Estimation of the Number of Sprites Observed over Japan in 5.5 Years Using Lightning Data
Abstract
:1. Introduction
2. Sprite Observations in Japan over 5.5 Years
3. Estimation of the Number of Sprites
3.1. Sprite Number Estimation Model
3.2. Result for the Number of Estimated Sprites
4. Improving the Sprite Number Estimation Model
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASCA | Aoyama Gakuin University Sprite Camera |
CMC | Charge moment change |
EUCLID | European Cooperation for Lightning Detection |
JLDN | Japanese Lightning Detection Network |
iCMC | Impulse charge moment change |
IRI | International Reference Ionosphere |
NLDN | National Lightning Detection Network |
NRLMSISE | Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Exosphere |
+CG | Positive cloud-to-ground discharge |
URSI | International Union of Radio Science |
WWLLN | World Wide Lightning Location Network |
References
- Pasko, V.P.; Stanley, M.A.; Mathews, J.D.; Inan, U.S.; Wood, T.G. Electrical discharge from a thundercloud top to the lower ionosphere. Nature 2002, 416, 152–154. [Google Scholar] [CrossRef] [PubMed]
- Chou, J.; Kuo, C.L.; Tsai, L.; Chen, A.; Su, H.; Hsu, R.; Cummer, S.; Li, J.; Frey, H.; Mende, S.; et al. Gigantic jets with negative and positive polarity streamers. J. Geophys. Res. Space Phys. 2010, 115, A00E45. [Google Scholar] [CrossRef] [Green Version]
- Soula, S.; van der Velde, O.; Montanya, J.; Huet, P.; Barthe, C.; Bór, J. Gigantic jets produced by an isolated tropical thunderstorm near Réunion Island. J. Geophys. Res. 2011, 116, D19103. [Google Scholar] [CrossRef] [Green Version]
- Pasko, V.P.; Inan, U.S.; Taranenko, Y.N.; Bell, T.F. Heating, ionization and upward discharges in the mesosphere, due to intense quasi-electrostatic thundercloud fields. Geophys. Res. Lett. 1995, 22, 365–368. [Google Scholar] [CrossRef]
- Pasko, V.; Inan, U.; Bell, T.; Taranenko, Y.N. Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. J. Geophys. Res. Space Phys. 1997, 102, 4529–4561. [Google Scholar] [CrossRef]
- Hu, W.; Cummer, S.A.; Lyons, W.A.; Nelson, T.E. Lightning charge moment changes for the initiation of sprites. Geophys. Res. Lett. 2002, 29, 120–121. [Google Scholar] [CrossRef] [Green Version]
- Hobara, Y.; Iwasaki, N.; Hayashida, T.; Hayakawa, M.; Ohta, K.; Fukunishi, H. Interrelation between ELF transients and ionospheric disturbances in association with sprites and elves. Geophys. Res. Lett. 2001, 28, 935–938. [Google Scholar] [CrossRef]
- Hayakawa, M.; Nakamura, T.; Hobara, Y.; Williams, E. Observation of sprites over the Sea of Japan and conditions for lightning-induced sprites in winter. J. Geophys. Res. 2004, 109, A01312. [Google Scholar] [CrossRef]
- Cummer, S.A.; Lyons, W.A. Implications of lightning charge moment changes for sprite initiation. J. Geophys. Res. Space Phys. 2005, 110, A04304. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Celestin, S.; Pasko, V.P. Dependence of positive and negative sprite morphology on lightning characteristics and upper atmospheric ambient conditions. J. Geophys. Res. Space Phys. 2013, 118, 2623–2638. [Google Scholar] [CrossRef]
- Asano, T.; Hayakawa, M.; Cho, M.; Suzuki, T. Computer simulations on the initiation and morphological difference of Japan winter and summer sprites. J. Geophys. Res. Space Phys. 2008, 113, A02308. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, T.; Hayakawa, M. Characteristics of Mesopheric Sprites in the Hokuriku Area and their Causative Lightning Discharges. IEEJ Trans. Power Energy 2004, 124, 1012–1020. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.; Hayakawa, M.; Matsudo, Y.; Michimoto, K. How do winter thundercloud systems generate sprite-inducing lightning in the Hokuriku area of Japan? Geophys. Res. Lett. 2006, 33, L10806. [Google Scholar] [CrossRef]
- Brook, M.; Nakano, M.; Krehbiel, P.; Takeuti, T. The electrical structure of the hokuriku winter thunderstorms. J. Geophys. Res. 1982, 87, 1207. [Google Scholar] [CrossRef]
- Stanley, M.; Brook, M.; Krehbiel, P.; Cummer, S.A. Detection of daytime sprites via a unique sprite ELF signature. Geophys. Res. Lett. 2000, 27, 871–874. [Google Scholar] [CrossRef] [Green Version]
- Evtushenko, A.; Ilin, N.; Svechnikova, E. Parameterization and global distribution of sprites based on the WWLLN data. Atmos. Res. 2022, 276, 106272. [Google Scholar] [CrossRef]
- Abarca, S.F.; Corbosiero, K.L.; Galarneau, T.J., Jr. An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J. Geophys. Res. 2010, 115, D18206. [Google Scholar] [CrossRef]
- Connaughton, V.; Briggs, M.; Holzworth, R.; Hutchins, M.; Fishman, G.; Wilson-Hodge, C.; Chaplin, V.; Bhat, P.; Greiner, J.; Von Kienlin, A.; et al. Associations between Fermi Gamma-ray Burst Monitor terrestrial gamma ray flashes and sferics from the World Wide Lightning Location Network. J. Geophys. Res. Space Phys. 2010, 115, A12307. [Google Scholar] [CrossRef]
- Holzworth, R.; McCarthy, M.; Brundell, J.; Jacobson, A.; Rodger, C. Global Distribution of Superbolts. J. Geophys. Res. Atmos. 2019, 124, 9996–10005. [Google Scholar] [CrossRef] [Green Version]
- Hutchins, M.L.; Holzworth, R.H.; Rodger, C.J.; Brundell, J.B. Far-Field Power of Lightning Strokes as Measured by the World Wide Lightning Location Network. J. Atmos. Ocean. Technol. 2012, 29, 1102–1110. [Google Scholar] [CrossRef]
- Lu, G.; Cummer, S.A.; Blakeslee, R.J.; Weiss, S.; Beasley, W.H. Lightning morphology and impulse charge moment change of high peak current negative strokes. J. Geophys. Res. Atmos. 2012, 117, D04212. [Google Scholar] [CrossRef] [Green Version]
- Cummer, S.A.; Lyons, W.A.; Stanley, M.A. Three years of lightning impulse charge moment change measurements in the United States. J. Geophys. Res. Atmos. 2013, 118, 5176–5189. [Google Scholar] [CrossRef]
- Lu, G.; Cummer, S.A.; Chen, A.B.; Lyu, F.; Li, D.; Liu, F.; Hsu, R.R.; Su, H.T. Analysis of lightning strokes associated with sprites observed by ISUAL in the vicinity of North America. Terr. Atmos. Ocean. Sci. 2017, 28, 583–595. [Google Scholar] [CrossRef] [Green Version]
- Zajac, B.A.; Rutledge, S.A. Cloud-to-ground lightning activity in the contiguous United States from 1995 to 1999. Mon. Weather. Rev. 2001, 129, 999–1019. [Google Scholar] [CrossRef]
- Sugita, A.; Matsui, M. Lightning characteristics in Japan observed by the JLDN from 2001 to 2010. In Proceedings of the 22nd International Lightning Detection Conference, Broomfield, CO, USA, 2–5 April 2012; pp. 2–3. [Google Scholar]
- Qin, J.; Celestin, S.; Pasko, V.P. Minimum charge moment change in positive and negative cloud to ground lightning discharges producing sprites. Geophys. Res. Lett. 2012, 39, L22801. [Google Scholar] [CrossRef]
- Lu, G.; Cummer, S.A.; Li, J.; Zigoneanu, L.; Lyons, W.A.; Stanley, M.A.; Rison, W.; Krehbiel, P.R.; Edens, H.E.; Thomas, R.J.; et al. Coordinated observations of sprites and in-cloud lightning flash structure. J. Geophys. Res. Atmos. 2013, 118, 6607–6632. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.B.C.; Chen, H.; Chuang, C.W.; Cummer, S.A.; Lu, G.; Fang, H.K.; Su, H.T.; Hsu, R.R. On negative Sprites and the Polarity Paradox. Geophys. Res. Lett. 2019, 46, 9370–9378. [Google Scholar] [CrossRef]
- Papadopoulos, K.; Milikh, G.; Gurevich, A.; Drobot, A.; Shanny, R. Ionization rates for atmospheric and ionospheric breakdown. J. Geophys. Res. 1993, 98, 17593. [Google Scholar] [CrossRef]
- Bilitza, D.; Altadill, D.; Zhang, Y.; Mertens, C.; Truhlik, V.; Richards, P.; McKinnell, L.A.; Reinisch, B. The International Reference Ionosphere 2012—A model of international collaboration. J. Space Weather Space Clim. 2014, 4, A07. [Google Scholar] [CrossRef]
- Picone, J.; Hedin, A.; Drob, D.P.; Aikin, A. NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues. J. Geophys. Res. Space Phys. 2002, 107, 1468. [Google Scholar] [CrossRef]
- Takahashi, T. Riming electrification as a charge generation mechanism in thunderstorms. J. Atmos. Sci. 1978, 35, 1536–1548. [Google Scholar] [CrossRef]
- Takahashi, T. Thunderstorm electrification—A numerical study. J. Atmos. Sci. 1984, 41, 2541–2558. [Google Scholar] [CrossRef]
- Michimoto, K. A Study of Radar Echoes and their Relation to Lightning Discharges of Thunderclouds in the Hokuriku District. J. Meteorol. Soc. Japan Ser. II 1993, 71, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Myokei, K.; Matsudo, Y.; Asano, T.; Sekiguchi, M.; Suzuki, T.; Hobara, Y.; Hayakawa, M. Morphology of winter sprites in the Hokuriku area of Japan: Monthly variation and dependence on air temperature. J. Atmos. Electr. 2009, 29, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Hutchins, M.; Holzworth, R.; Brundell, J.; Rodger, C. Relative detection efficiency of the World Wide Lightning Location Network. Radio Sci. 2012, 47, RS6005. [Google Scholar] [CrossRef]
- Fan, P.; Zheng, D.; Zhang, Y.; Gu, S.; Zhang, W.; Yao, W.; Yan, B.; Xu, Y. A Performance Evaluation of the World Wide Lightning Location Network (WWLLN) over the Tibetan Plateau. J. Atmos. Ocean. Technol. 2018, 35, 927–939. [Google Scholar] [CrossRef]
Case A: no condition | 0.86 | 0.73 | 0.16 | 0.25 |
Case B: , and N | 0.85 | 0.72 | 0.76 | 0.64 |
Case C: | 0.83 | 0.70 | 0.77 | 0.59 |
UTC | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
8:00 | 620.14 | 588.16 | 514.62 | 418.11 | 345.20 | 311.20 | 308.57 | 348.48 | 418.9 | 509.13 | 570.07 | 608.81 |
9:00 | 447.12 | 420.41 | 368.00 | 302.63 | 257.69 | 230.52 | 228.07 | 252.82 | 303.55 | 360.84 | 407.19 | 439.40 |
10:00 | 192.46 | 184.32 | 166.75 | 143.35 | 131.27 | 132.55 | 127.45 | 122.99 | 139.63 | 163.12 | 178.39 | 190.58 |
11:00–19:00 | 118.58 | 120.12 | 123.62 | 127.42 | 131.27 | 132.55 | 127.45 | 116.16 | 115.35 | 113.69 | 112.46 | 113.82 |
20:00 | 196.34 | 188.46 | 169.62 | 143.35 | 131.27 | 132.55 | 127.45 | 122.99 | 145.7 | 163.12 | 182.27 | 193.23 |
21:00 | 451.01 | 424.56 | 373.75 | 306.61 | 257.69 | 230.52 | 228.07 | 259.65 | 303.55 | 365.78 | 414.95 | 444.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, M.; Sakamoto, T. Estimation of the Number of Sprites Observed over Japan in 5.5 Years Using Lightning Data. Atmosphere 2023, 14, 105. https://doi.org/10.3390/atmos14010105
Duan M, Sakamoto T. Estimation of the Number of Sprites Observed over Japan in 5.5 Years Using Lightning Data. Atmosphere. 2023; 14(1):105. https://doi.org/10.3390/atmos14010105
Chicago/Turabian StyleDuan, Maomao, and Takanori Sakamoto. 2023. "Estimation of the Number of Sprites Observed over Japan in 5.5 Years Using Lightning Data" Atmosphere 14, no. 1: 105. https://doi.org/10.3390/atmos14010105
APA StyleDuan, M., & Sakamoto, T. (2023). Estimation of the Number of Sprites Observed over Japan in 5.5 Years Using Lightning Data. Atmosphere, 14(1), 105. https://doi.org/10.3390/atmos14010105