maritime Continent Modulated by ENSO. Clim. Dyn. 2023, 61, 2547–2564. [Google Scholar] [CrossRef]
- Reid, J.S.; Xian, P.; Hyer, E.J.; Flatau, M.K.; Ramirez, E.M.; Turk, F.J.; Sampson, C.R.; Zhang, C.; Fukada, E.M.; Maloney, E.D. Multi-Scale Meteorological Conceptual Analysis of Observed Active Fire Hotspot Activity and Smoke Optical Depth in the Maritime Continent. Atmos. Chem. Phys. 2012, 12, 2117–2147. [Google Scholar] [CrossRef]
- Qian, J.H. Mechanisms for the Dipolar Patterns of Rainfall Variability over Large Islands in the Maritime Continent Associated with the Madden-Julian Oscillation. J. Atmos. Sci. 2020, 77, 2257–2278. [Google Scholar] [CrossRef]
- Matthews, A.J. Dynamical Propagation and Growth Mechanisms for Convectively Coupled Equatorial Kelvin Waves over the Indian Ocean. Q. J. R. Meteorol. Soc. 2021, 147, 4310–4336. [Google Scholar] [CrossRef]
- Gushchina, D.; Zheleznova, I.; Osipov, A.; Olchev, A. Effect of Various Types of ENSO Events on Moisture Conditions in the Humid and Subhumid Tropics. Atmosphere 2020, 11, 1354. [Google Scholar] [CrossRef]
- Kikuchi, K.; Takayabu, Y.N. Equatorial Circumnavigation of Moisture Signal Associated with the Madden-Julian Oscillation (MJO) during Boreal Winter. J. Meteorol. Soc. Japan 2003, 81, 851–869. [Google Scholar] [CrossRef]
- Morita, J.; Takayabu, Y.N.; Shige, S.; Kodama, Y. Analysis of Rainfall Characteristics of the Madden-Julian Oscillation Using TRMM Satellite Data. Dyn. Atmos. Ocean. 2006, 42, 107–126. [Google Scholar] [CrossRef]
- Yokoi, S.; Mori, S.; Katsumata, M.; Geng, B.; Yasunaga, K.; Syamsudin, F.; Nurhayati; Yoneyama, K. Diurnal Cycle of Precipitation Observed in the Western Coastal Area of Sumatra Island: Offshore Preconditioning by Gravity Waves. Mon. Weather Rev. 2017, 145, 3745–3761. [Google Scholar] [CrossRef]
- Yokoi, S.; Mori, S.; Syamsudin, F.; Haryoko, U.; Geng, B. Environmental Conditions for Nighttime Offshore Migration of Precipitation Area as Revealed by in Situ Observation off Sumatra Island. Mon. Weather Rev. 2019, 147, 3391–3407. [Google Scholar] [CrossRef]
- Inoue, K.; Adames, Á.F.; Yasunaga, K. Vertical Velocity Profiles in Convectively Coupled Equatorial Waves and MJO: New Diagnoses of Vertical Velocity Profiles in the Wavenumber-Frequency Domain. J. Atmos. Sci. 2020, 77, 2139–2162. [Google Scholar] [CrossRef]
- Heymsfield, G.M.; Tian, L.; Heymsfield, A.J.; Li, L.; Guimond, S. Characteristics of Deep Tropical and Subtropical Convection from Nadir-Viewing High-Altitude Airborne Doppler Radar. J. Atmos. Sci. 2010, 67, 285–308. [Google Scholar] [CrossRef]
Data Source | Variables | Location | Data Range |
---|---|---|---|
Equatorial Atmosphere Radar (EAR) | zonal, meridional, vertical wind | 100.32° E, 0.2° S | 2001–2019 |
Soundings | zonal and meridional wind, temperature, humidity | 100.35° E, 0.88° S | 2001–2019 |
Optical Rain Gage (ORG) | precipitation | 100.32° E, 0.2° S | 2002–2016 |
IMERGv6 | precipitation | 100.35° E, 0.25° S 1 | 2002–2016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szkolka, W.R.; Baranowski, D.B.; Flatau, M.K.; Marzuki, M.; Shimomai, T.; Hashiguchi, H. Diurnal Cycle of Tropospheric Winds over West Sumatra and Its Variability Associated with Various Climate and Weather Modes. Atmosphere 2023, 14, 1521. https://doi.org/10.3390/atmos14101521
Szkolka WR, Baranowski DB, Flatau MK, Marzuki M, Shimomai T, Hashiguchi H. Diurnal Cycle of Tropospheric Winds over West Sumatra and Its Variability Associated with Various Climate and Weather Modes. Atmosphere. 2023; 14(10):1521. https://doi.org/10.3390/atmos14101521
Chicago/Turabian StyleSzkolka, Wojciech Ryszard, Dariusz Bartłomiej Baranowski, Maria K. Flatau, Marzuki Marzuki, Toyoshi Shimomai, and Hiroyuki Hashiguchi. 2023. "Diurnal Cycle of Tropospheric Winds over West Sumatra and Its Variability Associated with Various Climate and Weather Modes" Atmosphere 14, no. 10: 1521. https://doi.org/10.3390/atmos14101521
APA StyleSzkolka, W. R., Baranowski, D. B., Flatau, M. K., Marzuki, M., Shimomai, T., & Hashiguchi, H. (2023). Diurnal Cycle of Tropospheric Winds over West Sumatra and Its Variability Associated with Various Climate and Weather Modes. Atmosphere, 14(10), 1521. https://doi.org/10.3390/atmos14101521