Life Cycle Assessment of a Prospective Technology for Building-Integrated Production of Broccoli Microgreens
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Case Description
2.2. Scenarios
2.3. Life Cycle Assessment of Building-Integrated IVF
2.3.1. Goal and Scope
2.3.2. System Boundaries
2.4. Life Cycle Inventory
2.4.1. Indoor Vertical Farm Infrastructure
2.4.2. Process Modelling
2.5. Impact Assessment
3. Results
3.1. Global Warming Potential Results
3.1.1. Circular and Linear Supply Scenarios
3.1.2. Renewable Energy Variation Results
3.2. Ecotoxicity Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.; Jia, N.; Lenzen, M.; Malik, A.; Wei, L.; Jin, Y.; Raubenheimer, D. Global Food-Miles Account for Nearly 20% of Total Food-Systems Emissions. Nat. Food 2022, 3, 445–453. [Google Scholar] [CrossRef]
- Bherwani, H.; Nair, M.; Niwalkar, A.; Balachandran, D.; Kumar, R. Application of Circular Economy Framework for Reducing the Impacts of Climate Change: A Case Study from India on the Evaluation of Carbon and Materials Footprint Nexus. Energy Nexus 2022, 5, 100047. [Google Scholar] [CrossRef]
- Dimitri, C.; Oberholtzer, L.; Pressman, A. Urban Agriculture: Connecting Producers with Consumers. Br. Food J. 2016, 118, 603–617. [Google Scholar] [CrossRef]
- Martellozzo, F.; Landry, J.-S.; Plouffe, D.; Seufert, V.; Rowhani, P.; Ramankutty, N. Urban Agriculture: A Global Analysis of the Space Constraint to Meet Urban Vegetable Demand. Environ. Res. Lett. 2014, 9, 640125. [Google Scholar] [CrossRef]
- Goldstein, B.; Hauschild, M.; Fernández, J.; Birkved, M. Urban versus Conventional Agriculture, Taxonomy of Resource Profiles: A Review. Agron. Sustain. Dev. 2016, 36, 1–19. [Google Scholar] [CrossRef]
- Avgoustaki, D.D.; Xydis, G. Plant Factories in the Water-Food-Energy Nexus Era: A Systematic Bibliographical Review. Food Secur. 2020, 12, 253–268. [Google Scholar] [CrossRef]
- Food and Agriculture Organisation of the United Nations. Food, Agriculture and Cities. Challenges of Food and Nutrition Security, Agriculture and Ecosystem Management in an Urbanizing World; Food and Agriculture Organisation of the United Nations: Rome, Italy, 2011. [Google Scholar]
- O’Sullivan, C.A.; Bonnett, G.D.; McIntyre, C.L.; Hochman, Z.; Wasson, A.P. Strategies to Improve the Productivity, Product Diversity and Profitability of Urban Agriculture. Agric. Syst. 2019, 174, 133–144. [Google Scholar] [CrossRef]
- Arunrat, N.; Pumijumnong, N.; Sereenonchai, S.; Chareonwong, U.; Wang, C. Comparison of GHG Emissions and Farmers’ Profit of Large-Scale and Individual Farming in Rice Production across Four Regions of Thailand. J. Clean. Prod. 2021, 278, 123945. [Google Scholar] [CrossRef]
- Khan, R.; Aziz, Z.; Ahmed, V. Building Integrated Agriculture Information Modelling (BIAIM): An Integrated Approach towards Urban Agriculture. Sustain. Cities Soc. 2017, 43, 343–363. [Google Scholar] [CrossRef]
- Bohm, M. Urban Agriculture in and on Buildings in North America: The Unfulfilled Potential to Benefit Marginalized Communities. Built Environ. 2017, 43, 343–363. [Google Scholar] [CrossRef]
- Parada, F.; Gabarrell, X.; Rufí-Salís, M.; Arcas-Pilz, V.; Muñoz, P.; Villalba, G. Optimizing Irrigation in Urban Agriculture for Tomato Crops in Rooftop Greenhouses. Sci. Total Environ. 2021, 794, 148689. [Google Scholar] [CrossRef] [PubMed]
- Dorr, E.; Goldstein, B.; Horvath, A.; Aubry, C.; Gabrielle, B. Environmental Impacts and Resource Use of Urban Agriculture: A Systematic Review and Meta-Analysis. Environ. Res. Lett. 2021, 16, 93002. [Google Scholar] [CrossRef]
- Sanyé-Mengual, E.; Martinez-Blanco, J.; Finkbeiner, M.; Cerdà, M.; Camargo, M.; Ometto, A.R.; Velásquez, L.S.; Villada, G.; Niza, S.; Pina, A.; et al. Urban Horticulture in Retail Parks: Environmental Assessment of the Potential Implementation of Rooftop Greenhouses in European and South American Cities. J. Clean. Prod. 2018, 172, 3081–3091. [Google Scholar] [CrossRef]
- Neilson, C.; Rickards, L. The Relational Character of Urban Agriculture: Competing Perspectives on Land, Food, People, Agriculture and the City. Geogr. J. 2017, 183, 295–306. [Google Scholar] [CrossRef]
- Weidner, T.; Yang, A.; Hamm, M.W. Consolidating the Current Knowledge on Urban Agriculture in Productive Urban Food Systems: Learnings, Gaps and Outlook. J. Clean. Prod. 2019, 209, 1637–1655. [Google Scholar] [CrossRef]
- Mohareb, E.; Heller, M.; Novak, P.; Goldstein, B.; Fonoll, X.; Raskin, L. Considerations for Reducing Food System Energy Demand While Scaling up Urban Agriculture. Environ. Res. Lett. 2017, 12, 125004. [Google Scholar] [CrossRef]
- Baratsas, S.G.; Pistikopoulos, E.N.; Avraamidou, S. A Systems Engineering Framework for the Optimization of Food Supply Chains under Circular Economy Considerations. Sci. Total Environ. 2021, 794, 148726. [Google Scholar] [CrossRef]
- Montero, J.I.; Baeza, E.; Munoz, P.; Sanyé-Mengual, E.; Stanghellini, C. Technology for Rooftop Greenhouses. In Urban Agriculture: Rooftop Urban Agriculture; Orsini, F., Dubbeling, M., De Zeeuw, H., Gianquinto, G., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 83–101. [Google Scholar]
- Poulsen, M.N. Cultivating Citizenship, Equity, and Social Inclusion? Putting Civic Agriculture into Practice through Urban Farming. Agric. Hum. Values 2017, 34, 135–148. [Google Scholar] [CrossRef]
- Specht, K.; Weith, T.; Swoboda, K.; Siebert, R. Socially Acceptable Urban Agriculture Businesses. Agron. Sustain. Dev. 2016, 36, 17. [Google Scholar] [CrossRef]
- Dieleman, H. Urban Agriculture in Mexico City; Balancing between Ecological, Economic, Social and Symbolic Value. J. Clean. Prod. 2017, 163, 156–163. [Google Scholar] [CrossRef]
- Walraven, B.C. Aquaponics: Economics and Social Potential for Sustainable Food Production. In Unpublished Manuscript, Honors Report; James Madison University: Harrisonburg, VA, USA, 2014. [Google Scholar]
- Goldstein, B.; Hauschild, M.; Fernández, J.; Birkved, M. Testing the Environmental Performance of Urban Agriculture as a Food Supply in Northern Climates. J. Clean. Prod. 2016, 135, 984–994. [Google Scholar] [CrossRef]
- Parkes, M.G.; Azevedo, D.L.; Domingos, T.; Teixeira, R.F.M. Narratives and Benefits of Agricultural Technology in Urban Buildings: A Review. Atmosphere 2022, 13, 1250. [Google Scholar] [CrossRef]
- Marvin, S.; Rutherford, J. Controlled Environments: An Urban Research Agenda on Microclimatic Enclosure. Urban Stud. 2018, 55, 1143–1162. [Google Scholar] [CrossRef]
- Shamshiri, R.R.; Kalantari, F.; Ting, K.C.; Thorp, K.R.; Hameed, I.A.; Weltzien, C.; Ahmad, D.; Shad, Z. Advances in Greenhouse Automation and Controlled Environment Agriculture: A Transition to Plant Factories and Urban Agriculture. Int. J. Agric. Biol. Eng. 2018, 11, 1–22. [Google Scholar] [CrossRef]
- Kozai, T.; Kazuhiro, F.; Runkle, E.S. Integrated Urban Controlled Environment Agriculture Systems; Kozai, T., Kazuhiro, F., Runkle, E.S., Eds.; Springer: Singapore, 2016. [Google Scholar]
- Sparks, R.E.; Merton, R.; Iii, S. Design and Testing of a Modified Hydroponic Shipping Container System for Urban Food Production. Int. J. Appl. Agric. Sci. 2018, 4, 93–102. [Google Scholar]
- Engler, N.; Krarti, M. Review of Energy Efficiency in Controlled Environment Agriculture. Renew. Sustain. Energy Rev. 2021, 141, 110786. [Google Scholar] [CrossRef]
- Canet-Martí, A.; Pineda-Martos, R.; Junge, R.; Bohn, K.; Paço, T.A.; Delgado, C.; Alenčikienė, G.; Skar, S.L.G.; Baganz, G.F.M. Nature-Based Solutions for Agriculture in Circular Cities: Challenges, Gaps, and Opportunities. Water 2021, 13, 2565. [Google Scholar] [CrossRef]
- Bulgari, R.; Baldi, A.; Ferrante, A.; Lenzi, A. Yield and Quality of Basil, Swiss Chard, and Rocket Microgreens Grown in a Hydroponic System. N. Z. J. Crop Hortic. Sci. 2017, 45, 119–129. [Google Scholar] [CrossRef]
- Wong, C.E.; Teo, Z.W.N.; Shen, L.; Yu, H. Seeing the Lights for Leafy Greens in Indoor Vertical Farming. Trends Food Sci. Technol. 2020, 106, 48–63. [Google Scholar] [CrossRef]
- Wimmerova, L.; Keken, Z.; Solcova, O.; Bartos, L.; Spacilova, M. A Comparative LCA of Aeroponic, Hydroponic, and Soil Cultivations of Bioactive Substance Producing Plants. Sustainability 2022, 14, 2421. [Google Scholar] [CrossRef]
- Dorr, E.; Sanyé-Mengual, E.; Gabrielle, B.; Grard, B.J.P.; Aubry, C. Proper Selection of Substrates and Crops Enhances the Sustainability of Paris Rooftop Garden. Agron. Sustain. Dev. 2017, 37, 51. [Google Scholar] [CrossRef]
- Surendran, U.; Chandran, C.; Joseph, E.J. Hydroponic Cultivation of Mentha Spicata and Comparison of Biochemical and Antioxidant Activities with Soil-Grown Plants. Acta Physiol. Plant. 2017, 39, 26. [Google Scholar] [CrossRef]
- Orsini, F.; Dubbeling, M.; De Zeeuw, H.; Gianquinto, G. Urban Agriculture: Rooftop Urban Agriculture, 1st ed.; Orsini, F., Dubbeling, M., De Zeeuw, H., Gianquinto, G., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Benis, K.; Reinhart, C.; Ferrão, P. Building-Integrated Agriculture (BIA) In Urban Contexts: Testing A Simulation-Based Decision Support Workflow. In Proceedings of the 15th IBPSA, Building Simulation, San Francisco, CA, USA, 7–9 August 2017; pp. 1798–1807. [Google Scholar]
- Goodman, W.; Minner, J. Will the Urban Agricultural Revolution Be Vertical and Soilless? A Case Study of Controlled Environment Agriculture in New York City. Land Use Policy 2019, 83, 160–173. [Google Scholar] [CrossRef]
- Al-Kodmany, K. The Vertical Farm: A Review of Developments and Implications for the Vertical City. Buildings 2018, 8, 24. [Google Scholar] [CrossRef]
- Shen, Y.; Song, S.; Thian, B.W.Y.; Fong, S.L.; Ee, A.W.L.; Arora, S.; Ghosh, S.; Li, S.F.Y.; Tan, H.T.W.; Dai, Y.; et al. Impacts of Biochar Concentration on the Growth Performance of a Leafy Vegetable in a Tropical City and Its Global Warming Potential. J. Clean. Prod. 2020, 264, 121678. [Google Scholar] [CrossRef]
- Martin, M.; Molin, E. Environmental Assessment of an Urban Vertical Hydroponic Farming System in Sweden. Sustainability 2019, 11, 4124. [Google Scholar] [CrossRef]
- Kikuchi, Y.; Kanematsu, Y.; Yoshikawa, N.; Okubo, T.; Takagaki, M. Environmental and Resource Use Analysis of Plant Factories with Energy Technology Options: A Case Study in Japan. J. Clean. Prod. 2018, 186, 703–717. [Google Scholar] [CrossRef]
- Cuce, E.; Harjunowibowo, D.; Cuce, P.M. Renewable and Sustainable Energy Saving Strategies for Greenhouse Systems: A Comprehensive Review. Renew. Sustain. Energy Rev. 2016, 64, 34–59. [Google Scholar] [CrossRef]
- Iddio, E.; Wang, L.; Thomas, Y.; McMorrow, G.; Denzer, A. Energy Efficient Operation and Modeling for Greenhouses: A Literature Review. Renew. Sustain. Energy Rev. 2020, 117, 109480. [Google Scholar] [CrossRef]
- Ying, J.; Zhang, X.; Zhang, Y.; Bilan, S. Green Infrastructure: Systematic Literature Review. Econ. Res. Istraz. 2021, 35, 343–366. [Google Scholar] [CrossRef]
- Sharma, S.; Shree, B.; Sharma, D.; Kumar, S.; Kumar, V.; Sharma, R.; Saini, R. Vegetable Microgreens: The Gleam of next Generation Super Foods, Their Genetic Enhancement, Health Benefits and Processing Approaches. Food Res. Int. 2022, 155, 111038. [Google Scholar] [CrossRef]
- Song, S.; Hou, Y.; Lim, R.B.H.; Gaw, L.Y.F.; Richards, D.R.; Tan, H.T.W. Comparison of Vegetable Production, Resource-Use Efficiency and Environmental Performance of High-Technology and Conventional Farming Systems for Urban Agriculture in the Tropical City of Singapore. Sci. Total Environ. 2022, 807, 150621. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.; Weidner, T.; Gullström, C. Estimating the Potential of Building Integration and Regional Synergies to Improve the Environmental Performance of Urban Vertical Farming. Front. Sustain. Food Syst. 2022, 6, 49304. [Google Scholar] [CrossRef]
- Misra, G.; Gibson, K.E. Characterization of Microgreen Growing Operations and Associated Food Safety Practices. Food Prot. Trends 2021, 41, 56–69. [Google Scholar] [CrossRef]
- Benis, K.; Ferrao, P. Potential Mitigation of the Environmental Impacts of Food Systems through Urban and Peri-Urban Agriculture (UPA)–A Life Cycle Assessment Approach. J. Clean. Prod. 2017, 140, 784–795. [Google Scholar] [CrossRef]
- European Commission. Use of Common Methods to Measure and Communicate the Life Cycle Environmental Performance of Products and Organisations. Off. J. Eur. Union 2013, 124, 210. [Google Scholar]
- Litskas, V.; Mandoulaki, A.; Vogiatzakis, I.N.; Tzortzakis, N.; Stavrinides, M. Sustainable Viticulture: First Determination of the Environmental Footprint of Grapes. Sustainability 2020, 12, 8812. [Google Scholar] [CrossRef]
- Sanyé-Mengual, E.; Oliver-Solà, J.; Montero, J.I.; Rieradevall, J. An Environmental and Economic Life Cycle Assessment of Rooftop Greenhouse (RTG) Implementation in Barcelona, Spain. Assessing New Forms of Urban Agriculture from the Greenhouse Structure to the Final Product Level. Int. J. Life Cycle Assess. 2015, 20, 350–366. [Google Scholar] [CrossRef]
- European Commission. Photovoltais Geographical Information System. Available online: https://re.jrc.ec.europa.eu/pvg_tools/en/ (accessed on 1 July 2022).
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A Harmonised Life Cycle Impact Assessment Method at Midpoint and Endpoint Level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Van Zelm, R.; Huijbregts, M.A.J.; Van De Meent, D. USES-LCA 2.0-a Global Nested Multi-Media Fate, Exposure, and Effects Model. Int. J. Life Cycle Assess. 2009, 14, 282–284. [Google Scholar] [CrossRef]
- Molin, E.; Martin, M. Assessing the Energy and Environmental Performance of Vertical Hydroponic Farming; Swedish Environmental Research Institute: Stockholm, Sweden, 2018. [Google Scholar]
- Geneletti, D.; Zardo, L. Ecosystem-Based Adaptation in Cities: An Analysis of European Urban Climate Adaptation Plans. Land Use Policy 2016, 50, 38–47. [Google Scholar] [CrossRef]
- Romeo, D.; Vea, E.B.; Thomsen, M. Environmental Impacts of Urban Hydroponics in Europe: A Case Study in Lyon. In Procedia CIRP; Elsevier: Amsterdam, The Netherlands, 2018; Volume 69, pp. 540–545. [Google Scholar]
- Kozai, T.; Niu, G.; Takagaki, M. Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production; Kozai, T., Niu, G., Takagaki, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Lubna, F.A.; Lewus, D.C.; Shelford, T.J.; Both, A.-J. What You May Not Realize about Vertical Farming. Horticulturae 2022, 8, 322. [Google Scholar] [CrossRef]
- Arcas-Pilz, V.; Rufí-Salís, M.; Parada, F.; Gabarrell, X.; Villalba, G. Assessing the Environmental Behavior of Alternative Fertigation Methods in Soilless Systems: The Case of Phaseolus Vulgaris with Struvite and Rhizobia Inoculation. Sci. Total Environ. 2021, 770, 144744. [Google Scholar] [CrossRef] [PubMed]
- Pennisi, G.; Sanyé-Mengual, E.; Orsini, F.; Crepaldi, A.; Nicola, S.; Ochoa, J.; Fernandez, J.A.; Gianquinto, G. Modelling Environmental Burdens of Indoor-Grown Vegetables and Herbs as Affected by Red and Blue LED Lighting. Sustainability 2019, 11, 4063. [Google Scholar] [CrossRef]
- Al-Chalabi, M. Vertical Farming: Skyscraper Sustainability? Sustain. Cities Soc. 2015, 18, 74–77. [Google Scholar] [CrossRef]
- Pennisi, G.; Blasioli, S.; Cellini, A.; Maia, L.; Crepaldi, A.; Braschi, I.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Stanghellini, C.; et al. Unraveling the Role of Red:Blue LED Lights on Resource Use Efficiency and Nutritional Properties of Indoor Grown Sweet Basil. Front. Plant Sci. 2019, 10, 305. [Google Scholar] [CrossRef]
- Ares, G.; Ha, B.; Jaeger, S.R. Consumer Attitudes to Vertical Farming (Indoor Plant Factory with Artificial Lighting) in China, Singapore, UK, and USA: A Multi-Method Study. Food Res. Int. 2021, 150, 110811. [Google Scholar] [CrossRef]
- Martin, M.; Poulikidou, S.; Molin, E. Exploring the Environmental Performance of Urban Symbiosis for Vertical Hydroponic Farming. Sustainability 2019, 11, 6724. [Google Scholar] [CrossRef]
- Ilari, A.; Duca, D. Energy and Environmental Sustainability of Nursery Step Finalized to ‘‘Fresh Cut’’ Salad Production by Means of LCA. Int. J. Life Cycle Assess. 2018, 23, 800–810. [Google Scholar] [CrossRef]
- Dorr, E.; Koegler, M.; Gabrielle, B.; Aubry, C. Life Cycle Assessment of a Circular, Urban Mushroom Farm. J. Clean. Prod. 2021, 288, 125668. [Google Scholar] [CrossRef]
- Avgoustaki, D.D. Optimization of Photoperiod and Quality Assessment of Basil Plants Grown in a Small-Scale Indoor Cultivation System for Reduction of Energy Demand. Energies 2019, 12, 3980. [Google Scholar] [CrossRef]
Technology Infrastructure | ||||
---|---|---|---|---|
Equipment | Process | Input | Amount | Unit |
Indoor Vertical Farm (IVF) | Climate Chamber | Polystyrene slab and Aluminium | 580.0 | kg |
Cladding, crossbar-pole, aluminium | 150.7 | m2 | ||
Floor Covering | Epoxy resin insulator, SiO2 | 123.0 | kg | |
Tap Water | ||||
Trays | PVC, Bulk, polymerized | 168.0 | kg | |
Extrusion of Plastic Sheets | ||||
Racks | Steel, low-alloyed | 280.0 | kg | |
Pipes | PVC, Bulk, polymerized plastic Pipes | 31.8 | kg | |
Clamps | Steel, chromium steel 18/8 | 3.6 | kg | |
Valves | Brass, Tetrafluoroethylene | 1.2 | kg | |
Cables | Cable, three-conductor cable | 46.1 | m | |
Light Emitting Diode (LED) | Aluminium bar, LED, transformer | 251.2 | kg | |
Electricity, low voltage | 57,000.0 | MJ | ||
Cable, three-conductor cable | 5.3 | m | ||
Assembly | Electricity | 106.9 | MJ | |
Land Use | Occupation, urban built | 22.0 | m2 | |
Transport | Freight, lorry 3.5–7.5 metric ton | 72.0 | t × km | |
Climate Control | Air compressor 4 kW, Ventilation System, 10 kW Heat pump, diffuse absorption 4 kW | 3.0 | Item | |
Hydroponic System | Pipes | PVC, Bulk, polymerized | 6.9 | kg |
Clamps | Steel, chromium steel 18/8 | 17.5 | kg | |
Valves | Brass, Tetrafluoroethylene | 3.2 | kg | |
Pump | Water pump 22 kW | 1.0 | Item | |
Work Area | Work Room | Polystyrene slab and Aluminium | 386.0 | kg |
Cladding, crossbar-pole, aluminium | 100.0 | m2 | ||
Land Use | Occupation, urban built | 14.7 | m2 | |
Harvest | Electronics equipment | 2.2 | kg | |
Metal work bench | 277.2 | kg | ||
Polyethylene, plastic equipment | 28.2 | kg | ||
chromium steel trolley & trays | 277.2 | m2 | ||
Internet of Things (IoT) Hub | Sensors | Metals, electronics, plastics and rubber | 1.91 | kg |
Main Hub | Electronics and electrical fuses, switches, meter, circuitry. | 136.0 | Item | |
Screen and internet | Wi-Fi Router and display interface | 2.0 | Item | |
Cables | Metals and plastics for cables, ducting, and mounting rail | 11.0 | m2 | |
Photovoltaic System (PV) | Solar Panels | Photovoltaic facade installation, 3 kWp, multi-Si, panel, mounted, at building | 10.0 | Item |
IVF Operating Processes | |||
---|---|---|---|
Process | Input | Amount | Unit |
Seeding | Trays (Polyethylene) | 2.3 | kg/kg FW |
Extrusion of plastic Sheet | |||
Substrate (Coconut fiber) | 3.0 | kg/kg FW | |
Seeds | 0.07 | kg/kg FW | |
Growing | Tap water | 17.0 | L/kg FW |
NPK (15-15-15) fertilizer | 21.4 | g/kg FW | |
Electricity (LEDs) | 37.6 | MJ/kg FW | |
Sensors | 1 | Group | |
Electricity (Equipment) | 48.0 | MJ/kg FW | |
Harvest | Equipment | 1 | Group |
Compost | 3.5 | kg | |
Cleaning | Dry cleaning consumables, plastics and tissue | 7.4 | kg/kg FW |
Electricity | 0.1 | MJ/kg FW | |
Water | 150 | L/kg FW | |
Soap | 1.9 | g/kg FW | |
Clothes | 1 | Group | |
Packaging | Electricity (lighting) | 0.1 | MJ/kg FW |
Electricity (sealing bags) | 0.1 | MJ/kg FW | |
Plastic bags | 10.0 | Items/kg FW | |
Labels | 10.0 | Items/kg FW | |
Cardboard box | 0.2 | kg/kg FW | |
Delivery | Truck with refrigeration machine | 12.7 | kg × km/kg FW |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parkes, M.G.; Cubillos Tovar, J.P.; Dourado, F.; Domingos, T.; Teixeira, R.F.M. Life Cycle Assessment of a Prospective Technology for Building-Integrated Production of Broccoli Microgreens. Atmosphere 2022, 13, 1317. https://doi.org/10.3390/atmos13081317
Parkes MG, Cubillos Tovar JP, Dourado F, Domingos T, Teixeira RFM. Life Cycle Assessment of a Prospective Technology for Building-Integrated Production of Broccoli Microgreens. Atmosphere. 2022; 13(8):1317. https://doi.org/10.3390/atmos13081317
Chicago/Turabian StyleParkes, Michael G., Julieth P. Cubillos Tovar, Filipe Dourado, Tiago Domingos, and Ricardo F. M. Teixeira. 2022. "Life Cycle Assessment of a Prospective Technology for Building-Integrated Production of Broccoli Microgreens" Atmosphere 13, no. 8: 1317. https://doi.org/10.3390/atmos13081317
APA StyleParkes, M. G., Cubillos Tovar, J. P., Dourado, F., Domingos, T., & Teixeira, R. F. M. (2022). Life Cycle Assessment of a Prospective Technology for Building-Integrated Production of Broccoli Microgreens. Atmosphere, 13(8), 1317. https://doi.org/10.3390/atmos13081317