The Impact of Local Environment and Neighboring Pollution on the Spatial Variation of Particulate Matter in Chinese Mainland
Abstract
:1. Introduction
2. Materials and Methods
2.1. PM Measurements and Explanatory Variables
2.2. Spatial Regression Approaches
2.3. Cluster Analysis
3. Results and Discussion
3.1. Spatial Variation of PM and Explanatory Variables
3.2. The Response of PM to Local Environment and Neighboring Pollution
3.3. Varying Response of PM Level to Natural and Socioeconomic Conditions
3.3.1. Spatial Character of Each Cluster
3.3.2. Varying Driving Forces of PM in Each Cluster
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feng, H.; Zou, B.; Wang, J.; Gu, X. Dominant variables of global air pollution-climate interaction: Geographic insight. Ecol. Indic. 2019, 99, 251–260. [Google Scholar] [CrossRef]
- Lacressonnière, G.; Peuch, V.-H.; Vautard, R.; Arteta, J.; Déqué, M.; Joly, M.; Josse, B.; Marécal, V.; Saint-Martin, D. European air quality in the 2030s and 2050s: Impacts of global and regional emission trends and of climate change. Atmos. Environ. 2014, 92, 348–358. [Google Scholar] [CrossRef]
- Shiraiwa, M.; Li, Y.; Tsimpidi, A.P.; Karydis, V.A.; Berkemeier, T.; Pandis, S.N.; Lelieveld, J.; Koop, T.; Pöschl, U. Global distribution of particle phase state in atmospheric secondary organic aerosols. Nat. Commun. 2017, 8, 15002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R. Warming boosts air pollution. Nat. Clim. Chang. 2017, 7, 238–239. [Google Scholar] [CrossRef]
- Lelieveld, J.; Klingmüller, K.; Pozzer, A.; Pöschl, U.; Fnais, M.; Daiber, A.; Münzel, T. Cardiovascular disease burden from ambient air pollution in Europe reassessed using novel hazard ratio functions. Eur. Heart J. 2019, 40, 1590–1596. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Han, X.; Jin, M.; Zhang, X.; Wang, S. Globally analysing spatiotemporal trends of anthropogenic PM2.5 concentration and population’s PM2.5 exposure from 1998 to 2016. Environ. Int. 2019, 128, 46–62. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, L.; Liu, J. Identifying the spatial effects and driving factors of urban PM2.5 pollution in China. Ecol. Indic. 2017, 82, 61–75. [Google Scholar] [CrossRef]
- Yuan, M.; Song, Y.; Huang, Y.; Hong, S.; Huang, L. Exploring the Association between Urban Form and Air Quality in China. J. Plan. Educ. Res. 2018, 38, 413–426. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, S.; Hou, X.; Beazley, R.; Sun, Y. Identifying the contributions of multiple driving forces to PM10-2.5 pollution in urban areas in China. Sci. Total Environ. 2019, 663, 361–368. [Google Scholar] [CrossRef]
- Mahara, G.; Wang, C.; Yang, K.; Chen, S.; Guo, J.; Gao, Q.; Wang, W.; Wang, Q.; Guo, X. The Association between Environmental Factors and Scarlet Fever Incidence in Beijing Region: Using GIS and Spatial Regression Models. Int. J. Environ. Res. Public Health 2016, 13, 1083. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, H.; Zhao, T.; Li, T.; Che, H. Modeling study of PM2.5 pollutant transport across cities in China’s Jing-Jin-Ji region during a severe haze episode in December 2013. Atmos. Chem. Phys. 2015, 15, 5803–5814. [Google Scholar] [CrossRef] [Green Version]
- WHO. Particulate Matter Air Pollution: How It Harms Health. 2005. Available online: https://www.eea.europa.eu/themes/air/health-impacts-of-air-pollution (accessed on 15 April 2020).
- Chen, R.; Yin, P.; Meng, X.; Liu, C.; Wang, L.; Xu, X.; Ross, J.A.; Tse, L.A.; Zhao, Z.; Kan, H.; et al. Fine Particulate Air Pollution and Daily Mortality. A Nationwide Analysis in 272 Chinese Cities. Am. J. Respir. Crit. Care Med. 2017, 196, 73–81. [Google Scholar] [CrossRef]
- Samoli, E.; Analitis, A.; Touloumi, G.; Schwartz, J.; Anderson, H.R.; Sunyer, J.; Bisanti, L.; Zmirou, D.; Vonk, J.M.; Pekkanen, J.; et al. Estimating the Exposure–Response Relationships between Particulate Matter and Mortality within the APHEA Multicity Project. Environ. Health Perspect. 2005, 113, 88–95. [Google Scholar] [CrossRef] [Green Version]
- Goudie, A.S. Desert dust and human health disorders. Environ. Int. 2014, 63, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, S.; Querol, X.; Alastuey, A.; Viana, M.; Alarcón, M.; Mantilla, E.; Ruiz, C. Comparative PM10–PM2.5 source contribution study at rural, urban and industrial sites during PM episodes in Eastern Spain. Sci. Total Environ. 2004, 328, 95–113. [Google Scholar] [CrossRef]
- Piras, G.; Pini, F.; Garcia, D.A. Correlations of PM10 concentrations in urban areas with vehicle fleet development, rain precipitation and diesel fuel sales. Atmos. Pollut. Res. 2019, 10, 1165–1179. [Google Scholar] [CrossRef]
- Gao, C.; Li, S.; Liu, M.; Zhang, F.; Achal, V.; Tu, Y.; Zhang, S.; Cai, C. Impact of the COVID-19 pandemic on air pollution in Chinese megacities from the perspective of traffic volume and meteorological factors. Sci. Total Environ. 2021, 773, 145545. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-H.; Kim, M.-Y.; Hong, S.; Youn, Y.; Hwang, S.-J. The effects of wind speed on the relative relationships between different sized-fractions of airborne particles. Chemosphere 2005, 59, 929–937. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Zhang, T.; Liu, J.; Lv, L.; Dong, Y.; Chen, Z. Atmosphere boundary layer height and its effect on air pollutants in Beijing during winter heavy pollution. Atmos. Res. 2019, 215, 305–316. [Google Scholar] [CrossRef]
- Wu, C.-D.; Chen, Y.-C.; Pan, W.-C.; Zeng, Y.-T.; Chen, M.-J.; Guo, Y.L.; Lung, S.-C.C. Land-use regression with long-term satellite-based greenness index and culture-specific sources to model PM2.5 spatial-temporal variability. Environ. Pollut. 2017, 224, 148–157. [Google Scholar] [CrossRef]
- Mamtimin, B.; Meixner, F.X. Air pollution and meteorological processes in the growing dryland city of Urumqi (Xinjiang, China). Sci. Total Environ. 2011, 409, 1277–1290. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, H.; Zhang, X.; Peng, Y.; Zhong, J.; Wang, Y.; Zhao, Y. Evaluating the contributions of changed meteorological conditions and emission to substantial reductions of PM2.5 concentration from winter 2016 to 2017 in Central and Eastern China. Sci. Total Environ. 2020, 716, 136892. [Google Scholar] [CrossRef]
- Zhao, S.; Yu, Y.; Qin, D.; Yin, D.; Dong, L.; He, J. Analyses of regional pollution and transportation of PM2.5 and ozone in the city clusters of Sichuan Basin, China. Atmos. Pollut. Res. 2019, 10, 374–385. [Google Scholar] [CrossRef]
- Chen, X.; Li, F.; Zhang, J.; Zhou, W.; Wang, X.; Fu, H. Spatiotemporal mapping and multiple driving forces identifying of PM2.5 variation and its joint management strategies across China. J. Clean. Prod. 2020, 250, 119534. [Google Scholar] [CrossRef]
- Yang, X.; Wang, S.; Zhang, W.; Zhan, D.; Li, J. The impact of anthropogenic emissions and meteorological conditions on the spatial variation of ambient SO2 concentrations: A panel study of 113 Chinese cities. Sci. Total Environ. 2017, 584, 318–328. [Google Scholar] [CrossRef]
- Hutchinson, M.F.; Xu, T. ANUSPLIN VERSION 4.4. USER GUIDE; The Australian National University, Centre for Resource and Environmental Studies: Canberra, Australia, 2013. [Google Scholar]
- Yin, C.; Yuan, M.; Lu, Y.; Huang, Y.; Liu, Y. Effects of urban form on the urban heat island effect based on spatial regression model. Sci. Total Environ. 2018, 634, 696–704. [Google Scholar] [CrossRef]
- Tian, W.; Song, J.; Li, Z. Spatial regression analysis of domestic energy in urban areas. Energy 2014, 76, 629–640. [Google Scholar] [CrossRef]
- Ahn, K.-H.; Palmer, R. Regional flood frequency analysis using spatial proximity and basin characteristics: Quantile regression vs. parameter regression technique. J. Hydrol. 2016, 540, 515–526. [Google Scholar] [CrossRef]
- Fischer, M.; Wang, J. Spatial Data Analysis: Models, Methods and Techniques; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Cliff, A.D.; Ord, J.K. Spatial Processes: Models & Applications; Taylor & Francis: Abingdon, UK, 1981. [Google Scholar]
- Kumari, M.; Sarma, K.; Sharma, R. Using Moran’s I and GIS to study the spatial pattern of land surface temperature in relation to land use/cover around a thermal power plant in Singrauli district, Madhya Pradesh, India. Remote Sens. Appl. Soc. Environ. 2019, 15, 100239. [Google Scholar] [CrossRef]
- Austin, E.; Coull, B.A.; Zanobetti, A.; Koutrakis, P. A framework to spatially cluster air pollution monitoring sites in US based on the PM2.5 composition. Environ. Int. 2013, 59, 244–254. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, D.; Xie, X.; Cai, J.; Zhuang, Y.; Cheng, N.; He, B.; Gao, B. Spatial self-aggregation effects and national division of city-level PM2.5 concentrations in China based on spatio-temporal clustering. J. Clean. Prod. 2019, 207, 875–881. [Google Scholar] [CrossRef]
- Govender, P.; Sivakumar, V. Application of k-means and hierarchical clustering techniques for analysis of air pollution: A review (1980–2019). Atmos. Pollut. Res. 2020, 11, 40–56. [Google Scholar] [CrossRef]
- Kahya, C.; Balcik, F.B.; Oztaner, Y.B.; Ozcomak, D.; Seker, D.Z. Spatio-temporal analysis of PM2.5 over Marmara region, Turkey. Fresen. Environ. Bull. 2017, 26, 310–317. [Google Scholar]
- Zhao, S.; Yu, Y.; Yin, D.; He, J.; Liu, N.; Qu, J.; Xiao, J. Annual and diurnal variations of gaseous and particulate pollutants in 31 provincial capital cities based on in situ air quality monitoring data from China National Environmental Monitoring Center. Environ. Int. 2016, 86, 92–106. [Google Scholar] [CrossRef] [PubMed]
- Dabbura, I. K-Means Clustering: Algorithm, Applications, Evaluation Methods, and Drawbacks. 2018. Available online: https://towardsdatascience.com/k-means-clustering-algorithm-applications-evaluation-methods-and-drawbacks-aa03e644b48a (accessed on 20 April 2020).
- WHO. WHO Air Quality Guidelines Global Update 2005; The Regional Office for Europe of the World Health Organization: Copenhagen, Denmark, 2005; p. 278.
- Brook, J.R.; Dann, T.F.; Burnett, R.T. The Relationship Among TSP, PM10, PM2.5, and Inorganic Constituents of Atmospheric Participate Matter at Multiple Canadian Locations. J. Air Waste Manag. Assoc. 1997, 47, 2–19. [Google Scholar] [CrossRef] [Green Version]
- Franzin, B.T.; Guizellini, F.C.; Babos, D.; Hojo, O.; Pastre, I.A.; Marchi, M.R.; Fertonani, F.L.; Oliveira, C. Characterization of atmospheric aerosol (PM10 and PM2.5) from a medium sized city in São Paulo state, Brazil. J. Environ. Sci. 2020, 89, 238–251. [Google Scholar] [CrossRef]
- Yang, X.; Jiang, L.; Zhao, W.; Xiong, Q.; Zhao, W.; Yan, X. Comparison of Ground-Based PM2.5 and PM10 Concentrations in China, India, and the US. Int. J. Environ. Res. Public Health 2018, 15, 1382. [Google Scholar] [CrossRef] [Green Version]
- Omidi Khaniabadi, Y.; Sicard, P.; Omidi Khaniabadi, A.; Mohammadinejad, S.; Keishams, F.; Takdastan, A.; Najafi, A.; De Marco, A.; Daryanoosh, M. Air quality modeling for health risk assessment of ambient PM10, PM2.5 and SO2 in Iran. Hum. Ecol. Risk Assess. 2019, 25, 1298–1310. [Google Scholar] [CrossRef]
- Tao, J.; Gao, J.; Zhang, L.; Zhang, R.; Che, H.; Zhang, Z.; Lin, Z.; Jing, J.; Cao, J.; Hsu, S.-C. PM2.5 pollution in a megacity of southwest China: Source apportionment and implication. Atmos. Meas. Tech. 2014, 14, 8679–8699. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Zhuang, Y.; Wang, Y.; Sun, Y.; Yuan, H.; Zhuang, G.; Hao, Z. Long-term monitoring and source apportionment of PM2.5/PM10 in Beijing, China. J. Environ. Sci. 2008, 20, 1323–1327. [Google Scholar] [CrossRef]
- Bi, X.; Feng, Y.; Wu, J.; Wang, Y.; Zhu, T. Source apportionment of PM10 in six cities of northern China. Atmos. Environ. 2007, 41, 903–912. [Google Scholar] [CrossRef]
- Hu, H. Distribution of China’s population: Accompanying charts and density map. Acta Geogr. Sin. 1935, 2, 33–74. [Google Scholar]
- Qi, W.; Liu, S.; Zhao, M.; Liu, Z. China’s different spatial patterns of population growth based on the “Hu Line”. J. Geogr. Sci. 2016, 26, 1611–1625. [Google Scholar] [CrossRef]
- Central People’s Government of the People’s Republic of China. The Report Released by the National Bureau of Statistics—China’s Urbanization Rate Has Increased Significantly in the Past 70 Years. 2019. Available online: http://www.gov.cn/shuju/2019-08/16/content_5421576.htm (accessed on 31 August 2020).
- Wang, Y.; Li, W.; Gao, W.; Liu, Z.; Tian, S.; Shen, R.; Ji, D.; Wang, S.; Wang, L.; Tang, G.; et al. Trends in particulate matter and its chemical compositions in China from 2013–2017. Sci. China Earth Sci. 2019, 62, 1857–1871. [Google Scholar] [CrossRef]
- Fan, X.; Xu, Y. Convergence on the haze pollution: City-level evidence from China. Atmos. Pollut. Res. 2020, 11, 141–152. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Wang, S.; Zhang, Y.; Xu, X.; Wang, J.; He, H.; Liu, W.; et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Liu, X.; Lang, J.; Zhou, Y.; Wei, L.; Wang, X.; Guo, X. Estimating the contribution of regional transport to PM2.5 air pollution in a rural area on the North China Plain. Sci. Total Environ. 2017, 583, 280–291. [Google Scholar] [CrossRef]
- Hu, W.; Zhao, T.; Bai, Y.; Kong, S.; Xiong, J.; Sun, X.; Lu, H. Importance of regional PM2.5 transport and precipitation washout in heavy air pollution in the Twain-Hu Basin over Central China: Observational analysis and WRF-Chem simulation. Sci. Total Environ. 2021, 758, 143710. [Google Scholar] [CrossRef]
- Li, J.; Ma, X.; Zhang, C. Predicting the spatiotemporal variation in soil wind erosion across Central Asia in response to climate change in the 21st century. Sci. Total Environ. 2020, 709, 136060. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, M.; Zhang, H.; Du, Z. Vegetation and soil wind erosion dynamics of sandstorm control programs in the agro-pastoral transitional zone of northern China. Front. Earth Sci. 2019, 13, 430–443. [Google Scholar] [CrossRef]
- Yan, Y.; Xu, X.; Xin, X.; Yang, G.; Wang, X.; Yan, R.; Chen, B. Effect of vegetation coverage on aeolian dust accumulation in a semiarid steppe of northern China. Catena 2011, 87, 351–356. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Q.; Zhang, Y.; Zheng, B.; Wang, K.; Chen, Y.; He, K. Source contributions of urban PM2.5 in the Beijing–Tianjin–Hebei region: Changes between 2006 and 2013 and relative impacts of emissions and meteorology. Atmos. Environ. 2015, 123, 229–239. [Google Scholar] [CrossRef]
Data | Year | Time Resolution | Spatial Resolution | Source |
---|---|---|---|---|
Air pollution data | 2017 | 1 day | City | China Air Quality Online Monitoring and Analysis Platform (https://www.aqistudy.cn/historydata/, accessed on 1 March 2020) |
PM2.5, PM10 | ||||
Meteorological factors | 2017 | 1 day | Station | China Meteorological Data Network (http://data.cma.cn/, accessed on 7 March 2020) |
Precipitation wind speed | ||||
Vegetation Index | 2017 | 1 year | 1 km × 1 km | Resource and Environment Data Cloud Platform (http://www.resdc.cn/Default.aspx, accessed on 10 January 2020) |
NDVI | ||||
Socioeconomic factors | 2015 | 1 year | 1 km × 1 km | Resource and Environment Data Cloud Platform (http://www.resdc.cn/Default.aspx, accessed on 3 December 2019) |
PD, GDPD, PBUA |
Variables | Min | Max | SD | Mean |
---|---|---|---|---|
PM2.5 (μg/m3) | 10.0 | 84.9 | 14.6 | 41.8 |
PM10 (μg/m3) | 23.3 | 152.9 | 24.1 | 72.3 |
PM2.5/PM10 (%) | 25.7 | 76.1 | 9.4 | 56.5 |
Precipitation (mm) | 52.4 | 2718.4 | 1002.8 | 538.5 |
Wind speed (m/s) | 1.1 | 3.8 | 0.5 | 2.3 |
NDVI | 0.08 | 0.9 | 0.2 | 0.7 |
PD (person/km2) | 0.3 | 4700.5 | 513.5 | 413.0 |
GDPD (10,000 yuan/km2) | 0.2 | 43,032.4 | 4558.6 | 2416.2 |
PBUA (%) | 0 | 38.5 | 3.6 | 1.7 |
Variables | PM2.5 | PM10 | PM2.5/PM10 | ||||||
---|---|---|---|---|---|---|---|---|---|
OLS | SLM | SEM | OLS | SLM | SEM | OLS | SLM | SEM | |
Precipitation | −0.35 *** | −0.14 *** | −0.20 ** | −0.46 *** | −0.19 *** | −0.33 ** | 0.24 *** | 0.16 *** | 0.24 *** |
Wind speed | −0.16 ** | −0.09 * | −0.09 | −0.18 *** | −0.10 ** | −0.12 * | 0.05 | 0.03 | 0.03 |
NDVI | 0.09 * | 0.01 | 0.12 | −0.06 | −0.04 | −0.002 | 0.27 *** | 0.18 *** | 0.26 *** |
log (PD) | 0.75 *** | 0.37 *** | 0.58 *** | 0.70 *** | 0.35 *** | 0.53 *** | 0.23 *** | 0.17 ** | 0.21 *** |
Lagged term | 0.68 *** | 0.67 *** | 0.35 *** | ||||||
constant | 0.10 * | −0.006 | 0.07 | 0.28 *** | 0.07 * | 0.23 *** | 0.16 *** | 0.08 | 0.18 |
Lambda | 0.74 *** | 0.73 *** | 0.37 *** | ||||||
R2 | 0.41 | 0.67 | 0.65 | 0.44 | 0.68 | 0.67 | 0.46 | 0.5 | 0.49 |
Adjusted R2 | 0.4 | 0.43 | 0.45 | ||||||
AIC | −308.25 | −493.7 | −490.05 | −359.79 | −541.27 | −534.7 | −372.26 | −398.28 | −395.75 |
Moran I (residual) | 0.54 | 0.004 | −0.05 | 0.53 | 0.004 | −0.04 | 0.2 | 0.01 | −0.002 |
SD of Moran I (residual) | 14.79 *** | 0.18 | −1.16 | 14.61 *** | 0.20 *** | −1.03 | 5.41 *** | 0.36 | 0.03 |
Variables | PM2.5 | PM10 | ||||||
---|---|---|---|---|---|---|---|---|
G1 | G2 | G3-1 | G3-2 | G1 | G2 | G3-1 | G3-2 | |
Precipitation | −0.45 *** | −0.11 | −0.31 ** | - | −0.50 *** | −0.26 *** | −0.43 *** | - |
Wind speed | −0.25 *** | −0.06 | −0.06 | −0.01 | −0.19 * | −0.25 * | −0.10 | −0.04 |
NDVI | 0.27 ** | 0.22 | - | −0.13 | 0.10 | 0.13 | - | −0.32 *** |
log (PD) | 0.15 | 0.50 *** | 0.36 *** | 0.38 *** | 0.08 | 0.53 *** | 0.33 *** | 0.39 *** |
constant | 0.43 *** | 0.15 | 0.26 ** | 0.18 * | 0.56 *** | 0.45 ** | 0.34 *** | 0.29 *** |
Lambda | 0.55 *** | 0.67 *** | 0.28 | 0.35 * | 0.63 *** | 0.63 *** | 0.29 | 0.24 |
R2 | 0.58 | 0.42 | 0.30 | 0.24 | 0.62 | 0.46 | 0.41 | 0.38 |
AIC | −118.36 | −113.76 | −41.98 | −37.37 | −150.13 | −91.28 | −58.98 | −56.35 |
Moran I (residual) | −0.02 | −0.04 | −0.01 | 0.01 | −0.01 | −0.08 | 0.03 | 0.03 |
SD of Moran I (residual) | −0.11 | −0.44 | 0.30 | 0.26 | −0.06 | −1.15 | 0.49 | 0.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, C.; Liu, M. The Impact of Local Environment and Neighboring Pollution on the Spatial Variation of Particulate Matter in Chinese Mainland. Atmosphere 2023, 14, 186. https://doi.org/10.3390/atmos14010186
Gao C, Liu M. The Impact of Local Environment and Neighboring Pollution on the Spatial Variation of Particulate Matter in Chinese Mainland. Atmosphere. 2023; 14(1):186. https://doi.org/10.3390/atmos14010186
Chicago/Turabian StyleGao, Chanchan, and Min Liu. 2023. "The Impact of Local Environment and Neighboring Pollution on the Spatial Variation of Particulate Matter in Chinese Mainland" Atmosphere 14, no. 1: 186. https://doi.org/10.3390/atmos14010186
APA StyleGao, C., & Liu, M. (2023). The Impact of Local Environment and Neighboring Pollution on the Spatial Variation of Particulate Matter in Chinese Mainland. Atmosphere, 14(1), 186. https://doi.org/10.3390/atmos14010186