Ambient Nanoparticles (PM0.1) Mapping in Thailand
Abstract
:1. Introduction of Impact of PM0.1
- Introduction to the impact of PM0.1;
- Recent studies of PM0.1 particles in Thailand;
- Health concerns regarding PM0.1 particles in Thailand;
- Challenges to the study of PM0.1 particles in Thailand;
- Options and recommendations for PM0.1 in Thailand;
- Conclusions.
2. Recent Studies of PM0.1 in Thailand
2.1. PM0.1 Particle Mass Concentration and Particle Number Concentration
2.2. Carbonaceous Nanoaerosol
2.3. Carbon Characteristics of OC, EC, Char-EC, and Soot-EC
2.4. PM0.1 Derived from Biomass Burning
3. Health Concerns of PM0.1 in Thailand
4. Challenges in Studies of PM0.1 in Thailand
5. Option and Recommendations concerning PM0.1 in Thailand
5.1. Evaluation of PM0.1: Present Status and Characteristics, Comparison between Sites
5.2. Information on PM0.1 Emission Sources
5.3. Summary of Facts on PM0.1 for Policy Making
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Z.; Tang, Y.; Song, X.; Lazar, L.; Li, Z.; Zhao, J. Impact of ambient PM2.5 on adverse birth outcome and potential molecular mechanism. Ecotoxicol. Environ. Saf. 2019, 169, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Zhang, H.; Zhang, X.; Xing, W.; Wang, Y.; Bai, P.; Zhang, L.; Hayakawa, K.; Toriba, A.; Tang, N. Exposure to atmospheric particulate matter-bound polycyclic aromatic hydrocarbons and their health effects: A review. Int. J. Environ. Res. Public Health 2021, 18, 2177. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Wang, S.Y.S.; Zhao, L.; Kim, H.C.; Kim, K.; Yoon, J.H. Long-term increase in atmospheric stagnant conditions over northeast Asia and the role of greenhouse gases-driven warming. Atmos. Environ. 2020, 241, 117772. [Google Scholar] [CrossRef]
- Bulot, F.M.; Johnston, S.J.; Basford, P.J.; Easton, N.H.; Apetroaie-Cristea, M.; Foster, G.L.; Loxham, M. Long-term field comparison of multiple low-cost particulate matter sensors in an outdoor urban environment. Sci. Rep. 2019, 9, 7497. [Google Scholar] [CrossRef] [PubMed]
- Thuy, N.T.T.; Dung, N.T.; Sekiguchi, K.; Thuy, L.B.; Hien, N.T.T.; Yamaguchi, R. Mass concentrations and carbonaceous compositions of PM0.1, PM2.5, and PM10 at Hanoi, Vietnam urban locations. Aerosol Air Qual. Res. 2018, 18, 1591–1605. [Google Scholar] [CrossRef]
- Skuland, T.; Grytting, V.S.; Låg, M.; Jørgensen, R.B.; Snilsberg, B.; Leseman, D.L.A.C.; Kubátová, A.; Emond, J.; Cassee, F.R.; Holme, J.A.; et al. Road tunnel-derived coarse, fine and ultrafine particulate matter: Physical and chemical characterization and pro-inflammatory responses in human bronchial epithelial cells. Part. Fibre Toxicol. 2022, 19, 45. [Google Scholar] [CrossRef]
- Deng, L.; Hao, C.; Luo, Y.; Yang, P.; Wu, B. Effect of air and exhaust gas dilutions on ultra-fine particulate emissions in different combustion modes. Sci. Total Environ. 2022, 843, 156865. [Google Scholar] [CrossRef]
- Schraufnagel, D.E. The health effects of ultrafine particles. Exp. Mol. Med. 2020, 52, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Phairuang, W.; Amin, M.; Hata, M.; Furuuchi, M. Airborne Nanoparticles (PM0.1) in Southeast Asian Cities: A Review. Sustainability 2022, 14, 10074. [Google Scholar] [CrossRef]
- Kwon, H.S.; Ryu, M.H.; Carlsten, C. Ultrafine particles: Unique physicochemical properties relevant to health and disease. Exp. Mol. Med. 2020, 52, 318–328. [Google Scholar] [CrossRef]
- Oberdörster, G.; Sharp, Z.; Atudorei, V.; Elder, A.; Gelein, R.; Kreyling, W.; Cox, C. Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol. 2004, 16, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Jalava, P.; Hakkarainen, H.; Roponen, M.; Leskinen, A.; Komppula, M.; Dong, G.-P.; Lao, X.-Q.; Wu, Q.-Z.; Xu, S.-L.; et al. Fine and ultrafine airborne PM influence inflammation response of young adults and toxicological responses in vitro. Sci. Total Environ. 2022, 836, 155618. [Google Scholar] [CrossRef] [PubMed]
- Marval, J.; Tronville, P. Ultrafine particles: A review about their health effects, presence, generation, and measurement in indoor environments. Build. Environ. 2022, 2022, 108992. [Google Scholar] [CrossRef]
- HEI. Understanding the health effects of ambient ultrafine particles. In HEI Perspectives HEI Review Panel on Ultrafine Particles; Health Effects Institute: Boston, MA, USA, 2013. [Google Scholar]
- Vohra, K.; Vodonos, A.; Schwartz, J.; Marais, E.A.; Sulprizio, M.P.; Mickley, L.J. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem. Environ. Res. 2021, 195, 110754. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Q.; Xu, B.; Xu, Y.; Ding, Z.; Sun, H. Air pollution and cardiovascular mortality in Nanjing, China: Evidence highlighting the roles of cumulative exposure and mortality displacement. Chemosphere 2021, 265, 129035. [Google Scholar] [CrossRef]
- Nakharutai, N.; Traisathit, P.; Thongsak, N.; Supasri, T.; Srikummoon, P.; Thumronglaohapun, S.; Hemwan, P.; Chitapanarux, I. Impact of Residential Concentration of PM2.5 Analyzed as Time-Varying Covariate on the Survival Rate of Lung Cancer Patients: A 15-Year Hospital-Based Study in Upper Northern Thailand. Int. J. Environ. Res. Public Health 2022, 19, 4521. [Google Scholar] [CrossRef]
- Thiankhaw, K.; Chattipakorn, N.; Chattipakorn, S.C. PM2.5 exposure in association with AD-related neuropathology and cognitive outcomes. Environ. Pollut. 2022, 292, 118320. [Google Scholar] [CrossRef]
- Arias-Pérez, R.D.; Taborda, N.A.; Gómez, D.M.; Narvaez, J.F.; Porras, J.; Hernandez, J.C. Inflammatory effects of particulate matter air pollution. Environ. Sci. Pollut. Res. 2020, 27, 42390–42404. [Google Scholar] [CrossRef]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, S.H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A.; et al. Air pollution and noncommunicable diseases: A review by the Forum of International Respiratory Societies’ Environmental Committee, Part 2: Air pollution and organ systems. Chest 2019, 155, 417–426. [Google Scholar] [CrossRef]
- Shao, L.Y.; Wang, W.H.; Xing, J.P.; Li, W.J.; Niu, H.Y.; Hou, C.; Tang, S.S. Physicochemical characteristics and effects of airborne particles: Research progress and prospects. Earth Sci. 2018, 43, 1691–1708. [Google Scholar]
- Han, Y.P.; Li, L.; Wang, Y.; Ma, J.W.; Li, P.Y.; Han, C.; Liu, J.X. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review. Front. Environ. Sci. Eng. 2021, 15, 38. [Google Scholar] [CrossRef]
- Boongla, Y.; Chanonmuang, P.; Hata, M.; Furuuchi, M.; Phairuang, W. The characteristics of carbonaceous particles down to the nanoparticle range in Rangsit city in the Bangkok Metropolitan Region, Thailand. Environ. Pollut. 2021, 272, 115940. [Google Scholar] [CrossRef] [PubMed]
- Inerb, M.; Phairuang, W.; Paluang, P.; Hata, M.; Furuuchi, M.; Wangpakapattanawong, P. Carbon and Trace Element Compositions of Total Suspended Particles (TSP) and Nanoparticles (PM0.1) in Ambient Air of Southern Thailand and Characterization of Their Sources. Atmosphere 2022, 13, 626. [Google Scholar] [CrossRef]
- Chomanee, J.; Thongboon, K.; Tekasakul, S.; Furuuchi, M.; Dejchanchaiwong, R.; Tekasakul, P. Physicochemical and toxicological characteristics of nanoparticles in aerosols in southern Thailand during recent haze episodes in lower southeast Asia. J. Environ. Sci. 2020, 94, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Cush, K.; Koh, K.; Saikawa, E. Impacts of biomass and garbage burning on air quality in South/Southeast Asia. In Biomass Burning in South and Southeast Asia; CRC Press: Boca Raton, FL, USA, 2021; pp. 3–20. [Google Scholar]
- Phairuang, W.; Inerb, M.; Hata, M.; Furuuchi, M. Characteristics of trace elements bound to ambient nanoparticles (PM0.1) and a health risk assessment in southern Thailand. J. Hazard. Mater. 2022, 425, 127986. [Google Scholar] [CrossRef]
- Huang, K.; Fu, J.S.; Lin, N.H.; Wang, S.H.; Dong, X.; Wang, G. Superposition of Gobi dust and Southeast Asian biomass burning: The effect of multisource long-range transport on aerosol optical properties and regional meteorology modification. J. Geophys. Res. Atmos. 2019, 124, 9464–9483. [Google Scholar] [CrossRef]
- Xing, L.; Bei, N.; Guo, J.; Wang, Q.; Liu, S.; Han, Y.; Pongpiachan, S.; Li, G. Impacts of biomass burning in peninsular Southeast Asia on PM2.5 concentration and ozone formation in Southern China During Springtime—A case study. J. Geophys. Res. Atmos. 2021, 126, e2021JD034908. [Google Scholar] [CrossRef]
- Zhang, L.; Ding, S.; Qian, W.; Zhao, A.; Zhao, S.; Yang, Y.; Weng, G.; Tao, M.; Chen, H.; Zhao, S.; et al. The Impact of Long-Range Transport of Biomass Burning Emissions in Southeast Asia on Southern China. Atmosphere 2022, 13, 1029. [Google Scholar] [CrossRef]
- Phairuang, W.; Suwattiga, P.; Chetiyanukornkul, T.; Hongtieab, S.; Limpaseni, W.; Ikemori, F.; Hata, M.; Furuuchi, M. The influence of the open burning of agricultural biomass and forest fires in Thailand on the carbonaceous components in size-fractionated particles. Environ. Pollut. 2019, 247, 238–247. [Google Scholar] [CrossRef]
- Adam, M.G.; Tran, P.T.; Bolan, N.; Balasubramanian, R. Biomass burning-derived airborne particulate matter in Southeast Asia: A critical review. J. Hazard. Mater. 2021, 407, 124760. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T.; Inkom, J.; Janta, R.; Surapipith, V. Long-range transport of southeast asian pm2.5 pollution to northern Thailand during high biomass burning episodes. Sustainability 2020, 12, 10049. [Google Scholar] [CrossRef]
- Othman, M.; Latif, M.T.; Hamid, H.H.A.; Uning, R.; Khumsaeng, T.; Phairuang, W.; Lung, S.C.C. Spatial–temporal variability and health impact of particulate matter during a 2019–2020 biomass burning event in Southeast Asia. Sci. Rep. 2022, 12, 7630. [Google Scholar] [CrossRef] [PubMed]
- Vejpongsa, I.; Suvachittanont, S.; Klinklan, N.; Thongyen, T.; Veres, M.; Szymanski, W.W. Deliberation between PM1 and PM2.5 as air quality indicators based on comprehensive characterization of urban aerosols in Bangkok, Thailand. Particuology 2017, 35, 1–9. [Google Scholar] [CrossRef]
- Nuthammachot, N.; Phairuang, W.; Stratoulias, D. Estimation of carbon emission in the ex-mega rice project, Indonesia based on SAR satellite images. Appl. Ecol. Environ. Res. 2019, 17, 2489–2499. [Google Scholar] [CrossRef]
- Amin, M.; Putri, R.M.; Handika, R.A.; Ullah, A.; Goembira, F.; Phairuang, W.; Ikemori, F.; Hata, M.; Tekasakul, P.; Furuuchi, M. Size-Segregated Particulate Matter Down to PM0.1 and Carbon Content during the Rainy and Dry Seasons in Sumatra Island, Indonesia. Atmosphere 2021, 12, 1441. [Google Scholar] [CrossRef]
- Putri, R.M.; Amin, M.; Suciari, T.F.; Faisal, M.A.F.; Auliani, R.; Ikemori, F.; Wada, M.; Hata, M.; Tekasakul, P.; Furuuchi, M. Site-specific variation in mass concentration and chemical components in ambient nanoparticles (PM0.1) in North Sumatra Province-Indonesia. Atmos. Pollut. Res. 2021, 12, 101062. [Google Scholar] [CrossRef]
- De Jesus, A.L.; Rahman, M.M.; Mazaheri, M.; Thompson, H.; Knibbs, L.D.; Jeong, C.; Evans, G.; Nei, W.; Ding, A.; Qiao, L.; et al. Ultrafine particles and PM2.5 in the air of cities around the world: Are they representative of each other? Environ. Int. 2019, 129, 118–135. [Google Scholar] [CrossRef]
- Pollution Control Department. National Thailand Ambient Air Quality Standards. 2022. Available online: https://www.pcd.go.th/laws/26439 (accessed on 1 December 2022).
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. World Health Organization. 2021. Available online: https://apps.who.int/iris/handle/10665/345329 (accessed on 1 December 2022).
- CEN/TS 16976:2016; Ambient Air-Determination of the Particle Number Concentration of Atmospheric Aerosol. European Committee for Standardization: Brussels, Belgium, 2016.
- Giechaskiel, B.; Lahde, T.; Suarez-Bertoa, R.; Clairotte, M.; Grigoratos, T.; Zardini, A.; Perujo, A.; Martini, G. Particle number measurements in the European legislation and future JRC activities. Combust. Engines 2018, 174, 3–16. [Google Scholar] [CrossRef]
- Hinds, W.C.; Zhu, Y. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles; John Wiley & Sons: Hoboken, NJ, USA, 2022. [Google Scholar]
- Chavanaves, S.; Fantke, P.; Limpaseni, W.; Attavanich, W.; Panyametheekul, S.; Gheewala, S.H.; Prapaspongsa, T. Health impacts and costs of fine particulate matter formation from road transport in Bangkok Metropolitan Region. Atmos. Pollut. Res. 2021, 12, 101191. [Google Scholar] [CrossRef]
- ChooChuay, C.; Pongpiachan, S.; Tipmanee, D.; Suttinun, O.; Deelaman, W.; Wang, Q.; Xing, L.; Li, G.; Han, Y.; Palakun, J.; et al. Impacts of PM2.5 sources on variations in particulate chemical compounds in ambient air of Bangkok, Thailand. Atmos. Pollut. Res. 2020, 11, 1657–1667. [Google Scholar] [CrossRef]
- Kanjanasiranont, N.; Butburee, T.; Peerakiatkhajohn, P. Characteristics of PM10 Levels Monitored in Bangkok and Its Vicinity Areas, Thailand. Atmosphere 2022, 13, 239. [Google Scholar] [CrossRef]
- Narita, D.; Oanh, N.; Sato, K.; Huo, M.; Permadi, D.; Chi, N.; Ratanajaratroj, T.; Pawarmart, I. Pollution characteristics and policy actions on fine particulate matter in a growing Asian economy: The case of Bangkok Metropolitan Region. Atmosphere 2019, 10, 227. [Google Scholar] [CrossRef]
- Ding, X.; Kong, L.; Du, C.; Zhanzakova, A.; Wang, L.; Fu, H.; Chen, J.; Yang, X.; Cheng, T. Long-range and regional transported size-resolved atmospheric aerosols during summertime in urban Shanghai. Sci. Total Environ. 2017, 583, 334–343. [Google Scholar] [CrossRef]
- Hata, M.; Chomanee, J.; Thongyen, T.; Bao, L.; Tekasakul, S.; Tekasakul, P.; Otani, Y.; Furuuchi, M. Characteristics of nanoparticles emitted from burning of biomass fuels. J. Environ. Sci. 2014, 26, 1913–1920. [Google Scholar] [CrossRef]
- Zhao, T.; Hongtieab, S.; Hata, M.; Furuuchi, M.; Dong, S.; Phairuang, W.; Ge, H.; Zhang, T. Characteristics comparison of ambient Nano-particles in Asian cities. In Proceedings of the 33rd Symposium of Japan Association of Aerosol Science and Technology (JAAST) Annual Meeting, Osaka, Japan, 31 August–2 September 2016. [Google Scholar]
- Phairuang, W.; Suwattiga, P.; Hongtieab, S.; Inerb, M.; Furuuchi, M.; Hata, M. Characteristics, sources, and health risks of ambient nanoparticles (PM0.1) bound metal in Bangkok, Thailand. Atmos. Environ. X 2021, 12, 100141. [Google Scholar] [CrossRef]
- Phairuang, W.; Hongtieab, S.; Suwattiga, P.; Furuuchi, M.; Hata, M. Atmospheric Ultrafine Particulate Matter (PM0.1)-Bound Carbon Composition in Bangkok, Thailand. Atmosphere 2022, 13, 1676. [Google Scholar] [CrossRef]
- Phairuang, W.; Inerb, M.; Furuuchi, M.; Hata, M.; Tekasakul, S.; Tekasakul, P. Size-fractionated carbonaceous aerosols down to PM0.1 in southern Thailand: Local and long-range transport effects. Environ. Pollut. 2020, 260, 114031. [Google Scholar] [CrossRef]
- Chomanee, J.; Tekasakul, S.; Tekasakul, P.; Furuuchi, M. Effect of irradiation energy and residence time on decomposition efficiency of polycyclic aromatic hydrocarbons (PAHs) from rubber wood combustion emission using soft X-rays. Chemosphere 2018, 210, 417–423. [Google Scholar] [CrossRef]
- Office of Agricultural Economics (OAE). Agricultural Statistic in Thailand, 2019; OAE: Bangkok, Thailand, 2020. [Google Scholar]
- Phairuang, W.; Tekasakul, P.; Hata, M.; Tekasakul, S.; Chomanee, J.; Otani, Y.; Furuuchi, M. Estimation of air pollution from ribbed smoked sheet rubber in Thailand exports to Japan as a pre-product of tires. Atmos. Pollut. Res. 2019, 10, 642–650. [Google Scholar] [CrossRef]
- Samiksha, S.; Kumar, S.; Sunder Raman, R. Two-year record of carbonaceous fraction in ambient PM2.5 over a forested location in central India: Temporal characteristics and estimation of secondary organic carbon. Air Qual. Atmos. Health 2021, 14, 473–480. [Google Scholar] [CrossRef]
- Zioła, N.; Banasik, K.; Jabłońska, M.; Janeczek, J.; Błaszczak, B.; Klejnowski, K.; Mathews, B. Seasonality of the Airborne Ambient Soot Predominant Emission Sources Determined by Raman Microspectroscopy and Thermo-Optical Method. Atmosphere 2021, 12, 768. [Google Scholar] [CrossRef]
- Rana, A.; Jia, S.; Sarkar, S. Black carbon aerosol in India: A comprehensive review of current status and future prospects. Atmos. Res. 2019, 218, 207–230. [Google Scholar] [CrossRef]
- Zhang, Z.W.; Shahpoury, P.; Zhang, W.; Harner, T.; Huang, L. A new method for measuring airborne elemental carbon using PUF disk passive samplers. Chemosphere 2022, 299, 134323. [Google Scholar] [CrossRef]
- Pani, S.K.; Lee, C.T.; Griffith, S.M.; Lin, N.H. Humic-like substances (HULIS) in springtime aerosols at a high-altitude background station in the western North Pacific: Source attribution, abundance, and light-absorption. Sci. Total Environ. 2022, 809, 151180. [Google Scholar] [CrossRef]
- Tang, J.; Wang, J.; Zhong, G.; Jiang, H.; Mo, Y.; Zhang, B.; Geng, X.; Chen, Y.; Tang, J.; Tian, C.; et al. Measurement report: Long-emission-wavelength chromophores dominate the light absorption of brown carbon in aerosols over Bangkok: Impact from biomass burning. Atmos. Chem. Phys. 2021, 21, 11337–11352. [Google Scholar] [CrossRef]
- Wonaschütz, A.; Hitzenberger, R.; Bauer, H.; Pouresmaeil, P.; Klatzer, B.; Caseiro, A.; Buxbaum, H. Application of the integrating sphere method to separate the contributions of brown and black carbon in atmospheric aerosols. Environ. Sci. Technol. 2009, 43, 1141–1146. [Google Scholar]
- Cui, M.; Xu, Y.; Yu, B.; Yan, C.; Li, J.; Zheng, M.; Chen, Y. Experimental simulation characterizes carbonaceous matter emitted from residential coal and biomass combustion. Atmos. Environ. 2023, 293, 119447. [Google Scholar] [CrossRef]
- Malmborg, V.; Eriksson, A.; Gren, L.; Török, S.; Shamun, S.; Novakovic, M.; Zhang, Y.; Kook, S.; Tunér, M.; Bengtsson, P.-E.; et al. Characteristics of BrC and BC emissions from controlled diffusion flame and diesel engine combustion. Aerosol Sci. Technol. 2021, 55, 769–784. [Google Scholar] [CrossRef]
- Runa, F.; Islam, M.; Jeba, F.; Salam, A. Light absorption properties of brown carbon from biomass burning emissions. Environ. Sci. Pollut. Res. 2022, 29, 21012–21022. [Google Scholar] [CrossRef]
- Hallquist, M.; Wenger, J.C.; Baltensperger, U.; Rudich, Y.; Simpson, D.; Claeys, M.; Dommen, J.; Donahue, N.M.; George, C.; Goldstein, A.H.; et al. The formation, properties, and impact of secondary organic aerosol: Current and emerging issues. Atmos. Chem. Phys. 2009, 9, 5155–5236. [Google Scholar] [CrossRef]
- Amin, M.; Handika, R.A.; Putri, R.M.; Phairuang, W.; Hata, M.; Tekasakul, P.; Furuuchi, M. Size-segregated particulate mass and carbonaceous components in roadside and riverside environments. Appl. Sci. 2021, 11, 10214. [Google Scholar] [CrossRef]
- Houghton, J.T.; Ding, Y.D.J.G.; Griggs, D.J.; Noguer, M.; van der Linden, P.J.; Dai, X.; Maskell, K.; Johnson, C.A. (Eds.) Climate Change 2001: The Scientific Basis: Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Kelesidis, G.A.; Bruun, C.A.; Pratsinis, S.E. The impact of organic carbon on soot light absorption. Carbon 2021, 172, 742–749. [Google Scholar] [CrossRef]
- Gustafsson, Ö.; Ramanathan, V. Convergence on climate warming by black carbon aerosols. Proc. Natl. Acad. Sci. USA 2016, 113, 4243–4245. [Google Scholar] [CrossRef] [PubMed]
- Irei, S.; Takami, A.; Sadanaga, Y.; Nozoe, S.; Yonemura, S.; Bandow, H.; Yokouchi, Y. Photochemical age of air pollutants, ozone, and secondary organic aerosol in transboundary air observed on Fukue Island, Nagasaki, Japan. Atmos. Chem. Phys. 2016, 16, 4555–4568. [Google Scholar] [CrossRef]
- Han, Y.; Chen, Y.; Feng, Y.; Shang, Y.; Li, J.; Li, Q.; Chen, J. Existence and formation pathways of high-and low-maturity elemental carbon from solid fuel combustion by a time-resolved study. Environ. Sci. Technol. 2022, 56, 2551–2561. [Google Scholar] [CrossRef]
- Falk, J.; Korhonen, K.; Malmborg, V.B.; Gren, L.; Eriksson, A.C.; Karjalainen, P.; Markkula, L.; Bengtsson, P.-E.; Virtanen, A.; Svenningsson, B.; et al. Immersion freezing ability of freshly emitted soot with various physico-chemical characteristics. Atmosphere 2021, 12, 1173. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, Y.; Song, W.; Zhang, Y.L.; Ponsawansong, P.; Prapamontol, T.; Wang, Y. Contribution of brown carbon to the light absorption and radiative effect of carbonaceous aerosols from biomass burning emissions in Chiang Mai, Thailand. Atmos. Environ. 2021, 260, 118544. [Google Scholar] [CrossRef]
- Singh, G.K.; Choudhary, V.; Rajeev, P.; Paul, D.; Gupta, T. Understanding the origin of carbonaceous aerosols during periods of extensive biomass burning in northern India. Environ. Pollut. 2021, 270, 116082. [Google Scholar] [CrossRef]
- Tao, J.; Zhang, Z.; Zhang, L.; Huang, D.; Wu, Y. Quantifying the relative importance of major tracers for fine particles released from biofuel combustion in households in the rural North China Plain. Environ. Pollut. 2021, 268, 115764. [Google Scholar] [CrossRef]
- Yang, H.H.; Dhital, N.B.; Wang, L.C.; Hsieh, Y.S.; Lee, K.T.; Hsu, Y.T.; Huang, S.C. Chemical characterization of fine particulate matter in gasoline and diesel vehicle exhaust. Aerosol Air Qual. Res. 2019, 19, 1349–1449. [Google Scholar] [CrossRef]
- Thumanu, K.; Pongpiachan, S.; Ho, K.F.; Lee, S.C.; Sompongchaiyakul, P. Characterization of organic functional groups, water-soluble ionic species and carbonaceous compounds in PM10 from various emission sources in Songkhla Province, Thailand. WIT Trans. Ecol. Environ. 2009, 123, 295–306. [Google Scholar]
- Saarikoski, S.; Timonen, H.; Saarnio, K.; Aurela, M.; Järvi, L.; Keronen, P.; Kerminen, V.-M.; Hillamo, R. Sources of organic carbon in fine particulate matter in northern European urban air. Atmos. Chem. Phys. 2008, 8, 6281–6295. [Google Scholar] [CrossRef]
- Guo, Y. Carbonaceous aerosol composition over northern China in spring 2012. Environ. Sci. Pollut. Res. 2015, 22, 10839–10849. [Google Scholar] [CrossRef]
- Han, Y.M.; Chen, L.W.; Huang, R.J.; Chow, J.C.; Watson, J.G.; Ni, H.Y.; Liu, S.X.; Fung, K.K.; Shen, Z.X.; Wei, C.; et al. Carbonaceous aerosols in megacity Xi’an, China: Implications for comparison of thermal/optical protocols. Atmos. Environ. 2016, 132, 58–68. [Google Scholar] [CrossRef]
- Moran, J.; Nasuwan, C.; Poocharoen, O.O. A review of the haze problem in Northern Thailand and policies to combat it. Environ. Sci. Policy 2019, 97, 1–15. [Google Scholar] [CrossRef]
- Phairuang, W.; Hata, M.; Furuuchi, M. Influence of agricultural activities, forest fires and agro-industries on air quality in Thailand. J. Environ. Sci. 2017, 52, 85–97. [Google Scholar] [CrossRef]
- Janta, R.; Sekiguchi, K.; Yamaguchi, R.; Sopajaree, K.; Plubin, B.; Chetiyanukornkul, T. Spatial and temporal variations of atmospheric PM10 and air pollutants concentration in upper Northern Thailand during 2006–2016. Appl. Sci. Eng. Prog. 2020, 13, 256–267. [Google Scholar] [CrossRef]
- Punsompong, P.; Pani, S.K.; Wang, S.H.; Pham, T.T.B. Assessment of biomass-burning types and transport over Thailand and the associated health risks. Atmos. Environ. 2021, 247, 118176. [Google Scholar] [CrossRef]
- Vongruang, P.; Pimonsree, S. Biomass burning sources and their contributions to PM10 concentrations over countries in mainland Southeast Asia during a smog episode. Atmos. Environ. 2020, 228, 117414. [Google Scholar] [CrossRef]
- Samae, H.; Tekasakul, S.; Tekasakul, P.; Furuuchi, M. Emission factors of ultrafine particulate matter (PM < 0.1 μm) and particle-bound polycyclic aromatic hydrocarbons from biomass combustion for source apportionment. Chemosphere 2021, 262, 127846. [Google Scholar] [PubMed]
- Samae, H.; Tekasakul, S.; Tekasakul, P.; Phairuang, W.; Furuuchi, M.; Hongtieab, S. Particle-bound organic and elemental carbons for source identification of PM< 0.1 µm from biomass combustion. J. Environ. Sci. 2022, 113, 385–393. [Google Scholar]
- Phairuang, W.; Inerb, M.; Hata, M.; Furuuchi, M. A Review of Ambient Nanoparticles (PM0.1) in South East Asian Cities: Biomass and Fossil Burning Impacts. Available online: https://www.preprints.org/manuscript/202108.0575/v1 (accessed on 1 December 2022).
- Kumar, P.; Morawska, L.; Birmili, W.; Paasonen, P.; Hu, M.; Kulmala, M.; Harrison, R.M.; Norford, L.; Britter, R. Ultrafine particles in cities. Environ. Int. 2014, 66, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Pirjola, L.; Ketzel, M.; Harrison, R.M. Nanoparticle emissions from 11 non-vehicle exhaust sources–a review. Atmos. Environ. 2013, 67, 252–277. [Google Scholar] [CrossRef]
- Kliengchuay, W.; Worakhunpiset, S.; Limpanont, Y.; Meeyai, A.C.; Tantrakarnapa, K. Influence of the meteorological conditions and some pollutants on PM10 concentrations in Lamphun, Thailand. J. Environ. Health Sci. Eng. 2021, 19, 237–249. [Google Scholar] [CrossRef]
- Panyametheekul, S.; Kangwansupamonkon, W.; Anuchitchanchai, O.; Pongkiatkul, P. Final Report “Research Program on Integrated Technology for Mitigating PM2.5: A Case Study in Bangkok Metropolitan Region (BMR)”. National Research Council Fund. 2022. Available online: https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Eb81oY0AAAAJ&sortby=pubdate&citation_for_view=Eb81oY0AAAAJ:4OULZ7Gr8RgC (accessed on 1 December 2022).
- Ahmad, M.; Manjantrarat, T.; Rattanawongsa, W.; Muensri, P.; Saenmuangchin, R.; Klamchuen, A.; Aueviriyavit, S.; Sukrak, K.; Kangwansupamonkon, W.; Panyametheekul, S. Chemical Composition, Sources, and Health Risk Assessment of PM2.5 and PM10 in Urban Sites of Bangkok, Thailand. Int. J. Environ. Res. Public Health 2022, 19, 14281. [Google Scholar] [CrossRef] [PubMed]
- Fold, N.R.; Allison, M.R.; Wood, B.C.; Thao, P.T.; Bonnet, S.; Garivait, S.; Kamens, R.; Pengjan, S. An assessment of annual mortality attributable to ambient PM2.5 in Bangkok, Thailand. Int. J. Environ. Res. Public Health 2020, 17, 7298. [Google Scholar] [CrossRef]
- Pothirat, C.; Chaiwong, W.; Liwsrisakun, C.; Bumroongkit, C.; Deesomchok, A.; Theerakittikul, T.; Limsukon, A.; Tajarernmuang, P.; Phetsuk, N. The short-term associations of particular matters on non-accidental mortality and causes of death in Chiang Mai, Thailand: A time series analysis study between 2016–2018. Int. J. Environ. Health Res. 2021, 31, 538–547. [Google Scholar] [CrossRef]
- Thao, N.N.L.; Pimonsree, S.; Prueksakorn, K.; Thao, P.T.B.; Vongruang, P. Public health and economic impact assessment of PM2.5 from open biomass burning over countries in mainland Southeast Asia during the smog episode. Atmos. Pollut. Res. 2022, 13, 101418. [Google Scholar] [CrossRef]
- Uttajug, A.; Ueda, K.; Oyoshi, K.; Honda, A.; Takano, H. Association between PM10 from vegetation fire events and hospital visits by children in upper northern Thailand. Sci. Total Environ. 2021, 764, 142923. [Google Scholar] [CrossRef]
- Uttajug, A.; Ueda, K.; Seposo, X.T.; Honda, A.; Takano, H. Effect of a vegetation fire event ban on hospital visits for respiratory diseases in Upper Northern Thailand. Int. J. Epidemiol. 2022, 51, 514–524. [Google Scholar] [CrossRef] [PubMed]
- Dahari, N.; Muda, K.; Latif, M.T.; Hussein, N. Studies of atmospheric PM2.5 and its inorganic water-soluble ions and trace elements around Southeast Asia: A review. Asia-Pac. J. Atmos. Sci. 2021, 57, 361–385. [Google Scholar] [CrossRef]
- Tham, J.; Sarkar, S.; Jia, S.; Reid, J.S.; Mishra, S.; Sudiana, I.M.; Swarup, S.; Ong, C.N.; Liya, E.Y. Impacts of peat-forest smoke on urban PM2.5 in the Maritime Continent during 2012–2015: Carbonaceous profiles and indicators. Environ. Pollut. 2019, 248, 496–505. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.L.; Sfao, L.Y.; Xi, C.X.; Jones, T.; Zhang, D.Z.; Beru Be, K. Particle-induced oxidative damage by indoor size-segregated particulate matter from coal-burning homes in the Xuanwei lung cancer epidemic area, Yunan Province, China. Chemosphere 2020, 256, 127058. [Google Scholar] [CrossRef] [PubMed]
- Huo, M.; Sato, K.; Kim Oanh, N.T.; Mettasithikorn, M.; Leamlaem, M.; Permadi, D.A.; Narita, D.; Garivait, H.; Laogul, W.; Akimoto, H. Chemical characteristics and deposition amounts of carbonaceous species and inorganic ions in precipitation in the Bangkok metropolitan Region. Atmos. Environ. 2022, 291, 119393. [Google Scholar] [CrossRef]
- Rao, L.F.; Zhang, L.Y.; Wang, X.Z.; Xie, T.T.; Zhou, S.M.; Lu, S.L.; Liu, X.C.; Lu, H.; Xiao, K.; Wang, W.Q.; et al. Oxidative potential induced by ambient particulate matters with acellular assays: A review. Various Technol. Environ. Pollut. Control 2020, 8, 1410. [Google Scholar] [CrossRef]
- Hata, M.; Furuuchi, M.; Dong, S.; Phairuang, W.; Ge, H.; Zhang, T. Ambient nanoparticles characterization by East and Southeast Asia nanoparticle monitoring network. In Proceedings of the 9th Asian Aerosol Conference, Kanazawa, Japan, 24–26 June 2015. [Google Scholar]
Pollutants | Time Period | Concentration |
---|---|---|
TSP (PM100) | Annual | 100 µg/m3 |
24 h | 330 µg/m3 | |
PM10 | Annual | 50 µg/m3 |
24 h | 120 µg/m3 | |
PM2.5 | Annual | 15 µg/m3 |
24 h | 50 µg/m3 | |
O3 | 8 h | 140 µg/m3 (0.07 ppm) |
1 h | 200 µg/m3 (0.10 ppm) | |
CO | 8 h | 10,260 µg/m3 (9 ppm) |
1 h | 3420 µg/m3 (30 ppm) | |
NO2 | Annual | 57 µg/m3 (0.03 ppm) |
1 h | 320 µg/m3 (0.17 ppm) | |
SO2 | Annual | 100 µg/m3 (0.04 ppm) |
24 h | 300 µg/m3 (0.12 ppm) | |
1 h | 78,000 µg/m3 (0.3 ppm) | |
Lead (Pb) | Monthly | 1.50 mcg/m3 |
Location | Site Description | Sampling Time | PM0.1 | PM2.5 | PM0.1/PM2.5 Ratio | References |
---|---|---|---|---|---|---|
Chiang Mai | Suburban | September 2014–June 2015 | 25.2 ± 4.7 | 77.5 ± 23.8 | 0.33 ± 0.03 | [32] |
Suburban | March–April 2016 | 16.5 | - | - | [52] | |
Pathumtani | Suburban | October 2019 (wet) | 13.5 ± 0.8 | 55.1 ± 4.6 | 0.25 ± 0.06 | [24] |
January–February 2020 (dry) | 18.9 ± 4.0 | 73.4 ± 16.3 | 0.26 ± 0.04 | |||
Bangkok | Urban | July 2014–June 2015 | 14.5 ± 4.7 | 66.4 ± 17.2 | 0.23 ± 0.09 | [32] |
Urban | March–April 2016 | 11.9 | - | - | [52] | |
Urban | November 2014–October 2015 | 15.0 ± 2.4 | - | - | [53] | |
Urban | May 2016–April 2017 | 14.8 ± 2.0 | - | - | [54] | |
Urban–traffic | March–April 2016 | 7.7 | - | - | [52] | |
Songkhla | Suburban | September–October 2015 | 14.2 ± 10.0 | 73.7 ± 49.8 | 0.19 | [26] |
August–October 2017 | 1.9 ± 0.6 | 12.9 ± 0.8 | 0.15 | |||
Suburban | March–April 2016 | 10.9 | - | - | [52] | |
Suburban | January–December 2018 | 10.2 ± 2.2 | 57.8 ± 4.7 | 0.18 ± 0.05 | [55] | |
Suburban | January–August 2019 | 10.4 ± 1.2 | - | - | [25] | |
Suburban | January–December 2018 | 8.4 ± 1.9 | - | - | [28] |
Location | Season | OC (µg/m3) | EC (µg/m3) | OC/EC (-) | Char-EC (µg/m3) | Soot-EC (µg/m3) | Char-EC/ Soot-EC (-) | References |
---|---|---|---|---|---|---|---|---|
Chiang Mai | Wet–2014 | 2.34 ± 0.82 | 0.51 ± 0.14 | 5.62 ± 1.22 | 0.23 ± 0.11 | 0.29 ± 0.07 | 0.80 ± 0.51 | [32] |
Dry—2015 | 4.97 ± 1.46 | 1.51 ± 0.66 | 3.29 ± 0.67 | 0.96 ± 0.58 | 0.54 ± 0.13 | 1.78 ± 0.66 | ||
Pathumtani | Wet—2019 | 0.86 ± 0.17 | 0.58 ± 0.17 | 1.50 ± 0.18 | 0.24 ± 0.08 | 0.34 ± 0.08 | 0.70 ± 0.09 | [24] |
Dry—2020 | 2.05 ± 0.45 | 0.93 ± 0.41 | 2.49 ± 0.89 | 0.39 ± 0.32 | 0.54 ± 0.14 | 0.69 ± 0.46 | ||
Bangkok | Wet—2014 | 0.78 ± 0.34 | 0.31 ± 0.08 | 2.57 ± 1.10 | 0.11 ± 0.03 | 0.20 ± 0.05 | 0.52 ± 0.57 | [32] |
Dry—2015 | 2.31 ± 0.58 | 0.58 ± 0.13 | 4.47 ± 1.46 | 0.26 ± 0.10 | 0.32 ± 0.04 | 0.77 ± 0.24 | ||
Bangkok | Wet—2016 | 3.45 ± 0.70 | 1.39 ± 0.43 | 2.59 ± 0.55 | 0.43 ± 0.15 | 0.97 ± 0.30 | 0.45 ± 0.09 | [54] |
Dry—2017 | 2.60 ± 0.83 | 0.61 ± 0.14 | 4.43 ± 1.79 | 0.27 ± 0.09 | 0.35 ± 0.06 | 0.77 ± 0.23 | ||
Songkhla | Wet—2019 | 4.90 ± 0.90 | 1.85 ± 0.50 | 2.70 ± 0.70 | 0.43 ± 0.10 | 1.40 ± 0.10 | 0.30 ± 0.20 | [25] |
Dry—2019 | 1.60 ± 0.20 | 0.66 ± 0.10 | 2.42 ± 0.51 | 0.15 ± 0.10 | 0.50 ± 0.10 | 0.33 ± 0.20 | ||
Songkhla | Pre-monsoon—2018 | 1.22 ± 1.01 | 0.34 ± 0.14 | 3.00 ± 1.41 | 0.08 ± 0.04 | 0.25 ± 0.13 | 0.35 ± 0.19 | [55] |
Monsoon—2018 | 0.42 ± 0.21 | 0.14 ± 0.07 | 3.15 ± 0.81 | 0.04 ± 0.03 | 0.12 ± 0.05 | 0.34 ± 0.29 | ||
Dry—2018 | 0.44 ± 0.22 | 0.18 ± 0.12 | 2.75 ± 1.10 | 0.05 ± 0.03 | 0.14 ± 0.09 | 0.37 ± 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phairuang, W.; Piriyakarnsakul, S.; Inerb, M.; Hongtieab, S.; Thongyen, T.; Chomanee, J.; Boongla, Y.; Suriyawong, P.; Samae, H.; Chanonmuang, P.; et al. Ambient Nanoparticles (PM0.1) Mapping in Thailand. Atmosphere 2023, 14, 66. https://doi.org/10.3390/atmos14010066
Phairuang W, Piriyakarnsakul S, Inerb M, Hongtieab S, Thongyen T, Chomanee J, Boongla Y, Suriyawong P, Samae H, Chanonmuang P, et al. Ambient Nanoparticles (PM0.1) Mapping in Thailand. Atmosphere. 2023; 14(1):66. https://doi.org/10.3390/atmos14010066
Chicago/Turabian StylePhairuang, Worradorn, Suthida Piriyakarnsakul, Muanfun Inerb, Surapa Hongtieab, Thunyapat Thongyen, Jiraporn Chomanee, Yaowatat Boongla, Phuchiwan Suriyawong, Hisam Samae, Phuvasa Chanonmuang, and et al. 2023. "Ambient Nanoparticles (PM0.1) Mapping in Thailand" Atmosphere 14, no. 1: 66. https://doi.org/10.3390/atmos14010066
APA StylePhairuang, W., Piriyakarnsakul, S., Inerb, M., Hongtieab, S., Thongyen, T., Chomanee, J., Boongla, Y., Suriyawong, P., Samae, H., Chanonmuang, P., Suwattiga, P., Chetiyanukornkul, T., Panyametheekul, S., Amin, M., Hata, M., & Furuuchi, M. (2023). Ambient Nanoparticles (PM0.1) Mapping in Thailand. Atmosphere, 14(1), 66. https://doi.org/10.3390/atmos14010066