Has COVID-19 Altered the Air Quality Conduction Relationship in Beijing and Neighboring Cities?—A Test Based on Dynamic Periodic Conformance
Abstract
:1. Introduction
2. Methodology and Data
2.1. Data
2.2. Methodology
2.2.1. Wavelet Analysis
2.2.2. Dynamic Time Warping
2.2.3. Cointegration Test on the COVID-19 Epidemic and the Distance between Phase Difference of Air Quality Periodicity in the Cities
3. Results
3.1. Periodic Variation Characteristics of AQI
3.2. Periodic Conformance Test Results of Air Quality Changes in Beijing and Its Neighboring Cities
3.3. Analysis of the Influence of COVID-19 on AQI Periodic Conformance Based on DTW
3.4. Results of the Cointegration Test
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
City | Year | Median | Mean | Standard Deviation |
---|---|---|---|---|
BD | 2019 | 75.125 | 90.775 | 57.010 |
BD | 2020 | 65.104 | 78.968 | 50.657 |
BD | 2021 | 64.917 | 77.851 | 45.998 |
BJ | 2019 | 62.292 | 70.522 | 39.243 |
BJ | 2020 | 55.565 | 63.685 | 38.663 |
BJ | 2021 | 49.417 | 63.028 | 46.466 |
CD | 2019 | 49.125 | 56.657 | 25.565 |
CD | 2020 | 46.750 | 52.643 | 24.464 |
CD | 2021 | 45.333 | 55.745 | 33.206 |
LF | 2019 | 66.208 | 76.465 | 44.165 |
LF | 2020 | 61.417 | 70.417 | 41.212 |
LF | 2021 | 58.542 | 69.778 | 39.897 |
TJ | 2019 | 71.000 | 82.579 | 47.030 |
TJ | 2020 | 64.745 | 75.661 | 44.212 |
TJ | 2021 | 58.042 | 70.344 | 42.588 |
ZJK | 2019 | 48.208 | 54.771 | 26.038 |
ZJK | 2020 | 42.750 | 51.008 | 26.687 |
ZJK | 2021 | 43.833 | 54.579 | 41.647 |
Appendix C
Appendix D
Appendix E
References
- Zhao, B.; Xu, J.; Hao, J. Impact of energy structure adjustment on air quality: A ase study in Beijing, China. Front. Environ. Sci. Eng. China 2011, 5, 378–390. [Google Scholar] [CrossRef]
- Yan, D.; Lei, Y.; Shi, Y.; Zhu, Q.; Li, L.; Zhang, Z. Evolution of the spatiotemporal pattern of PM2.5 concentrations in China–A case study from the Beijing-Tianjin-Hebei region. Atmos. Environ. 2018, 183, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Li, Y.; Qiao, Z.; Lu, Y. Inter-city air pollutant transport in the Beijing-Tianjin-Hebei urban agglomeration: Comparison between the winters of 2012 and 2016. J. Environ. Manag. 2019, 250, 109520. [Google Scholar] [CrossRef] [PubMed]
- Lokhandwala, S.; Gautam, P. Indirect impact of COVID-19 on environment: A brief study in indian context. Environ. Res. 2020, 9, 109807. [Google Scholar] [CrossRef] [PubMed]
- Ayesha, B.; Kumthekar, A.; Jain, R.; Patel, S.; Ramesh, M.; Ferastraoaru, D.E.; Hudes, G.; Karagic, M.; Zafar, S.; Bartash, R.; et al. Rapid Implementation of a Multidisciplinary COVID-19 Cytokine Stomm Syndrome Task Force. ACR Open Rheumatol. 2021, 3, 133–137. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Zhao, T.; Wang, H.; Liu, J.; Bai, Y.; Kong, S.; Zheng, H.; Zhu, Y.; Shu, Z. Importance of meteorology in air pollution events during the city lockdown for COVID-19 in Hubei Province, Central China. Sci. Total Environ. 2021, 1, 142227. [Google Scholar] [CrossRef]
- Wang, C.; Horby, P.W.; Hayden, F.G.; Gao, G.F. A novel coronavirus outbreak of global health concern. Lancet 2020, 395, 470–473. [Google Scholar] [CrossRef] [Green Version]
- Tao, C.L.; Wheiler, K.; Yu, C.; Cheng, B.D.; Diao, G. Does the joint prevention and control regulation improve the air quality? A quasi-experiment in the Beijing economic belt during the COVID-19 pandemic. Sustain. Cities Soc. 2021, 75, 103365. [Google Scholar] [CrossRef]
- Rudke, A.P.; de Almeida, D.S.; Alves, R.A.; Beal, A.; Martins, L.D.; Martins, J.A.; Hallak, R.; de Almeida Albuquerque, T.T. Impacts of Strategic Mobility Restrictions Policies during 2020 COVID-19 Outbreak on Brazil’s Regional Air Quality. Aerosol Air Qual. Res. 2022, 22, 210351. [Google Scholar] [CrossRef]
- Lian, X.B.; Huang, J.P.; Huang, R.J.; Liu, C.W.; Wang, L.; Zhang, T.H. Impact of city lockdown on the air quality ofCOVID-19-hit of Wuhan city. Sci. Total Environ. 2020, 11, 140556. [Google Scholar] [CrossRef]
- Le, T.; Wang, Y.; Liu, L.; Yang, J.; Yung, J.; Li, G.; Seinfeld, J. Unexpected air pollution with marked emission reductions during the COVID-19 outbreak in China. Science 2020, 6504, 702–708. [Google Scholar] [CrossRef]
- Tobías, A.; Carnerero, C.; Reche, C.; Massagué, J.; Via, M.; Minguillón, M.C.; Alastuey, A.; Querol, X. Changes in air quality during the lockdown in Barcelona (Spain) one month into the SARS-CoV-2 epidemic. Sci. Total Environ. 2020, 7, 138540. [Google Scholar] [CrossRef]
- Shrestha, A.M.; Shrestha, U.B.; Sharma, R.; Bhattarai, S.; Tranet, H.N.T.; Rupakheti, M. Lockdown caused by COVID-19 pandemic reduces air pollution in cities worldwide. EarthArXiv 2020. [Google Scholar] [CrossRef]
- Venter, Z.S.; Aunan, K.; Chowdhury, S.; Lelieveld, J. COVID-19 lockdown cause global air pollution declines with implications for public health risk. Proc. Natl. Acad. Sci. USA 2020, 32, 18984–18990. [Google Scholar] [CrossRef]
- Othman, M.; Latif, M.T. Air pollution impacts from COVID-19 pandemic control strategies in Malaysia. J. Clean. Prod. 2021, 291, 125992. [Google Scholar] [CrossRef]
- Almond, D.; Du, X.M.; Zhang, S. Did COVID-19 Improve Air Quality Near HuBei? (No. W27086); National Bureau of Economic Research: Cambridge, MA, USA, 2020. [Google Scholar]
- Zhao, X.; Shen, N.C.; Li, L.J.; Wu, J.F.; Tao, J.; Zhao, W.J. Analysis on changes and influencing factors of air pollutants in Beijing-Tianjin-Hebei region during COVID-19 epidemic. Environ. Sci. 2021, 42, 1–15. (In Chinese) [Google Scholar]
- Zaręba, M.; Danek, T. Analysis of Air Pollution Migration during COVID-19 Lockdown in Krakow, Poland. Aerosol Air Qual. Res. 2022, 22, 210275. [Google Scholar] [CrossRef]
- He, G.J.; Pan, Y.H.; Tanaka, T. The short-term impacts of COVID-19 lockdown on urban air pollution in China. Nat. Sustain. 2020, 3, 1005–1011. [Google Scholar] [CrossRef]
- Kermani, M.; Dowlati, M.; Ahmad Jaffari, A.J.; Kalantari, R.R. A Study on the Comparative Investigation of Air Quality in Tehran Metropolis Over a Five-year Period Using Air Quality Index (AQI). J. Commun. Health 2016, 2, 28–36. [Google Scholar]
- Tong, Z.; Chen, Y.; Malkawi, A.; Liu, Z.; Freeman, R.B. Energy saving potential of natural ventilation in China: The impact ofambient air pollution. Appl. Energy 2016, 179, 660–668. [Google Scholar] [CrossRef] [Green Version]
- Kyrkilis, G.; Chaloulakou, A.; Kassomenos, P.A. Development of an aggregate Air Quality Index for an urban Mediterranean agglomeration: Relation to potential health effects. Environ. Int. 2007, 33, 670–676. [Google Scholar] [CrossRef]
- Li, J.; Jin, Z.F.; Yuan, Q.M. Kuznets curve and influencing factors of air quality environment in Beijing-Tianjin-Hebei region: Analysis based on panel data from 2006 to 2017. Ecol. Econ. 2019, 35, 197–201. (In Chinese) [Google Scholar]
- Li, X.; Qiao, Y.; Zhu, J.; Shi, L.; Wang, Y. The “APEC blue” endeavor: Causal effects of air pollution regulation on air quality in China. J. Clean. Prod. 2017, 168, 1381–1388. [Google Scholar] [CrossRef]
- Halim, N.D.A.; Latif, M.T.; Mohamed, A.F. Spatial assessment of land use impact on air quality in mega urban regions. Malaysia. Sustain. Cities Soc. 2020, 63, 102436. [Google Scholar] [CrossRef]
- Zheng, G.J.; Duan, F.K.; Su, H.; Ma, Y.L.; Cheng, Y.; Zheng, B.; He, K.B. Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmos. Chem. Phys. 2015, 15, 2969–2983. [Google Scholar] [CrossRef] [Green Version]
- Sathe, Y.; Gupta, P.; Bawase, M.; Lamsal, L.; Patadia, F.; Thipse, S. Surface and satellite observations of air pollution in India during COVID-19 lockdown: Implication to air quality. Sustain. Cities Soc. 2021, 66, 102688. [Google Scholar] [CrossRef]
- Aguiar-Conraria, L.; Soares, M.J. Business cycle synchronization and the Euro: A wavelet analysis. J. Macroecon. 2011, 33, 477–489. [Google Scholar] [CrossRef]
- Anh, D.T.; Thanh, L.H. An efficient implementation of k-means clustering for time series data with DTW distance. Int. J. Bus. Intell. Data Min. 2015, 10, 213–232. [Google Scholar] [CrossRef]
- Keogh, E.; Ratanamahatana, C.A. Exact indexing of dynamic time warping. Knowl. Inf. Syst. 2005, 7, 358–386. [Google Scholar] [CrossRef]
- Giorgino, T. Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package. J. Stat. Softw. 2009, 31, 1–25. [Google Scholar] [CrossRef] [Green Version]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysis of level relationships. J. Appl. Econ. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Romilly, P.; Song, H.; Liu, X. Car ownership and use in Britain: A comparison of the empirical results of alternative cointegration estimation methods and forecasts. Appl. Econ. 2001, 33, 1803–1818. [Google Scholar] [CrossRef]
- Tao, C.L.; Li, L.C.; Hu, M.X.; Cheng, B.D.; Diao, G. Can Industrial Restructuring Improve Urban Air Quality?—A Quasi-Experiment in Beijing during the COVID-19 Pandemic. Atmosphere 2022, 13, 119. [Google Scholar] [CrossRef]
- Wu, B.; Liu, C.; Zhang, J.; Du, J.; Shi, K. The multifractal evaluation of PM2.5-O3 coordinated control capability in China. Ecol. Indic. 2021, 129, 107877. [Google Scholar] [CrossRef]
Relation | 2020 | 2021 |
---|---|---|
Beijing–Zhangjiakou | Test1: F = 8.351 *** Test2: t = −4.662 *** | Test1: F = 23.827 *** Test2: t = −6.836 *** |
Beijing–Chengde | Test1: F = 6.602 *** Test2: t = −1.579 * | Test1: F = 22.813 *** Test2: t = −6.418 *** |
Chengde–Zhangjiakou | Test1: F = 17.959 *** Test2: t = −7.035 *** | |
Beijing–Tianjin | Test1: F = 6.363 *** Test2: t = −3.945 *** | Test1: F = 5.657 *** Test2: t = −2.232 ** |
Beijing–Langfang | Test1: F = 18.124 *** Test2: t = −6.449 *** | Test1: F = 22.595 *** Test2: t = −6.4982 *** |
Beijing–Baoding | Test1: F = 12.727 *** Test2: t = −5.909 *** | Test1: F = 7.263 *** Test2: t = −4.6333 *** |
Langfang–Tiannjin | Test1: F = 6.363 *** Test2: t = −3.945 *** | Test1: F = 13.91872 *** Test2: t = −6.439 *** |
Tianjin–Chengde | Test1: F = 23.623 *** Test2: t = −7.467 *** | Test1: F = 21.828 *** Test2: t = −6.539 *** |
Baoding–Zhangjiakou | Test1: F = 15.362 *** Test2: t = −6.726 *** | Test1: F = 13.365 *** Test2: t = −5.148 *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Dong, J.; Diao, G.; Lan, Q. Has COVID-19 Altered the Air Quality Conduction Relationship in Beijing and Neighboring Cities?—A Test Based on Dynamic Periodic Conformance. Atmosphere 2022, 13, 1188. https://doi.org/10.3390/atmos13081188
Zhang M, Dong J, Diao G, Lan Q. Has COVID-19 Altered the Air Quality Conduction Relationship in Beijing and Neighboring Cities?—A Test Based on Dynamic Periodic Conformance. Atmosphere. 2022; 13(8):1188. https://doi.org/10.3390/atmos13081188
Chicago/Turabian StyleZhang, Min, Jianbo Dong, Gang Diao, and Qiaomei Lan. 2022. "Has COVID-19 Altered the Air Quality Conduction Relationship in Beijing and Neighboring Cities?—A Test Based on Dynamic Periodic Conformance" Atmosphere 13, no. 8: 1188. https://doi.org/10.3390/atmos13081188
APA StyleZhang, M., Dong, J., Diao, G., & Lan, Q. (2022). Has COVID-19 Altered the Air Quality Conduction Relationship in Beijing and Neighboring Cities?—A Test Based on Dynamic Periodic Conformance. Atmosphere, 13(8), 1188. https://doi.org/10.3390/atmos13081188