MCS Stratiform and Convective Regions Associated with Sprites Observed from Mt. Fuji
Abstract
:1. Introduction
2. Observation and Data
2.1. TLE Observations from the Summit of Mt. Fuji
2.2. Radar Data
2.3. Lightning Data
2.4. Upper Air Sounding Data
3. Results
3.1. Overview of Sprites, Their Producing +CGs, and the Parent MCS on 22 July 2013
3.2. Five Sprite Events above the MCS Stratiform Region
3.2.1. Evolution of the Five Sprites’ Parent MCS
3.2.2. Vertical Structure of the MCS Stratiform Region When a Sprite Occurred
3.2.3. Time Sequence of Wind Velocity inside the MCS Stratiform Region
3.3. One Sprite Event above the MCS Convective Region
3.3.1. Evolution of One Sprite Parent MCS
3.3.2. Vertical Structure of the MCS Convective Region When a Sprite Occurred
3.3.3. Time Sequence of Optical Cloud Flash with Sprite in MCS Convective Line
4. Discussion
4.1. MCS Stratiform Region and +CGs with the Five Sprites
4.2. MCS Convective Region and +CGs with One Sprite
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Franz, R.C.; Nemzek, R.J.; Winckler, J.R. Television image of a large upward electrical discharge above a thunderstorm system. Science 1990, 249, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Sentman, D.D.; Wescott, E.M. Observations of upper atmospheric optical flashes recorded from an aircraft. Geophys. Res. Lett. 1993, 20, 2857–2860. [Google Scholar] [CrossRef]
- Sentman, D.D.; Wescott, E.M.; Osborne, D.L.; Hampton, D.L.; Heavner, M.J. Preliminary results from the Sprites94 aircraft campaign: 1. Red sprites. Geophys. Res. Lett. 1995, 22, 1205–1208. [Google Scholar] [CrossRef]
- Lyons, W.A. Sprite observations above the U.S. High Plains in relation to their parent thunderstorm systems. J. Geophys. Res. 1996, 101, 29641–29652. [Google Scholar] [CrossRef]
- Neubert, T.; Allin, T.H.; Stenbaek-Nielsen, H.; Blanc, E. Sprites over Europe. Geophys. Res. Lett. 2001, 28, 3585–3588. [Google Scholar] [CrossRef]
- Pinto, O., Jr.; Tavares, F.S.S.; Naccarato, K.; Solorzano, N.N.; Pautet, P.D.; Holzworth, R.H.; Saba, M.M.F.; Pinto, I.R.C.A.; Taylor, M.J. Thunderstorm and lightning characteristics associated with sprites in Brazil. Geophys. Res. Lett. 2004, 31, L13103. [Google Scholar] [CrossRef]
- Su, H.-T.; Hsu, R.-R.; Chen, A.B.-C.; Lee, Y.-J.; Lee, L.-C. Observation of sprites over the Asian continent and over oceans around Taiwan. Geophys. Res. Lett. 2002, 29, 1044. [Google Scholar] [CrossRef]
- Van der Velde, O.A.; Mika, Á.; Soula, S.; Haldoupis, C.; Neubert, T.; Inan, U.S. Observations of the relationship between sprite morphology and in-cloud lightning processes. J. Geophys. Res. 2006, 111, D15203. [Google Scholar] [CrossRef]
- Williams, E.R.; Lyons, W.A.; Hobara, Y.; Mushtak, V.C.; Asencio, N.; Boldi, R.; Bór, J.; Cummer, S.A.; Greenberg, E.; Hayakawa, M.; et al. Ground-based detection of sprites and their parent lightning flashes over Africa during the 2006 AMMA campaign. Q. J. R. Meteorol. Soc. 2010, 136, 257–271. [Google Scholar] [CrossRef]
- Kuo, C.-L.; Huang, T.-Y.; Hsu, C.-M.; Sato, M.; Lee, L.-C.; Lin, N.-H. Resolving Elve, Halo and Sprite Halo Images at 10,000 Fps in the Taiwan 2020 Campaign. Atmosphere 2021, 12, 1000. [Google Scholar] [CrossRef]
- Kuo, C.-L.; Williams, E.; Adachi, T.; Ihaddadene, K.; Celestin, S.; Takahashi, Y.; Hsu, R.-R.; Frey, H.U.; Mende, S.B.; Lee, L.-C. Experimental validation of N2 emission ratios in altitude profiles of observed sprites. Front. Earth Sci. 2021, 9, 687989. [Google Scholar] [CrossRef]
- Adachi, T.; Fukunishi, H.; Takahashi, Y.; Sato, M.; Ohkubo, A.; Yamamoto, K. Characteristics of thunderstorm systems producing winter sprites in Japan. J. Geophys. Res. 2005, 110, D11203. [Google Scholar] [CrossRef]
- Ganot, M.; Yair, Y.; Price, C.; Ziv, B.; Sherez, Y.; Greenberg, E.; Devir, A.; Yaniv, R. First detection of transient luminous events associated with winter thunderstorms in the eastern Mediterranean. Geophys. Res. Lett. 2007, 34, L12801. [Google Scholar] [CrossRef]
- Hayakawa, M.; Nakamura, T.; Hobara, Y.; Williams, E. Observation of sprites over the Sea of Japan and conditions for lightning-induced sprites in winter. J. Geophys. Res. 2004, 109, A01312. [Google Scholar] [CrossRef]
- Soula, S.; Van Der Velde, O.; Palmieri, J.; Chanrion, O.A.; Neubert, T.; Montanyà, J.; Gangneron, F.; Meyerfeld, Y.; Lefeuvre, F.; Lointier, G. Characteristics and conditions of production of transient luminous events observed over a maritime storm. J. Geophys. Res. 2010, 115, D16118. [Google Scholar] [CrossRef]
- Suzuki, T.; Hayakawa, M.; Matsudo, Y.; Michimoto, K. How do winter thundercloud systems generate sprite-inducing lightning in the Hokuriku area of Japan? Geophys. Res. Lett. 2006, 33, L10806. [Google Scholar] [CrossRef]
- Takahashi, Y.; Miyasato, R.; Adachi, T.; Adachi, K.; Sera, M.; Uchida, A.; Fukunishi, H. Activities of sprites and elves in the winter season, Japan. J. Atmos. Sol.-Terr. Phys. 2003, 65, 551–560. [Google Scholar] [CrossRef]
- Bell, T.F.; Reising, S.C.; Inan, U.S. Intense continuing currents following positive cloud-to-ground lightning associated with red sprites. Geophys. Res. Lett. 1998, 25, 1285–1288. [Google Scholar] [CrossRef]
- Boccippio, D.J.; Williams, E.R.; Heckman, S.J.; Lyons, W.A.; Baker, I.T.; Boldi, R. Sprites, ELF transients, and positive ground strokes. Science 1995, 269, 1088–1091. [Google Scholar] [CrossRef]
- Lyons, W.A.; Nelson, T.E.; Williams, E.R.; Cummer, S.A.; Stanley, M.A. Characteristics of sprite-producing positive cloud-to-ground lightning during the 19 July 2000 STEPS mesoscale convective systems. Mon. Weather Rev. 2003, 131, 2417–2427. [Google Scholar] [CrossRef]
- Stanley, M.A. Sprites and Their Parent Discharges. Ph.D. Thesis, New Mexico Institute of Mining and Technology, Socorro, NM, USA, 2000. [Google Scholar]
- Lyons, W.A.; Cummer, S.A.; Stanley, M.A.; Huffines, G.R.; Wiens, K.C.; Nelson, T.E. Supercells and sprites. Bull. Am. Meteorol. Soc. 2008, 89, 1165–1174. [Google Scholar] [CrossRef]
- Suzuki, T.; Hayakawa, M.; Michimoto, K. Small winter thunderstorm with sprites and strong positive discharge. IEEJ Trans. Fundam. Mater. 2011, 131, 723–728. [Google Scholar] [CrossRef]
- Pasko, V.P.; Inan, U.S.; Bell, T.F.; Taranenko, Y.N. Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere. J. Geophys. Res. 1997, 102, 4529–4561. [Google Scholar] [CrossRef]
- Rodger, C.J. Red sprites, upward lightning, and VLF perturbations. Rev. Geophys. 1999, 37, 317–336. [Google Scholar] [CrossRef]
- Williams, E.R. The positive charge reservoir for sprite-producing lightning. J. Atmos. Sol.-Terr. Phys. 1998, 60, 689–692. [Google Scholar] [CrossRef]
- Lang, T.J.; Lyons, W.A.; Rutledge, S.A.; Meyer, J.D.; MacGorman, D.R.; Cummer, S.A. Transient luminous events above two mesoscale convective systems: Storm structure and evolution. J. Geophys. Res. 2010, 115, A00E22. [Google Scholar] [CrossRef]
- Lang, T.J.; Lyons, W.A.; Cummer, S.A.; Fuchs, B.R.; Dolan, B.; Rutledge, S.A.; Krehbiel, P.; Rison, W.; Stanley, M.; Ashcraft, T. Observations of two sprite-producing storms in Colorado. J. Geophys. Res. 2016, 121, 9675–9695. [Google Scholar] [CrossRef]
- Lu, G.; Cummer, S.A.; Li, J.; Zigoneanu, L.; Lyons, W.A.; Stanley, M.A.; Rison, W.; Krehbiel, P.R.; Edens, H.E.; Thomas, R.J.; et al. Coordinated observations of sprites and in-cloud lightning flash structure. J. Geophys. Res. 2013, 118, 6607–6632. [Google Scholar] [CrossRef]
- Suzuki, T.; Matsudo, Y.; Asano, T.; Hayakawa, M.; Michimoto, K. Meteorological and electrical aspects of several winter thunderstorms with sprites in the Hokuriku area of Japan. J. Geophys. Res. 2011, 116, D06205. [Google Scholar] [CrossRef]
- Stolzenburg, M.; Rust, W.D.; Smull, B.F.; Marshall, T.C. Electrical structure in thunderstorm convective regions: 1. Mesoscale convective systems. J. Geophys. Res. 1998, 103, 14059–14078. [Google Scholar] [CrossRef]
- Soula, S.; Iacovella, F.; van der Velde, O.; Montanyà, J.; Füllekrug, M.; Farges, T.; Bór, J.; Georgis, J.-F.; NaitAmor, S.; Martin, J.-M. Multi-instrumental analysis of large sprite events and their producing storm in southern France. Atmos. Res. 2014, 135–136, 415–431. [Google Scholar] [CrossRef]
- van der Velde, O.A.; Montanyà, J.; Soula, S.; Pineda, N.; Bech, J. Spatial and temporal evolution of horizontally extensive lightning discharges associated with sprite-producing positive cloud-to-ground flashes in northeastern Spain. J. Geophys. Res. 2010, 115, A00E56. [Google Scholar] [CrossRef]
- Yang, J.; Qie, X.; Feng, G. Characteristics of one sprite-producing summer thunderstorm. Atmos. Res. 2013, 127, 90–115. [Google Scholar] [CrossRef]
- Williams, E. Lightning activity in winter storms: A meteorological and cloud microphysical perspective. IEEJ Trans. Power Energy 2018, 138, 364–373. [Google Scholar] [CrossRef]
- Soula, S.; Defer, E.; Fullekrug, M.; Van Der Velde, O.; Montanyà, J.; Bousquet, O.; Mlynarczyk, J.; Coquillat, S.; Pinty, J.-P.; Rison, W.; et al. Time and space correlation between sprites and their parent lightning flashes for a thunderstorm observed during the HyMeX campaign. J. Geophys. Res. 2015, 120, 11552–11574. [Google Scholar] [CrossRef]
- Carey, L.D.; Murphy, M.J.; McCormick, T.L.; Demetriades, N.W.S. Lightning location relative to storm structure in a leading-line, trailing-stratiform mesoscale convective system. J. Geophys. Res. 2005, 110, D03105. [Google Scholar] [CrossRef]
- Ely, B.L.; Orville, R.E.; Carey, L.D.; Hodapp, C.L. Evolution of the total lightning structure in a leading-line, trailing-stratiform mesoscale convective system over Houston, Texas. J. Geophys. Res. 2008, 113, D08114. [Google Scholar] [CrossRef]
- Lang, T.J.; Rutledge, S.A.; Wiens, K.C. Origins of positive cloud-to-ground lightning flashes in the stratiform region of a mesoscale convective system. Geophys. Res. Lett. 2004, 31, L10105. [Google Scholar] [CrossRef]
- Neubert, T.; Allin, T.H.; Blanc, E.; Farges, T.; Haldoupis, C.; Mika, A.; Soula, S.; Knutsson, L.; van der Velde, O.; Marshall, R.A.; et al. Co-ordinated observations of transient luminous events during the EuroSprite2003 campaign. J. Atmos. Sol.-Terr. Phys. 2005, 67, 807–820. [Google Scholar] [CrossRef]
- Suzuki, T.; Hayakawa, M.; Hobara, Y.; Kusunoki, K. First detection of summer blue jets and starters over Northern Kanto area of Japan: Lightning activity. J. Geophys. Res. 2012, 117, A07307. [Google Scholar] [CrossRef] [Green Version]
- Ishii, K.; Hayashi, S.; Fujibe, F. Statistical analysis of temporal and spatial distributions of cloud-to-ground lightning in Japan from 2002 to 2008. J. Atmos. Electr. 2014, 34, 79–86. [Google Scholar] [CrossRef]
- Ishihara, M.; Kato, Y.; Abo, T.; Kobayashi, K.; Izumikawa, Y. Characteristics and performance of the operational wind profiler network of the Japan Meteorological Agency. J. Meteorol. Soc. Jpn. Ser. II 2006, 84, 1085–1096. Available online: https://www.jstage.jst.go.jp/article/jmsj/84/6/84_6_1085/_article/-char/en (accessed on 14 July 2022). [CrossRef]
- Biggerstaff, M.I.; Houze, R.A., Jr. Kinematics and Microphysics of the Transition Zone of the 10–11 June 1985 Squall Line. J. Atmos. Sci. 1993, 50, 3091–3110. [Google Scholar] [CrossRef]
- MacGorman, D.R.; Rust, W.D. The Electrical Nature of Storms; Oxford University Press: Oxford, NY, USA, 1998; pp. 277, 281–282. [Google Scholar]
- Rutledge, S.A.; Williams, E.R.; Petersen, W.A. Lightning and electrical structure of mesoscale convective systems. Atmos. Res. 1993, 29, 27–53. [Google Scholar] [CrossRef]
- Cifelli, R.; Rutledge, S.A. Vertical motion structure in maritime continent mesoscale convective systems: Results from a 50-MHz Profiler. J. Atmos. Sci. 1994, 51, 2631–2652. [Google Scholar] [CrossRef]
- Azambuja, R. Thunderstorms Producing Sprites in South America. Ph.D. Thesis, Instituto Nacional de Pesquisas Espaciais, Sao Jose dos Campos, Brazil, 2013. [Google Scholar]
- Van der Velde, O.A.; Montanyà, J.; Soula, S.; Pineda, N.; Mlynarczyk, J. Bidirectional leader development in sprite-producing positive cloud-to-ground flashes: Origins and characteristics of positive and negative leaders. J. Geophys. Res. 2014, 119, 12755–12779. [Google Scholar] [CrossRef]
- Krehbiel, P.R.; Riousset, J.; Pasko, V.P.; Thomas, R.J.; Rison, W.; Stanley, M.A.; Edens, H.E. Upward electrical discharges from thunderstorms. Nat. Geosci. 2008, 1, 233–237. [Google Scholar] [CrossRef]
- Asano, T.; Suzuki, T.; Hiraki, Y.; Mareev, E.; Cho, M.G.; Hayakawa, M. Computer simulations on sprite initiation for realistic lightning models with higher-frequency surges. J. Geophys. Res. 2009, 114, A02310. [Google Scholar] [CrossRef]
- Yashunin, S.A.; Mareev, E.A.; Rakov, V.A. Are lightning M components capable of initiating sprites and sprite halos? J. Geophys. Res. 2007, 112, D10109. [Google Scholar] [CrossRef]
- Asano, T.; Suzuki, T.; Hayakawa, M.; Cho, M.G. Three-dimensional EM computer simulation on sprite initiation above a horizontal lightning discharge. J. Atmos. Sol.-Terr. Phys. 2009, 71, 983–990. [Google Scholar] [CrossRef]
- Rakov, V.A.; Crawford, D.E.; Rambo, K.J.; Schnetzer, G.H.; Uman, M.A.; Thottappillil, R. M-component mode of charge transfer to ground in lightning discharges. J. Geophys. Res. 2001, 106, 22817–22831. [Google Scholar] [CrossRef]
- Rutledge, S.A.; MacGorman, D.R. Cloud-to-ground lightning activity in the 10–11 June 1985 mesoscale convective system observed during the Oklahoma–Kansas PRE-STORM Project. Mon. Weather Rev. 1988, 116, 1393–1408. [Google Scholar] [CrossRef]
- Rutledge, S.A.; Lu, C.; MacGorman, D.R. Positive cloud-to-ground lightning in mesoscale convective systems. J. Atmos. Sci. 1990, 47, 2085–2100. [Google Scholar] [CrossRef]
- Holle, R.L.; Watson, A.I.; López, R.E.; Macgorman, D.R.; Ortiz, R.; Otto, W.D. The life cycle of lightning and severe weather in a 3–4 June 1985 PRE-STORM Mesoscale Convective System. Mon. Weather Rev. 1994, 122, 1798–1808. [Google Scholar] [CrossRef]
- Makowski, J.A.; MacGorman, D.R.; Biggerstaff, M.I.; Beasley, W.H. Total lightning characteristics relative to radar and satellite observations of Oklahoma mesoscale convective systems. Mon. Weather Rev. 2013, 141, 1593–1611. [Google Scholar] [CrossRef]
Sprite | Optical Cloud Flash | +CG Time (UTC) | Sprite Time Delay from +CG (ms) | +CG Peak Current Amplitude (kA) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
No. | Time (UTC) | Type | Elements | Maximum Duration (ms) | Start Time (UTC) | End Time (UTC) | Maximum Duration (ms) | ||||
Azimuth (Degree) | Elevation (Degree) | ||||||||||
1 | 1046:03.437 | JF + Ca | 33.66, 34.8 | 7.36, 6.66 | 34 | 10:46:03.437 | 10:46:03.487 | 50 | 10:46:03.407 | 30 | 133 |
2 | 1121:06.371 | Ca + Uc | 34.38, 36.35 | 6.62, 7.05 | 68 | 11:21:06.371 | 11:21:06.538 | 167 | 11:21:06.346 | 25 | 312 |
3 | 1138:11.320 | Ca + Uc | 35.15, 36.74, 38.24 | 7.39, 7.43, 7.23 | 51 | 11:38:11.320 | 11:38:11.337 | 17 | 11:38:11.295 | 25 | 180 |
4 | 1138:11.520 | Ca +Uc | 32.44, 34.39, 35.15, 36.74 | 7.81, 7.55, 7.39, 7.43 | 34 | 11:38:11.520 | 11:38:11.537 | 17 | 11:38:11.494 | 26 | 97 |
5 | 1143:37.961 | Co + halo | 36.82 | 7.67 | 34 | 1143:37.961 | 1143:37.977 | 17 | No report | No report | No report |
6 | 1424:45.240 | Uc (Ca) | 41.82 | 10.68 | 34 | 14:24:45.106 | 14:23:45.540 | 434 | 14:24:45.139 | 101 | 89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, T.; Kamogawa, M.; Fujiwara, H.; Hayashi, S. MCS Stratiform and Convective Regions Associated with Sprites Observed from Mt. Fuji. Atmosphere 2022, 13, 1460. https://doi.org/10.3390/atmos13091460
Suzuki T, Kamogawa M, Fujiwara H, Hayashi S. MCS Stratiform and Convective Regions Associated with Sprites Observed from Mt. Fuji. Atmosphere. 2022; 13(9):1460. https://doi.org/10.3390/atmos13091460
Chicago/Turabian StyleSuzuki, Tomoyuki, Masashi Kamogawa, Hironobu Fujiwara, and Syugo Hayashi. 2022. "MCS Stratiform and Convective Regions Associated with Sprites Observed from Mt. Fuji" Atmosphere 13, no. 9: 1460. https://doi.org/10.3390/atmos13091460
APA StyleSuzuki, T., Kamogawa, M., Fujiwara, H., & Hayashi, S. (2022). MCS Stratiform and Convective Regions Associated with Sprites Observed from Mt. Fuji. Atmosphere, 13(9), 1460. https://doi.org/10.3390/atmos13091460