Estimating Site-Specific Wind Speeds Using Gridded Data: A Comparison of Multiple Machine Learning Models
Abstract
:1. Introduction
2. Data and Methods
2.1. Data and Samples
2.2. Models
2.3. Training and Validation
3. Results for the Test Dataset
3.1. Regional Averaged Estimation Error
3.2. Spatial Distribution of Estimation Errors
4. Dependence of Estimation Error on Altitude, LUC, and Mean WS10
4.1. Dependence of Estimation Error on Altitude
4.2. Dependence of Estimation Error on LUC
4.3. Dependence of Estimation Error on Mean WS10
5. Conclusions
- (1)
- Overall, the estimation error of WS10 is smaller for summer than for winter for all nine grid-to-site WS10 models;
- (2)
- The DT-based, ML, and DL models that use multiple input variables outperform the traditional LMs that use only gridded WS10;
- (3)
- Among these more elaborate models, the RF, XGBoost, and DCNN perform best;
- (4)
- The DCNN is the overall best model as it performs robustly for sites at different altitudes and with the varying LUCs and local mean WS10, indicating that it can reflect the nonlinear relationships among these variables and WS10.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoolohan, V.; Tomlin, A.S.; Cockerill, T. Improved near surface wind speed predictions using Gaussian process regression combined with numerical weather predictions and observed meteorological data. J. Renew. Energy 2018, 126, 1043–1054. [Google Scholar] [CrossRef]
- Bernier, N.B.; Bélair, S.; Bilodeau, B.; Tong, L. Assimilation and High-Resolution Forecasts of Surface and Near Surface Conditions for the 2010 Vancouver Winter Olympic and Paralympic Games. J. Pure Appl. Geophys. 2014, 171, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Prasanna, V.; Choi, H.W.; Jung, J.; Lee, Y.G.; Kim, B.J. High-Resolution Wind Simulation over Incheon International Airport with the Unified Model’s Rose Nesting Suite from KMA Operational Forecasts. J. Asia-Pacific J. Atmos. Sci. 2018, 54, 187–203. [Google Scholar] [CrossRef]
- Zhang, H.P.; Zhou, X.; Dai, W. A Preliminary on Applicability Analysis of Spatial Interpolation Method. J. Geogr. Geo-Inf. Sci. 2017, 33, 14–18+105. [Google Scholar] [CrossRef]
- Jin, L. A Review of Spatial Interpolation Methods for Environmental Scientists. J. Rec. Geosci. Aust. 2008, 137–145. Available online: https://www.researchgate.net/profile/Jin-Li-74/publication/246546630_A_Review_of_Spatial_Interpolation_Methods_for_Environmental_Scientists/links/56f9ccb408ae95e8b6d40461/A-Review-of-Spatial-Interpolation-Methods-for-Environmental-Scientists.pdf (accessed on 4 January 2023).
- Han, E.; Wen, X.; Wang, B.; Yang, F.; Shen, H.; Zhu, M. The Application of Meteorological Reanalysis Data for Wind Tower Data Interpolation at Complex Mountain Area Wind Farm. J. Jiangxi Sci. 2017, 2, 21–26. Available online: https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFDLAST2017&filename=JSKX201702004&uniplatform=NZKPT&v=2poMa-B8Wa2X96cEEBiIHHHYzhB9QNoty3WRbEIwij288WUWMjGby1jrDD4v1mK_, (accessed on 4 January 2023).
- Du, J.; Peng, L.; Liu, Y.; Pan, L.; Wang, L.; Cao, Y. Combined interpolation model for wind speed measurement missing of wind farm. J. Electr. Power Autom. Equipment 2015, 9, 129–133. Available online: https://en.cnki.com.cn/Article_en/CJFDTOTAL-DLZS201509020.htm (accessed on 4 January 2023).
- Ambach, D.; Croonenbroeck, C. Using the lasso method for space-time short-term wind speed predictions. J. Eprint arXiv 2015. Available online: https://www.esearchgate.net/publication/271447832_Using_the_lasso_method_for_space-time_short-term_wind_speed_predictions (accessed on 4 January 2023).
- Alalami, M.A.; Maalouf, M.; El-Fouly, T. Wind Speed Forecasting Using Kernel Ridge Regression with Different Time Horizons. In Theory and Applications of Time Series Analysis, Selected Contributions from ITISE; Springer: Berlin/Heidelberg, Germany, 2019; pp. 191–203. [Google Scholar] [CrossRef]
- Davy, R.J.; Woods, M.J.; Russell, C.; Coppin, P.A. Statistical Downscaling of Wind Variability from Meteorological Fields. J. Bound. Layer Meteorol. 2010, 135, 161–175. [Google Scholar] [CrossRef]
- Salameh, T.; Drobinski, P.; Vrac, M.; Naveau, P. Statistical downscaling of near-surface wind over complex terrain in southern France. J. Meteorol Atmos. Phys. 2009, 10, 253–265. [Google Scholar] [CrossRef]
- Wilcox, B.; Yip, M.C. SOLAR-GP: Sparse, Online, Locally Adaptive Regression using Gaussian Processes for Bayesian Robot Model Learning and Control. J. IEEE Robot. Autom. Lett. 2020, 5, 2832–2839. Available online: https://www.docin.com/p-2370665226.html (accessed on 4 January 2023). [CrossRef]
- Wang, N.; Pan, M.X.; Huang, J.Q. Nonlinear Model Predictive Control for Turbo-Shaft Engine Based on the Online Sliding Sequence Kernel Extreme Learning Machine. J. Aeroengine. 2018, 5, 48–54. Available online: http://en.cnki.com.cn/Article_en/CJFDTotal-HKFJ201805007.htm (accessed on 4 January 2023).
- Kaur, H.; Pham, N.; Fomel, S. Seismic data interpolation using deep learning with generative adversarial networks. J. Geophys.l Prospecting 2021, 69, 2. [Google Scholar] [CrossRef]
- Leirvik, T.; Yuan, M. A Machine Learning Technique for Spatial Interpolation of Solar Radiation Observations. J. Earth Space Sci. 2021, 8, 527. [Google Scholar] [CrossRef]
- Manucharyan, G.E.; Siegelman, L.; Klein, P. A Deep Learning Approach to Spatiotemporal Sea Surface Height Interpolation and Estimation of Deep Currents in Geostrophic Ocean Turbulence. J. Adv. Modeling Earth Syst. 2021, 13, 965. [Google Scholar] [CrossRef]
- Yatheendradas, S.; Kumar, S. A Novel Machine Learning–Based Gap-Filling of Fine-Resolution Remotely Sensed Snow Cover Fraction Data by Combining Downscaling and Regression. J. Hydrometeorol. 2022, 23, 637–658. Available online: https://journals.ametsoc.org/view/journals/hydr/23/5/JHM-D-20-0111.1.xml (accessed on 4 January 2023).
- Alizamir, M.; Moghadam, M.A.; Monfared, A.H.; Shamsipour, A. Statistical downscaling of global climate model outputs to monthly precipitation via extreme learning machine: A case study. J. Environ. Prog. Sustain. Energy 2018, 37, 1853–1862. [Google Scholar] [CrossRef]
- Dalto, M.; Matusko, J.; Vasak, M. Deep neural networks for ultra-short-term wind forecasting. In Proceedings of the IEEE International Conference on Industrial Technology, Seville, Spain, 17–19 March 2015. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Chen, C.; Gan, M.; Chen, L. Predictive deep Boltzmann machine for multiperiod wind speed forecasting. J. IEEE Transac. Sustain. Energy 2015, 6, 1416–1425. [Google Scholar] [CrossRef]
- Wang, J.; Yang, Z. Ultra-short-term wind speed forecasting using an optimized artificial intelligence algorithm. J. Renew. Energy 2021, 171, 5. [Google Scholar] [CrossRef]
- Niu, D.; Sun, L.; Yu, M.; Wang, K. Point and Interval Forecasting of Ultra-Short-Term Wind Power Based on Data-Driven Method and Hybrid Deep Learning Model. J. Soc. Sci. Electron. Publishing 2022, 254, 124384. [Google Scholar] [CrossRef]
- Giorgi, M.; Russo, M.G.; Ficarella, A. Short-term wind forecasting using artificial neural networks (ANNs). J. WIT Transac. Ecol. Environ. 2009, 121, 12. Available online: https://www.witpress.com/elibrary/wit-transactions-on-ecology-and-the-environment/121/20242 (accessed on 4 January 2023).
- Qiaomu, Z.; Jinfu, C.; Lin, Z.; Duan, X.; Liu, Y. Wind Speed Prediction with Spatio–Temporal Correlation: A Deep Learning Approach. J. Energ. 2018, 11, 705. Available online: https://ideas.repec.org/a/gam/jeners/v11y2018i4p705-d137311.html (accessed on 4 January 2023).
- Li, H.; Wang, J.; Lu, H.; Guo, Z. Research and application of a combined model based on variable weight for short term wind speed forecasting. J. Renew. Energy 2018, 116, 669–684. [Google Scholar] [CrossRef]
- Zhou, C.; Haochen, L.I.; Chen, Y.U. A station-data-based model residual machine learning method for fine-grained meteorological grid prediction. J. Appl. Math. Mechanics 2022, 43, 12. [Google Scholar] [CrossRef]
- Saeed, A.; Li, C.; Gan, Z.; Xie, Y.; Liu, F. A simple approach for short-term wind speed interval prediction based on independently recurrent neural networks and error probability distribution. J. Energy 2022, 238, 122012. [Google Scholar] [CrossRef]
- Salcedo-Sanz, S.; Pérez-Bellido, M.; Ortiz-García, E.G.; Portilla-Figueras, A.; Prieto, L.; Paredes, D. Hybridizing the fifth-generation mesoscale model with artificial neural networks for short-term wind speed prediction. J. Renew. Energy 2009, 34, 1451–1457. [Google Scholar] [CrossRef]
- Nian, L.; Zhongwei, Y.; Xuan, T.; Jiang, J.; Haochen, L.; Jiangjiang, X.; Xiao, L.; Rui, R.; Yi, F. Meshless Surface Wind Speed Field Reconstruction based on Machine Learning. J. Adv. Atmos. Phys. 2022, 39, 1721–1733. [Google Scholar] [CrossRef]
- Oh, M.; Lee, J.; Kim, J.; Kim, H. Machine learning-based statistical downscaling of wind resource maps using multi-resolution topographical data. Wind. Energy 2022, 25, 1121–1141. [Google Scholar] [CrossRef]
- Veronesi, F.; Grassi, S.; Raubal, M. Statistical learning approach for wind resource assessment. J. Renew. Sustain. Energy Rev. 2016, 56, 836–850. [Google Scholar] [CrossRef]
- Koo, J.; Han, G.D.; Choi, H.J.; Shim, J.H. Wind-speed prediction and analysis based on geological and distance variables using an artificial neural network: A case study in South Korea. J. Energy 2015, 93, 1296–1302. [Google Scholar] [CrossRef]
- Barati, H.; Haroonabadi, H.; Zadehali, R. Wind speed forecasting in South Coasts of Iran: An Application of Artificial Neural Networks (ANNs) for Electricity Generation using Renewable Energy. J. Bull. Environ. Pharmacol. Life Sci. 2013, 2, 37–39. Available online: https://bepls.com/may_2013/4.pdf (accessed on 4 January 2023).
- Wu, Y.; Huang, S.X.; Chen, Y.J.Z. Application of machine learning in forecasting maximum wind speed of typhoon in Guangxi. J. Meteorol. Res. Appl. 2021, 42, 26–31. [Google Scholar] [CrossRef]
- Zhang, Z.; Ye, L.; Qin, H.; Liu, Y.; Wang, C.; Yu, X.; Yin, X.; Li, J. Wind speed prediction method using Shared Weight Long Short-Term Memory Network and Gaussian Process Regression. J. Appl. Energy 2019, 247, 270–284. Available online: https://ideas.repec.org/a/eee/appene/v247y2019icp270-284.html (accessed on 4 January 2023). [CrossRef]
- Wu, J.; Zha, J.; Zhao, D. Evaluating the effects of land use and cover change on the decrease of surface wind speed over China in recent 30 years using a statistical downscaling method. J. Clim. Dyn. 2017, 48, 131–149. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Zhang, T.; Wang, W.; Liu, Y.; Zeng, D.; Li, Y. Impacts of Land-use Data on the Simulation of 10 m Wind Speed in Northwest China. J. Arid Meteorol. 2018, 3, 60–67. Available online: http://en.cnki.com.cn/Article_en/CJFDTOTAL-GSQX201803007.htm (accessed on 4 January 2023).
- Li, Y.; Chen, Y.; Li, Z. Effects of land use and cover change on surface wind speed in China. J. Arid Land 2019, 11, 345–356. Available online: https://d.wanfangdata.com.cn/periodical/ghqkx201903003 (accessed on 4 January 2023). [CrossRef] [Green Version]
- Ngo, T.; Letchford, C. A comparison of topographic effects on gust wind speed. J. Wind Eng. Ind. Aerodyn. 2008, 96, 2273–2293. [Google Scholar] [CrossRef]
- Zurański, J.A. Orographic effects on strong winds in Poland. J. Wind Eng. Ind. Aerodyn. 1992, 41, 417–426. [Google Scholar] [CrossRef]
- Zhang, Z.B.; Yang, Y.; Zhang, X.P.; Chen, Z. Wind speed changes and its influencing factors in Southwestern China. J. Acta Ecol. Sin. 2014, 34, 471–481. [Google Scholar] [CrossRef]
- Fu, C.; Yu, J.; Zhang, Y.; Hu, S.; Ouyang, R.; Liu, W. Temporal variation of wind speed in China for 1961–2007. J. Theor. Appl. Climatol. 2011, 104, 313–324. [Google Scholar] [CrossRef]
- Bilbao, I.; Bilbao, J.; Feniser, C. Adopting Some Good Practices to Avoid Overfitting in the Use of Machine Learning. J. World Sci. Eng. Acad. Soc. 2018, 17, 274–279. Available online: https://www.nstl.gov.cn/paper_detail.html?id=e2d7403ba73d508a6f86a2decba5b64d (accessed on 4 January 2023).
- Hoerl, A.; Kennard, R. Ridge Regression: Biased Estimation for Nonorthogonal Problems. J. Technometrics 1970, 12, 5–67. [Google Scholar] [CrossRef]
- Hans, C. Bayesian lasso regression. J. Biometrika 2009, 96, 835–845. Available online: https://ideas.repec.org/a/oup/biomet/v96y2009i4p835-845.html (accessed on 4 January 2023). [CrossRef]
- Breiman, L.I.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees. Wadsworth. J. Biom. 1984, 40, 358. Available online: https://www.docin.com/p-1798845890.html (accessed on 4 January 2023).
- Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random Forest: A classification and regression tool for compound classification and QSAR modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947–1958. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar] [CrossRef] [Green Version]
- Bauer, E.; Kohavi, R. An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. J. Mach. Learn. 1999, 36, 105–139. Available online: https://link.springer.com/article/10.1023/A:1007515423169 (accessed on 4 January 2023). [CrossRef]
- Wang, A.; Xu, L.; Li, Y.; Xing, J.; Chen, X.; Liu, K.; Liang, Y.; Zhou, Z. Random-forest based adjusting method for wind forecast of WRF model. J. Comput. Geosci. 2021, 1–2, 104842. [Google Scholar] [CrossRef]
- Pooja, V.R.; Farzana, B.S.; Saranya, M.; Vanathi, B. Wind speed prediction using tree ensemble. J. IJARIIT 2018, 4, 2454-132X. Available online: https://www.ijariit.com/manuscripts/v4i2/V4I2-1843.pdf (accessed on 4 January 2023).
- Kim, T.; Adali, T. Fully Complex Multi-Layer Perceptron Network for Nonlinear Signal Processing. J. Signal Process. Syst. 2002, 32, 29–43. Available online: https://link.springer.com/article/10.1023/A%3A1016359216961 (accessed on 4 January 2023).
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. Available online: https://www.jmlr.org/papers/v15/srivastava14a.html (accessed on 4 January 2023).
- Zhu, F.; Li, X.; Qin, J.; Yang, K.; Cuo, L.; Tang, W.; Shen, C. Integration of Multisource Data to Estimate Downward Longwave Radiation Based on Deep Neural Networks. IEEE Trans. Geosci. Remote. Sens. 2021, 60, 4103015. [Google Scholar] [CrossRef]
- Yang, X. An Overview of the Attention Mechanisms in Computer Vision. J. Phys. Conf. Ser. 2020, 1693, 012173. Available online: https://iopscience.iop.org/article/10.1088/1742-6596/1693/1/012173 (accessed on 4 January 2023). [CrossRef]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. Available online: https://arxiv.org/pdf/1608.06993.pdf (accessed on 4 January 2023).
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. Cbam: Convolutional Block Attention Module. In Proceedings of the European Conference on Computer Vision (ECCV); Springer: Cham, Switzerland, 2018; pp. 3–19. [Google Scholar] [CrossRef]
- Gong, X.; Zhu, R.; Chen, L. Characteristics of Near Surface Winds over Different Underlying Surfaces in China: Implications for Wind Power Development. J. Meteorol. Res. 2019, 33, 349–362. Available online: http://qikan.cqvip.com/Qikan/Article/Detail?id=7001971633 (accessed on 4 January 2023). [CrossRef]
- Meng, X.; Guo, J.; Han, Y.; Yongqing, H. Preliminarily assessment of ERA5 reanalysis data. J. Mar. Meteorol. 2018, 1, 94–102. [Google Scholar] [CrossRef]
- Wang, G.; Wang, X.; Wang, H.; Hou, M.; Li, Y.; Fan, W.; Liu, Y. Evaluation on monthly sea surface wind speed of four reanalysis data sets over the China seas after 1988. Acta Oceanol. Sin. 2020, 39, 83–90. [Google Scholar] [CrossRef]
- Feng, J.; Huang, X.; Li, Y. Improving Surface Wind Speed Forecasts Using an Offline Surface Multilayer Model with Optimal Ground Forcing. J. Adv. Model. Earth Syst. 2022, 14, 10. [Google Scholar] [CrossRef]
Type | Linear Interpolation | Regression Models | Tree Models | Deep Learning Models |
---|---|---|---|---|
Name | Nearest Bilinear | Ridge Lasso | Decision Tree Random Forest XGboost | MLP DCNN |
Dataset | Training | Validation | Testing | |||||
---|---|---|---|---|---|---|---|---|
Summer | Winter | Summer | Winter | Summer | Winter | |||
Year | 2019 | 2020 | 2019 | 2020 | 2020 | 2021 | 2020 | 2021 |
Month | 6, 7, 8 | 6 | 12 | 1, 2, 12 | 7 | 1 | 8 | 2 |
Num. of times | 976 | 976 | 248 | 248 | 248 | 224 | ||
Num. of samples | 2.05 m | 2.05 m | 0.52 m | 0.52 m | 0.52 m | 0.47 m |
Area | South China | Northeast China | North China | |||
---|---|---|---|---|---|---|
Summer | Winter | Summer | Winter | Summer | Winter | |
Nearest | 1.45 | 1.36 | 1.35 | 1.55 | 1.40 | 1.59 |
Linear | 1.43 | 1.34 | 1.34 | 1.55 | 1.38 | 1.57 |
Ridge | 1.20 | 1.20 | 1.10 | 1.40 | 1.14 | 1.43 |
Lasso | 1.22 | 1.20 | 1.10 | 1.40 | 1.15 | 1.42 |
Decision Tree | 1.16 | 1.12 | 1.10 | 1.33 | 1.14 | 1.40 |
Random Forest | 1.06 | 1.02 | 1.00 | 1.20 | 1.05 | 1.26 |
XGboost | 1.08 | 1.06 | 0.99 | 1.24 | 1.04 | 1.29 |
MLP | 1.14 | 1.10 | 1.05 | 1.34 | 1.11 | 1.37 |
DCNN | 1.04 | 1.02 | 0.99 | 1.18 | 1.03 | 1.24 |
Num. of sites | 911 | 1018 | 173 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, J.; Feng, J.; Zhou, X.; Li, Y.; Zhu, F. Estimating Site-Specific Wind Speeds Using Gridded Data: A Comparison of Multiple Machine Learning Models. Atmosphere 2023, 14, 142. https://doi.org/10.3390/atmos14010142
Zhou J, Feng J, Zhou X, Li Y, Zhu F. Estimating Site-Specific Wind Speeds Using Gridded Data: A Comparison of Multiple Machine Learning Models. Atmosphere. 2023; 14(1):142. https://doi.org/10.3390/atmos14010142
Chicago/Turabian StyleZhou, Jintao, Jin Feng, Xin Zhou, Yang Li, and Fuxin Zhu. 2023. "Estimating Site-Specific Wind Speeds Using Gridded Data: A Comparison of Multiple Machine Learning Models" Atmosphere 14, no. 1: 142. https://doi.org/10.3390/atmos14010142
APA StyleZhou, J., Feng, J., Zhou, X., Li, Y., & Zhu, F. (2023). Estimating Site-Specific Wind Speeds Using Gridded Data: A Comparison of Multiple Machine Learning Models. Atmosphere, 14(1), 142. https://doi.org/10.3390/atmos14010142