Impacts of Observed Extreme Antarctic Sea Ice Conditions on the Southern Hemisphere Atmosphere
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. Surface Heat Flux
3.2. Response of the Jet Stream
3.3. Changes in the Circulation in the Lower and Mid-Troposphere
3.4. Changes in Temperature and Precipitation
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, Y.Q.; Sun, J.Q.; Li, F.; He, S.P.; Sandven, S.; Yan, Q.; Zhang, Z.S.; Lohmann, K.; Keenlyside, N.; Furevik, T.; et al. Arctic Sea Ice and Eurasian Climate: A Review. Adv. Atmos. Sci. 2015, 32, 92–114. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.P.; Curry, J.A.; Wang, H.J.; Song, M.R.; Horton, R.M. Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA 2012, 109, 4074–4079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petoukhov, V.; Semenov, V.A. A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res.-Atmos. 2010, 115, D21111. [Google Scholar] [CrossRef]
- Song, M.R.; Wang, S.Y.; Zhu, Z.; Liu, J.P. Nonlinear changes in cold spell and heat wave arising from Arctic sea-ice loss. Adv. Clim. Chang. Res. 2021, 12, 553–562. [Google Scholar] [CrossRef]
- Eayrs, C.; Li, X.C.; Raphael, M.N.; Holland, D.M. Rapid decline in Antarctic sea ice in recent years hints at future change. Nat. Geosci. 2021, 14, 460–464. [Google Scholar] [CrossRef]
- Parkinson, C.L. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proc. Natl. Acad. Sci. USA 2019, 116, 14414–14423. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Hosking, J.S.; Bracegirdle, T.J.; Marshall, G.J.; Phillips, T. Recent changes in Antarctic Sea Ice. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci. 2015, 373, 20140163. [Google Scholar] [CrossRef]
- Schlosser, E.; Haumann, F.A.; Raphael, M.N. Atmospheric influences on the anomalous 2016 Antarctic sea ice decay. Cryosphere 2018, 12, 1103–1119. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.M.; Turner, J.; Wu, Y.; Liu, C.Y. Rapid Decline of Total Antarctic Sea Ice Extent during 2014-16 Controlled by Wind-Driven Sea Ice Drift. J. Clim. 2019, 32, 5381–5395. [Google Scholar] [CrossRef]
- Meehl, G.A.; Arblaster, J.M.; Chung, C.T.Y.; Holland, M.M.; DuVivier, A.; Thompson, L.; Yang, D.X.; Bitz, C.M. Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nat. Commun. 2019, 10, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, G.M.; Hendon, H.H.; Arblaster, J.M.; Lim, E.P.; Abhik, S.; van Rensch, P. Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016. Nat. Commun. 2019, 10, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peings, Y.; Magnusdottir, G. Response of the Wintertime Northern Hemisphere Atmospheric Circulation to Current and Projected Arctic Sea Ice Decline: A Numerical Study with CAM5. J. Clim. 2014, 27, 244–264. [Google Scholar] [CrossRef] [Green Version]
- Raphael, M.N.; Hobbs, W.; Wainer, I. The effect of Antarctic sea ice on the Southern Hemisphere atmosphere during the southern summer. Clim. Dyn. 2011, 36, 1403–1417. [Google Scholar] [CrossRef]
- Smith, D.M.; Dunstone, N.J.; Scaife, A.A.; Fiedler, E.K.; Copsey, D.; Hardiman, S.C. Atmospheric Response to Arctic and Antarctic Sea Ice: The Importance of Ocean-Atmosphere Coupling and the Background State. J. Clim. 2017, 30, 4547–4565. [Google Scholar] [CrossRef] [Green Version]
- Roach, L.A.; Dorr, J.; Holmes, C.R.; Massonnet, F.; Blockley, E.W.; Notz, D.; Rackow, T.; Raphael, M.N.; O’Farrell, S.P.; Bailey, D.A.; et al. Antarctic Sea Ice Area in CMIP6. Geophys. Res. Lett. 2020, 47, e2019GL086729. [Google Scholar] [CrossRef]
- Menéndez, C.G.; Serafini, V.; Treut, H.L. The effect of sea-ice on the transient atmospheric eddies of the Southern Hemisphere. Clim. Dyn. 1999, 15, 659–671. [Google Scholar] [CrossRef]
- Bader, J.; Flugge, M.; Kvamsto, N.G.; Mesquita, M.D.S.; Voigt, A. Atmospheric winter response to a projected future Antarctic sea-ice reduction: A dynamical analysis. Clim. Dyn. 2013, 40, 2707–2718. [Google Scholar] [CrossRef] [Green Version]
- Kidston, J.; Taschetto, A.S.; Thompson, D.W.J.; England, M.H. The influence of Southern Hemisphere sea-ice extent on the latitude of the mid-latitude jet stream. Geophys. Res. Lett. 2011, 38, 5. [Google Scholar] [CrossRef] [Green Version]
- England, M.R.; Polvani, L.M.; Sun, L. Contrasting the Antarctic and Arctic atmospheric responses to projected sea ice loss in the late 21st Century. J. Clim. 2018, 31, 6353–6370. [Google Scholar] [CrossRef]
- Ayres, H.C.; Screen, J.A.; Blockley, E.W.; Bracegirdle, T.J. The Coupled Atmosphere-Ocean Response to Antarctic Sea Ice Loss. J. Clim. 2022, 35, 4665–4685. [Google Scholar] [CrossRef]
- Ayres, H.C.; Screen, J.A. Multimodel Analysis of the Atmospheric Response to Antarctic Sea Ice Loss at Quadrupled CO2. Geophys. Res. Lett. 2019, 46, 9861–9869. [Google Scholar] [CrossRef]
- Zhang, G.W.; Zeng, G.; Li, C.; Yang, X.Y. Impact of PDO and AMO on interdecadal variability in extreme high temperatures in North China over the most recent 40-year period. Clim. Dyn. 2020, 54, 3003–3020. [Google Scholar] [CrossRef]
- Neale, R.B.; Gettelman, A.; Park, S.; Conley, A.J.; Kinnison, D.; Dan, M.; Smith, A.K.; Vitt, F.; Morrison, H.; Cameronsmith, P.; et al. Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Note NCAR/TN-486+STR 2010, 1, 1–12. [Google Scholar]
- Ghan, S.J.; Liu, X.; Easter, R.C.; Zaveri, R.; Rasch, P.J.; Yoon, J.H.; Eaton, B. Toward a Minimal Representation of Aerosols in Climate Models: Comparative Decomposition of Aerosol Direct, Semidirect, and Indirect Radiative Forcing. J. Clim. 2012, 25, 6461–6476. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Hack, J.J.; Shea, D.; Caron, J.M.; Rosinski, J. A new sea surface temperature and sea ice boundary dataset for the Community Atmosphere Model. J. Clim. 2008, 21, 5145–5153. [Google Scholar] [CrossRef]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res.-Atmos. 2003, 108, 37. [Google Scholar] [CrossRef] [Green Version]
- Comiso, J.C. Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS, Version 3; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2017. [CrossRef]
- Reynolds, R.W.; Rayner, N.A.; Smith, T.M.; Stokes, D.C.; Wang, W.Q. An improved in situ and satellite SST analysis for climate. J. Clim. 2002, 15, 1609–1625. [Google Scholar] [CrossRef]
- Yu, L.S.; Weller, R.A. Objectively analyzed air-sea heat fluxes for the global ice-free oceans (1981–2005). Bull. Amer. Meteorol. Soc. 2007, 88, 527–540. [Google Scholar] [CrossRef] [Green Version]
- England, M.R.; Polvani, L.M.; Sun, L. Robust Arctic warming caused by projected Antarctic sea ice loss. Environ. Res. Lett. 2020, 15, 9. [Google Scholar] [CrossRef]
- England, M.R.; Polvani, L.M.; Sun, L.T.; Deser, C. Tropical climate responses to projected Arctic and Antarctic sea-ice loss. Nat. Geosci. 2020, 13, 275–281. [Google Scholar] [CrossRef]
Reference | Model | Conclusion |
---|---|---|
Kidston et al. [19] | Community Atmosphere Model (CAM3) | The mid-latitude jet shifts poleward when sea ice extent increased during winter. |
Raphael et al. [14] | Community Climate System Model Version Three (CCSM3) | The polar cell expands (contracts) under minimum (maximum) sea ice conditions; the Southern Hemisphere Annular Mode tends to be negative (positive) when the sea ice is at a minimum (maximum) in summer. |
Bader et al. [18] | atmospheric general circulation model ECHAM5 | The mid-latitude jet and the storm tracks shift equatorward and there is a negative phase of the Southern Hemisphere Annular Mode under future decreased sea ice conditions. |
Smith et al. [15] | Met Office Hadley Centre global climate model HadGEM3 | Both the atmospheric-only and coupled experiments simulate a poleward shift of mid-latitude jet under increased sea ice condition in recent years, especially in the cold seasons. |
England et al. [20] | Whole Atmosphere Coupled Climate Model (WACCM) | Future losses of Antarctic sea ice will act to shift the tropospheric jet equatorward in the cold seasons. The response of the surface temperature and precipitation is limited to the southern high latitudes, but is unable to impact the interior of the Antarctic continent. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, Z.; Song, M. Impacts of Observed Extreme Antarctic Sea Ice Conditions on the Southern Hemisphere Atmosphere. Atmosphere 2023, 14, 36. https://doi.org/10.3390/atmos14010036
Zhu Z, Song M. Impacts of Observed Extreme Antarctic Sea Ice Conditions on the Southern Hemisphere Atmosphere. Atmosphere. 2023; 14(1):36. https://doi.org/10.3390/atmos14010036
Chicago/Turabian StyleZhu, Zhu, and Mirong Song. 2023. "Impacts of Observed Extreme Antarctic Sea Ice Conditions on the Southern Hemisphere Atmosphere" Atmosphere 14, no. 1: 36. https://doi.org/10.3390/atmos14010036
APA StyleZhu, Z., & Song, M. (2023). Impacts of Observed Extreme Antarctic Sea Ice Conditions on the Southern Hemisphere Atmosphere. Atmosphere, 14(1), 36. https://doi.org/10.3390/atmos14010036