Increasing Wind Speeds Fuel the Wider Spreading of Pollution Caused by Fires over the IGP Region during the Indian Post-Monsoon Season
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Analysis of Satellite Datasets
3. Results and Discussions
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saikawa, E.; Panday, A.; Kang, S.; Gautam, R.; Zusman, E.; Cong, Z.; Somanathan, E.; Adhikary, B. Air Pollution in the Hindu Kush Himalaya. In The Hindu Kush Himalaya Assessment: Mountains, Climate Change, Sustainability and People; Wester, P., Mishra, A., Mukherji, A., Shrestha, A.B., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 339–387. [Google Scholar] [CrossRef]
- Lee, W.-S.; Bhawar, R.L.; Kim, M.-K.; Sang, J. Study of aerosol effect on accelerated snow melting over the Tibetan Plateau during boreal spring, 2013. Atmos. Environ. 2013, 75, 113–122. [Google Scholar] [CrossRef]
- Rahul, P.R.C.; Bhawar, R.L.; Ayantika, D.C.; Panicker, A.S.; Safai, P.D.; Tharaprabhakaran, V.; Padmakumari, B.; Raju, M.P. Double blanket effect caused by two layers of black carbon aerosols escalates warming in the Brahmaputra River Valley. Sci. Rep. 2014, 4, 3670. [Google Scholar] [CrossRef] [PubMed]
- Taylor, D. Biomass burning, humans and climate change in Southeast Asia. Biodivers. Conserv. 2010, 19, 1025–1042. [Google Scholar] [CrossRef]
- Jethva, H.; Chand, D.; Torres, O.; Gupta, P.; Lyapustin, A.; Patadia, F. Agricultural Burning and Air Quality over Northern India: A Synergistic Analysis using NASA’s A-train Satellite Data and Ground Measurements. Aerosol Air Qual. Res. 2018, 18, 1756–1773. [Google Scholar] [CrossRef]
- Vaishya, A.; Singh, P.; Rastogi, S.; Babu, S.S. Aerosol black carbon quantification in the central Indo-Gangetic Plain: Seasonal heterogeneity and source apportionment. Atmos. Res. 2017, 185, 13–21. [Google Scholar] [CrossRef]
- Vadrevu, K.P.; Csiszar, I.; Ellicott, E.; Giglio, L.; Badarinath, K.V.S.; Vermote, E.; Justice, C. Hotspot analysis of vegetation fires and intensity in the Indian region. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 224–238. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Kumar, S.; Sharma, D.; Singh, R.P.; Kharol, S.K.; Sharma, M.; Singh, A.K.; Singh, S.; Singh, A.; Singh, D. Effects of crop residue burning on aerosol properties, plume characteristics, and long-range transport over northern India. J. Geophys. Res. 2014, 119, 5424–5444. [Google Scholar] [CrossRef]
- Vermote, E.; Ellicott, E.; Dubovik, O.; Lapyonok, T.; Chin, M.; Giglio, L.; Roberts, G.J. An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power. J. Geophys. Res. 2009, 114, D18205. [Google Scholar] [CrossRef]
- Jacobson, M.Z. Effects of biomass burning on climate, accounting for heat and moisture fluxes, black and brown carbon, and cloud absorption effects. J. Geophys. Res. Atmos. 2014, 119, 8980–9002. [Google Scholar] [CrossRef]
- Garrett, T.J.; Avey, L.; Palmer, P.I.; Stohl, A.; Neuman, J.A.; Brock, C.A.; Holloway, J.S. Quantifying wet scavenging processes in aircraft observations of nitric acid and cloud condensation nuclei. J. Geophys. Res. 2006, 111, D23S51. [Google Scholar] [CrossRef]
- Ramanathan, V.; Carmichael, G.R. Global and regional climate changes due to black carbon. Nature 2008, 1, 221–227. [Google Scholar]
- Fujii, Y.; Kawamoto, H.; Tohno, S.; Oda, M.; Iriana, W.; Lestari, P. Characteristics of carbonaceous aerosols emitted from peatland fire in Riau, Sumatra, Indonesia (2): Identification of organic compounds. Atmos. Environ. 2015, 110, 1–7. [Google Scholar] [CrossRef]
- Zhao, C.; Garrett, T.J. Effects of Arctic haze on surface cloud radiative forcing. Geophys. Res. Lett. 2015, 42, 557–564. [Google Scholar] [CrossRef]
- Grandey, B.S.; Lee, H.-H.; Wang, C. Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires. Atmospheric Chem. Phys. 2016, 16, 14495–14513. [Google Scholar] [CrossRef]
- Zhao, H.; Che, H.; Xia, X.; Wang, Y.; Wang, H.; Wang, P.; Ma, Y.; Yang, H.; Liu, Y.; Wang, Y.; et al. Multiyear Ground-Based Measurements of Aerosol Optical Properties and Direct Radiative Effect over Different Surface Types in Northeastern China. J. Geophys. Res. Atmos. 2018, 123, 13887–13916. [Google Scholar] [CrossRef]
- Crippa, P.; Castruccio, S.; Archer-Nicholls, S.; Lebron, G.B.; Kuwata, M.; Thota, A.; Sumin, S.; Butt, E.; Wiedinmyer, C.; Spracklen, D.V. Population exposure to hazardous air quality due to the 2015 fires in Equatorial Asia. Sci. Rep. 2016, 6, 37074. [Google Scholar] [CrossRef] [PubMed]
- Badarinath, K.V.S.; Kumar Kharol, S.; Rani Sharma, A. Long-range transport of aerosols from agriculture crop residue burning in Indo-Gangetic Plains-A study using LIDAR, ground measurements and satellite data. J. Atmos. Sol. Terr. Phys. 2009, 71, 112–120. [Google Scholar] [CrossRef]
- Bhawar, R.L.; Fadnavis, S.; Kumar, V.; Rahul, P.R.C.; Sinha, T.; Lolli, S. Radiative Impacts of Aerosols During COVID-19 Lockdown Period Over the Indian Region. Front. Environ. Sci. 2021, 9, 746090. [Google Scholar] [CrossRef]
- Ito, A.; Penner, J.E. Global estimates of biomass burning emissions based on satellite imagery for the year 2000. J. Geophys. Res. 2004, 109, D14S05. [Google Scholar] [CrossRef]
- Mitchell, R.M.; O’Brien, D.M.; Campbell, S.K. Characteristics and radiative impact of the aerosol generated by the Canberra firestorm of January 2003. J. Geophys. Res. 2006, 111, D02204. [Google Scholar] [CrossRef] [Green Version]
- Jethva, H.; Torres, O.; Field, R.D.; Lyapustin, A.; Gautam, R.; Kayetha, V. Connecting Crop Productivity, Residue Fires, and Air Quality over Northern India. Sci. Rep. 2019, 9, 16594. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, K.; Safai, P.D.; Devara, P.C.S.; Rao, S.V.B.; Jayasankar, C.K. Effects of agriculture crop residue burning on aerosol properties and long-range transport over northern India: A study using satellite data and model simulations. Atmos. Res. 2016, 178–179, 155–163. [Google Scholar] [CrossRef]
- Jethva, H.; Torres, O. Satellite-based evidence of wavelength-dependent aerosol absorption in biomass burning smoke inferred from Ozone Monitoring Instrument. Atmospheric Chem. Phys. 2011, 11, 10541–10551. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanre, D.; Remer, L.; Vermote, E.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. Atmos. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanré, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.-R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Shaik, D.S.; Kant, Y.; Mitra, D.; Singh, A.; Chandola, H.C.; Sateesh, M.; Babu, S.S.; Chauhan, P. Impact of biomass burning on regional aerosol optical properties: A case study over northern India. J. Environ. Manag. 2019, 244, 328–343. [Google Scholar] [CrossRef] [PubMed]
- Torres, O.; Chen, Z.; Jethva, H.; Ahn, C.; Freitas, S.R.; Bhartia, P.K. OMI and MODIS observations of the anomalous 2008-2009 Southern Hemisphere biomass burning seasons, Atmos. Chem. Phys. Discuss. 2010, 10, 3505–3513. [Google Scholar] [CrossRef]
- Sahu, L.K.; Sheel, V.; Pandey, K.; Yadav, R.; Saxena, P.; Gunthe, S. Regional biomass burning trends in India: Analysis of satellite fire data. J. Earth Syst. Sci. 2015, 124, 1377–1387. [Google Scholar] [CrossRef]
- Roberts, G.; Wooster, M.J.; Lagoudakis, E. Annual and diurnal african biomass burning temporal dynamics. Biogeosciences 2009, 6, 849–866. [Google Scholar] [CrossRef]
- Shyamsundar, P.; Springer, N.P.; Tallis, H.; Polasky, S.; Jat, M.L.; Sidhu, H.S.; Krishnapriya, P.P.; Skiba, N.; Ginn, W.; Ahuja, V.; et al. Fields on fire: Alternatives to crop residue burning in India. Science 2019, 6453, 536–538. [Google Scholar] [CrossRef] [PubMed]
- Vautard, R.; Cattiaux, J.; You, P.; Thépaut, J.N.; Ciais, P. Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci. 2010, 3, 756–761. [Google Scholar] [CrossRef]
- Zeng, Z.; Ziegler, A.D.; Searchinger, T.; Yang, L.; Chen, A.; Ju, K.; Piao, S.; Li, L.Z.X.; Ciais, P.; Chen, D.; et al. A reversal in global terrestrial stilling and its implications for wind energy production. Nat. Clim. Chang. 2019, 9, 979–985. [Google Scholar] [CrossRef]
October | 50–60 | 60–70 | 70–80 | 80–90 | 90–100 |
Indian region | 40,033 | 61,202 | 43,155 | 15,152 | 3537 |
Northwestern region | 26,866 | 39,944 | 29,115 | 10,419 | 1998 |
Delhi region | 8676 | 14,743 | 10,156 | 3225 | 438 |
Lucknow region | 160 | 127 | 64 | 20 | 7 |
Patna region | 25 | 17 | 9 | 63 | 40 |
November | 50–60 | 60–70 | 70–80 | 80–90 | 90–100 |
Indian region | 35,962 | 49,281 | 35,372 | 14,742 | 3527 |
Northwestern region | 21,588 | 30,448 | 24,146 | 1074 | 2240 |
Delhi region | 4216 | 7071 | 5330 | 1923 | 310 |
Lucknow region | 628 | 451 | 145 | 26 | 5 |
Patna region | 625 | 409 | 91 | 6 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, V.; Patil, R.; Bhawar, R.L.; Rahul, P.R.C.; Yelisetti, S. Increasing Wind Speeds Fuel the Wider Spreading of Pollution Caused by Fires over the IGP Region during the Indian Post-Monsoon Season. Atmosphere 2022, 13, 1525. https://doi.org/10.3390/atmos13091525
Kumar V, Patil R, Bhawar RL, Rahul PRC, Yelisetti S. Increasing Wind Speeds Fuel the Wider Spreading of Pollution Caused by Fires over the IGP Region during the Indian Post-Monsoon Season. Atmosphere. 2022; 13(9):1525. https://doi.org/10.3390/atmos13091525
Chicago/Turabian StyleKumar, Vinay, Rupesh Patil, Rohini L. Bhawar, P.R.C. Rahul, and Subbarao Yelisetti. 2022. "Increasing Wind Speeds Fuel the Wider Spreading of Pollution Caused by Fires over the IGP Region during the Indian Post-Monsoon Season" Atmosphere 13, no. 9: 1525. https://doi.org/10.3390/atmos13091525
APA StyleKumar, V., Patil, R., Bhawar, R. L., Rahul, P. R. C., & Yelisetti, S. (2022). Increasing Wind Speeds Fuel the Wider Spreading of Pollution Caused by Fires over the IGP Region during the Indian Post-Monsoon Season. Atmosphere, 13(9), 1525. https://doi.org/10.3390/atmos13091525