Evaluating Gas Emissions from Different Feed Cropping Systems in the North China Plain: A Two-Year Field Measurement
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Experimental Site
2.2. Experimental Design
2.3. Dry Matter Yields and Nutritive Parameters
2.4. Measurements of Gaseous Emissions
2.4.1. N2O and CH4 Measurements
2.4.2. NH3 Measurements
2.4.3. Calculation of Emission Intensities
2.5. Data Analysis
3. Results
3.1. DM and CP Production of Different Rotation Systems
3.2. N2O and CH4 Emissions of Different Cropping Systems
3.3. NH3 Emissions of Different Rotation Systems
3.4. Greenhouse Gases Emissions of Different Rotation Systems
3.5. Emissions Intensities of Different Rotation Systems
4. Discussion
4.1. Performance of Different Cropping Systems
4.2. Gaseous Emissions
4.3. Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- MOA, Ministry of Agriculture of the People’s Republic of China. National Crop Structure Adjustment Plan 2016–2020. 2016. Available online: http://www.moa.gov.cn/nybgb/2016/diwuqi/201711/t20171127_5920851.htm (accessed on 19 June 2022).
- Chang, D.; Wang, X.; Tian, X.; Du, W. Studies on multiple intercropping effects and quality of autumn sown triticale and sweet sorghum in central Gansu Province. Acta Prataculturae Sin. 2021, 30, 212–220. [Google Scholar] [CrossRef]
- He, P.; Wang, Y.; Jie, H.; Deng, H.; Xing, H.; Jie, Y. Effects of different cutting time on the forage yield and nutritional quality of forage triticale. Acta Agrestia Sin. 2021, 29, 2609–2614. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, L.; Wei, L. Comparison test of different triticale varieties in winter fallow saline farmland. Crops 2021, 4, 191–195. [Google Scholar] [CrossRef]
- Zhao, F.; Zhao, Y.; Tian, X.; Du, W. Comprehensive evaluation of forage yield and nutritional value of 30 triticale cultivars in semi-arid irrigation area of Lintao, Gansu Province. Grassl. Turf. 2021, 41, 10–16. [Google Scholar] [CrossRef]
- Gallo, A.; Fancello, F.; Ghilardelli, F.; Zara, S.; Spanghero, M. Effects of several commercial or pure lactic acid bacteria inoculants on fermentation and mycotoxin levels in high-moisture corn silage. Anim. Feed Sci. Technol. 2002, 286, 115256. [Google Scholar] [CrossRef]
- Zhao, M.; Feng, Y.; Shi, Y.; Shen, H.; Hu, H.; Luo, Y.; Xu, L.; Kang, J.; Xing, A.; Wang, S.; et al. Yield and quality properties of silage maize and their influencing factors in China. Sci. China Life Sci. 2022, 65, 1–12. [Google Scholar] [CrossRef]
- Liu, H.L.; Lou, Y.J. Study on degradation character of Leymus chinensis and alfalfa products in the cow rumen. Chin. J. Grassl. 2006, 28, 47–51, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Ning, T.; Su, L.; Jiao, N.; Cao, M.; Zhao, C.; Li, Z. Effects of relay intercropping of spring-sown and summer-sown maize on the nutritive values of whole-crop forage at different nitrogen levels. Sci. Agric. Sin. 2006, 39, 2042–2047, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Ye, D.J.; Gao, Q.; He, W.T.; He, P. Effect of N application on N utilization and N balance in spring maize. J. Plant Nutrit. Fertiliz. 2010, 16, 552–558, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Tharangani, R.M.H.; Yakun, C.; Zhao, L.; Shen, Y.; Ma, L.; Bu, D. Proposal and validation of integrated alfalfa silage quality index (ASQI) method for the quality assessment of alfalfa silage for lactating dairy cows. Anim. Feed Sci. Technol. 2022, 289, 115339. [Google Scholar] [CrossRef]
- Wang, M.; Chen, M.; Bai, J.; Zhang, J.; Su, R.; Franco, M.; Ding, Z.; Zhang, X.; Zhang, Y.; Guo, X. Ensiling characteristics, in vitro rumen fermentation profile, methane emission and archaeal and protozoal community of silage prepared with alfalfa, sainfoin and their mixture. Anim. Feed Sci. Technol. 2022, 284, 115154. [Google Scholar] [CrossRef]
- Arunrat, N.; Wang, C.; Pumijumnong, N. Alternative cropping systems for greenhouse gases mitigation in rice field: A case study in Phichit province of Thailand. J. Clean. Prod. 2016, 133, 657–671. [Google Scholar] [CrossRef]
- Afreh, D.; Zhang, J.; Guan, D.H.; Liu, K.L.; Song, Z.W.; Zheng, C.Y.; Deng, A.X.; Feng, X.M.; Zhang, X.; Wu, Y.; et al. Long-term fertilization on nitrogen use efficiency and greenhouse gas emissions in a double maize cropping system in subtropical China. Soil Till. Res. 2018, 80, 259–267. [Google Scholar] [CrossRef]
- Kavdir, Y.; Hellebrand, H.J.; Kern, J. Seasonal variations of nitrous oxide emission in relation to nitrogen fertilization and energy crop types in sandy soil. Soil Till. Res. 2008, 98, 175–186. [Google Scholar] [CrossRef]
- Lewandowski, I.; Schmidt, U. Nitrogen, energy and land use efficiencies of miscanthus, reed canary grass and triticale as determined by the boundary line approach. Agri. Ecosyst. Environ. 2006, 112, 335–346. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.; Castro, C.; Coutinho, J.; Trindade, H. Grain legume-based cropping systems can mitigate greenhouse gas emissions from cereal under Mediterranean conditions. Agri. Ecosyst. Environ. 2021, 313, 107406. [Google Scholar] [CrossRef]
- Scalise, A.; Pappa, V.A.; Gelsomino, A.; Rees, R.M. Pea cultivar and wheat residues affect carbon/nitrogen dynamics in pea-triticale intercropping: A microcosms approach. Sci. Tot. Environ. 2017, 592, 436–450. [Google Scholar] [CrossRef]
- Thomas, S.M.; Francis, G.S.; Barlow, H.E.; Beare, M.H.; Tabley, F.J. Winter grazing of forages-soil moisture and tillage methods impact nitrous oxide emissions and dry matter production. Proc. N. Z. Grassl. Assoc. 2004, 66, 135–140. [Google Scholar] [CrossRef]
- Adviento-Borbe, M.A.A.; Haddix, M.L.; Binder, D.L.; Walters, D.T.; Dobermann, A. Soil greenhouse gas fluxes and global warming potential in four high-yielding maize systems. Global Change Biol. 2007, 13, 1972–1988. [Google Scholar] [CrossRef]
- Tan, Y.C.; Xu, C.; Liu, D.X.; Wu, W.L.; Lal, R.; Meng, F.Q. Effects of optimized N fertilization on greenhouse gas emission and crop production in the North China Plain. Field Crop Res. 2017, 205, 135–146. [Google Scholar] [CrossRef]
- Huang, T.; Hu, X.K.; Gao, B.; Yang, H.; Huang, C.C.; Ju, X.T. Improved nitrogen management as a key mitigation to net global warming potential and greenhouse gas intensity on the North China Plain. Soil Sci. Soc. Am. J. 2018, 82, 136–146. [Google Scholar] [CrossRef]
- Neftel, A.; Blatter, A.; Gut, A.; Hgger, D.; Nathaus, F.J. NH3 soil and soil surface gas measurements in a triticale wheat field. Atmos. Environ. 1998, 32, 499–505. [Google Scholar] [CrossRef]
- Richter, U.; Smith, J.; Brümmer, C. Net summertime emission of ammonia from corn and triticale fields. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 7–22 April 2016; p. EPSC2016-5478. [Google Scholar]
- Wang, M.; Ren, T.; Zhao, M.; Li, S.; Wang, X.; Li, L.; Chen, C. Matter production and resources use efficiency of double-cropping silage maize system. Acta Agron. Sin. 2007, 33, 1316–1323. Available online: https://zwxb.chinacrops.org/CN/Y2007/V33/I08/1316 (accessed on 8 March 2022).
- Wang, M.Y.; Zhao, M.; Ren, T.Z.; Li-Juan, L.I. Study on the characteristic of material production and resources efficiency of plastic film cultivation in double-cropping silage maize system. J. Maize Sci. 2008, 16, 127–128. [Google Scholar] [CrossRef]
- Li, L.J.; Wang, M.Y.; Xue, Q.L.; Cui, Y.H.; Hou, H.P.; Jun-Zhu, G.E.; Zhao, M. Yield performance and resource efficiency of double-cropping maize in Yellow-Huai-Hai river valleys region. Acta Agronomica Sin. 2011, 37, 1229–1234. [Google Scholar] [CrossRef]
- Wu, D. A Systematic Study on Adaptability of Maize-Maize Double Cropping in The Hebei Plain. Master’s Dissertation, Hebei Agricultural University, Baoding, China, 2014. [Google Scholar]
- Cai, Y.; Ding, W.; Luo, J. Nitrous oxide emissions from Chinese maize-wheat rotation systems: A 3-year field measurement. Atmos. Environ. 2013, 65, 112–122. [Google Scholar] [CrossRef]
- Li, H.; Qiu, J.J.; Wang, L.G.; Tang, H.J.; Li, C.S.; Van Ranst, E. Modelling impacts of alternative farming management practices on greenhouse gas emissions from a winter wheat-maize rotation system in China. Agr. Ecosyst. Environ. 2010, 135, 24–33. [Google Scholar] [CrossRef]
- Sherman, J.F.; Young, E.O.; Jokela, W.E.; Cavadini, J. Impacts of low-disturbance dairy manure incorporation on ammonia and greenhouse gas fluxes in a corn silage–winter rye cover crop system. J. Environ. Qual. 2021, 50, 836–846. [Google Scholar] [CrossRef]
- Sulaiman, M.F.; Wagner-Riddle, C.; Brown, S.E.; Warland, J.; Voroney, P.; Rochette, P. Greenhouse gas mitigation potential of annual and perennial dairy feed crop systems. Agri. Ecosyst. Environ. 2017, 245, 52–62. [Google Scholar] [CrossRef]
- Goglio, P.; Smith, W.N.; Grant, B.B.; Desjardins, R.L.; Gao, X.; Hanis, K.; Tenuta, M.; Campell, C.A.; McConkey, B.G.; Nemecek, T.; et al. A comparison of methods to quantify greenhouse gas emissions of cropping systems in LCA. J. Clean. Prod. 2017, 172, 4010–4017. [Google Scholar] [CrossRef] [Green Version]
- Shang, Q.; Yang, X.; Gao, C.; Wu, P.; Liu, J.; Xu, Y.; Shen, Q.; Zou, J.; Guo, S. Net annual global warming potential and greenhouse gas intensity in Chinese double rice-cropping systems: A 3-year field measurement in long-term fertilizer experiments. Global Change Biol. 2011, 17, 2196–2210. [Google Scholar] [CrossRef]
- Ali, S.A.; Tedone, L.; Verdini, L.; Mastro, G.D. Effect of different crop management systems on rainfed durum wheat greenhouse gas emissions and carbon footprint under mediterranean conditions. J. Clean. Prod. 2017, 140, 608–621. [Google Scholar] [CrossRef]
- Yang, H.; Yang, X.; Cheng, G.; Wang, Y.; Cai, H. Effects of silage on the nutrient preservation of corn harvested in different periods. China Herbiv. Sci. 2013, 33, 36–39. [Google Scholar]
- Kane, D. Carbon Sequestration Potential on Agricultural Lands: A Review of Current Science and Available Practices. Available online: https://sustainableagriculture.net/publications/ (accessed on 10 March 2022).
- Roelcke, M.; Li, S.X.; Tian, X.H.; Gao, Y.J.; Richter, J. In situ comparisons of ammonia volatilization from N fertilizers in Chinese loess soils. Nutr. Cycl. Agroecosyst. 2002, 62, 73–88. [Google Scholar] [CrossRef]
- Pacholski, A.; Cai, G.; Nieder, R.; Richter, J.; Fan, X.; Zhu, Z.; Roelcke, M. Calibration of a simple method for determining ammonia volatilization in the field—Comparative measurements in Henan Province, China. Nutr. Cycl. Agroecosyst. 2006, 74, 259–273. [Google Scholar] [CrossRef]
- Gericke, D.; Pacholski, A.; Kage, H. Measurement of ammonia emissions in multi-plot field experiments. Biosyst. Eng. 2011, 108, 164–173. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- IPCC. Guidelines for National Greenhouse Gas Inventories. Volume 4: Agriculture, Forestry and Other Land Use. Chapter 10: Emissions from Livestock and Manure Management; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- Dong, X.; Liu, X.; Ren, C.; Ji, Y.; Zhang, L.; Ju, X. Fate and residual effect of fertilizer nitrogen under winter wheat-summer maize rotation in north China Plain in meadow cinnamon soils. Sci. Agric. Sin. 2012, 45, 2209–2216, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Yan, X.; Ti, C.; Vitousek, P.; Chen, D.; Leip, A.; Cai, Z.; Zhu, Z. Fertilizer nitrogen recovery efficiencies in crop production systems of China with and without consideration of the residual effect of nitrogen. Environ. Res. Lett. 2014, 9, 95002. [Google Scholar] [CrossRef] [Green Version]
- Yoshihira, T.; Nakamura, I.; Kosaka, S. High-yielding forage crop rotation combined with early maturity in maize and sorghum cultivars with winter rye harvested at heading stage in central and southern Hokkaido, Japan. J. Rakuno Gakuen Univ. Nat. Sci. 2007, 31, 189–196. [Google Scholar]
- Thompson, N.M.; Armstrong, S.D.; Roth, R.T.; Ruffatti, M.D.; Reeling, C.J. Short-run net returns to a cereal rye cover crop mix in a midwest corn-soybean rotation. Agron. J. 2020, 112, 1068–1083. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.; Jin, G.; Luo, Z.; Wang, H.; Qi, Y.; Liu, X.; Shen, Y. Production state and yield potential of wheat and maize in low-medium yield farmlands in Hebei Plain. Chin. J. Eco-Agri. 2016, 24, 1123–1134, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Chen, G.; Cao, H.; Liang, J.; Ma, W.; Guo, L.; Zhang, S.; Jiang, R.; Zhang, H.; Gouding, K.; Zhang, F. Factors affecting nitrogen use efficiency and grain yield of summer maize on smallholder farms in the North China Plain. Sustainability 2018, 10, 363. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Lobell, D.B. Assessing the heterogeneity and persistence of farmers′ maize yield performance across the North China Plain. Field Crops Res. 2017, 205, 55–66. [Google Scholar] [CrossRef]
- Liang, W.L.; Carberry, P.; Wang, G.Y.; Lü, R.H.; Lü, H.Z.; Xia, A.P. Quantifying the yield gap in wheat–maize cropping systems of the Hebei Plain, China. Field Crop Res. 2011, 124, 180–185. [Google Scholar] [CrossRef]
- Gao, Z.; Feng, H.; Liang, X.; Zhang, L.; Lin, S.; Zhao, X.; Shen, S.; Zhou, L.; Zhou, S. Limits to maize productivity in the North China Plain: A comparison analysis for spring and summer maize. Field Crop Res. 2018, 228, 39–47. [Google Scholar] [CrossRef]
- Krauss, M.; Ruser, R.; Muller, T.; Hansen, S.; Mader, P.; Gattinger, A. Impact of reduced tillage on greenhouse gas emissions and soil carbon stocks in an organic grass-clover ley-winter wheat cropping sequence. Agr. Ecosyst. Environ. 2017, 239, 324–333. [Google Scholar] [CrossRef]
- Shen, Y.W.; Sui, P.; Huang, J.X.; Wang, D.; Whalen, J.K.; Chen, Y.Q. Global warming potential from maize and maize-soybean as affected by nitrogen fertilizer and cropping practices in the North China Plain. Field Crop Res. 2018, 225, 117–127. [Google Scholar] [CrossRef]
- Grant, T.; Beer, T. Life cycle assessment of greenhouse gas emissions from irrigated maize and their significance in the value chain. Aust. J. Exp. Agr. 2008, 48, 375–381. [Google Scholar] [CrossRef]
- Zhang, Z.; An, J.; Han, Y.; Feng, L.; Li, X.; Xiong, S.; Xing, F.; Xin, M.; Li, Y.; Wang, Z. Advantages of an Orychophragmus violaceus-maize rotation in reducing greenhouse gas emissions and reactive nitrogen losses and increasing net ecosystem economic benefits on the North China Plain. J. Clean. Prod. 2021, 317, 128426. [Google Scholar] [CrossRef]
- Kuang, W.; Gao, X.; Tenuta, M.; Zeng, F. A global meta-analysis of nitrous oxide emission from drip-irrigated cropping system. Glob. Change Biol. 2021, 27, 3244–3256. [Google Scholar] [CrossRef]
- Zhang, X.; Meng, F.; Li, H.; Wang, L.; Wu, S.; Xiao, G.; Wu, W. Optimized fertigation maintains high yield and mitigates N2O and NO emissions in an intensified wheat–maize cropping system. Agr. Water Manag. 2019, 211, 26–36. [Google Scholar] [CrossRef]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Tot. Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Angst, T.E.; Six, J.; Reay, D.S.; Sohi, S.P. Impact of pine chip biochar on trace greenhouse gas emissions and soil nutrient dynamics in an annual triticale system in California. Agric. Ecosyst. Environ. 2014, 191, 17–26. [Google Scholar] [CrossRef]
- Zhang, A.F.; Liu, Y.M.; Pan, G.X.; Hussain, Q.; Li, L.Q.; Zheng, J.W.; Zhang, X.H. Effect of biochar amendment on maize yield and greenhouse gas emissions from a soil organic carbon poor calcareous loamy soil from Central China Plain. Plant Soil. 2012, 351, 263–275. [Google Scholar] [CrossRef]
- Zhang, R. Effect of the Nitrogen Application on the Yield and Quality of Forage Maize. Master Dissertation, Northwest A & F University, Yangling, China, 2005. [Google Scholar]
- Chen, X.; Boeckx, P.; Shen, S.; Van Cleemput, O. Emission of N2O from triticale (Lolium perenne L.). Biol. Fert. Soils. 1999, 28, 393–396. [Google Scholar] [CrossRef]
- Sha, Z.; Ma, X.; Loick, N.; Lv, T.; Cardenas, L.M.; Ma, Y.; Liu, X.; Misselbrook, T. Nitrogen stabilizers mitigate reactive N and greenhouse gas emissions from an arable soil in North China Plain: Field and laboratory investigation. J. Clean. Prod. 2020, 258, 121025. [Google Scholar] [CrossRef]
- Yao, Z.Y.; Wang, Z.; Li, J.; Bedoussac, L.; Zhang, S.Q.; Li, Y.Y.; Cao, W.D.; Zhai, B.N.; Wang, Z.H.; Gao, Y.J. Screen for sustainable cropping systems in the rain-fed area on the Loess Plateau of China. Soil Till. Res. 2018, 176, 26–35. [Google Scholar] [CrossRef]
- Fischer, R.A.; Connor, D.J. Issues for cropping and agricultural science in the next 20 years. Field Crop Res. 2018, 222, 121–142. [Google Scholar] [CrossRef]
- Wang, J.; Wang, E.R.; Yin, H.; Feng, L.P.; Zhang, J.P. Declining yield potential and shrinking yield gaps of maize in the North China Plain. Agr. Forest Meteorol. 2014, 195, 89–101. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.; Tao, F.L.; Wang, P.; Wei, X. Spatio-temporal patterns of winter wheat yield potential and yield gap during the past three decades in North China. Field Crop Res. 2017, 206, 11–20. [Google Scholar] [CrossRef]
- Liu, B.H.; Chen, X.P.; Meng, Q.F.; Yang, H.S.; van Wart, J. Estimating maize yield potential and yield gap with agro-climatic zones in China distinguish irrigated and rainfed conditions. Agr. For. Meteorol. 2017, 239, 108–117. [Google Scholar] [CrossRef]
- Lv, S.; Yang, X.G.; Lin, X.M.; Liu, Z.J.; Zhao, J.; Li, K.N.; Mu, C.Y.; Chen, X.C.; Chen, F.J.; Mi, G.H. Yield gap simulations using ten maize cultivars commonly planted in Northeast China during the past five decades. Agr. For. Meteorol. 2015, 205, 1–10. [Google Scholar] [CrossRef]
Soil Depth (cm) | pH | Organic Matter (g kg−1) | Total N (g kg−1) | Alkaline N (mg kg−1) | NO3−-N (mg kg−1) | NH4+-N (mg kg−1) |
---|---|---|---|---|---|---|
0–30 | 7.72 | 12.64 | 0.86 | 61.42 | 14.62 | 5.66 |
30–60 | 7.96 | 9.00 | 0.44 | 38.16 | 6.84 | 3.18 |
60–90 | 8.11 | 7.07 | 0.24 | 20.98 | 3.72 | 1.04 |
Stage | Date of Events | N Application Rate (N kg ha−1) | ||||
---|---|---|---|---|---|---|
WW-SuM | Tr-SuM | Tr-SpM | Tr-DFM | DFM | ||
Stage i | 18 October 2015 | 100 | 100 | 75 | 75 | na |
Stage ii | 26 March 2016 | 100 | 100 | 75 | 75 | na |
Stage iii | 23 April 2016 | na | na | 150 | 100 | 125 |
Stage iv | 16 June 2016 | 125 | 125 | 150 | 100 | 125 |
Stage v | 29 July 2016 | 125 | 125 | na | 75 | 75 |
Total in the 1st year | 450 | 450 | 450 | 425 | 325 | |
Stage i | 10 October 2016 | 100 | 100 | 75 | 75 | na |
Stage ii | 10 March 2017 | 100 | 100 | 75 | 75 | na |
Stage iii | 21 April 2017 | na | na | 150 | 100 | 125 |
Stage iv | 8 June 2017 | 125 | 125 | 150 | 100 | 125 |
Stage v | 22 July 2017 | 125 | 125 | na | 75 | 75 |
Total in the 2nd year | 450 | 450 | 450 | 425 | 325 |
Rotations | Mean DM (kg ha−1 yr−1) | Mean CP (kg ha−1 yr−1) | PFPDM (kg kg−1) | PFPCP (kg kg−1) |
---|---|---|---|---|
WW-SuM | 29,428 ± 1257 b | 2301 ± 136 a | 65.40 ± 2.79 b | 5.11 ± 0.30 b |
Tr-SuM | 22,923 ± 3081 c | 1861 ± 233 b | 50.94 ± 6.85 c | 4.14 ± 0.52 c |
Tr-SpM | 20,244 ± 850 c | 2158 ± 225 a | 44.99 ± 1.89 c | 4.80 ± 0.50 bc |
Tr-DFM | 33,320 ± 1264 a | 2579 ± 135 a | 78.40 ± 2.97 a | 6.07 ± 0.32 a |
DFM | 21,742 ± 1825 c | 1715 ± 109 b | 66.90 ± 5.62 b | 5.28 ± 0.34 b |
Rotations | N2O Emission (kg ha−1 yr−1) | CH4 Uptake (kg ha−1 yr−1) | 2-Year Average GHGdirecct (CO2 kg ha−1 yr−1) | |||||
---|---|---|---|---|---|---|---|---|
2015–2016 | 2016–2017 | Average | AEFN2O (%) | 2015–2016 | 2016–2017 | Average | ||
WW-SuM | 5.75 ± 0.23 b | 6.16 ± 0.13 b | 5.96 ± 0.18 b | 0.84 ± 0.03 ab | 2.25 ± 0.70 a | 1.94 ± 0.15 a | 2.10 ± 0.42 a | 1521 ± 59 b |
Tr-SuM | 5.59 ± 0.50 b | 5.73 ± 0.24 bc | 5.66 ± 0.24 b | 0.80 ± 0.03 ab | 2.14 ± 0.14 a | 2.85 ± 0.69 ab | 2.50 ± 0.38 a | 1430 ± 74 b |
Tr-SpM | 5.39 ± 0.93 b | 5.24 ± 0.42 cd | 5.31 ± 0.62 b | 0.75 ± 0.09 b | 2.30 ± 0.51 a | 1.89 ± 0.64 a | 2.10 ± 0.59 a | 1348 ± 181 b |
Tr-DFM | 7.50 ± 1.59 a | 6.83 ± 0.29 a | 7.17 ± 0.98 a | 1.08 ± 0.15 a | 2.18 ± 0.22 a | 3.51 ± 0.91 b | 2.85 ± 0.51 a | 1820 ± 274 a |
DFM | 5.67 ± 0.54 b | 5.12 ± 0.18 d | 5.39 ± 0.35 b | 0.98 ± 0.06 a | 2.08 ± 0.66 a | 2.54 ± 0.65 ab | 2.31 ± 0.66 a | 1364 ± 110 b |
Timing of N Application | WW-SuM | Tr-SuM | Tr-SpM | Tr-DFM | DFM |
---|---|---|---|---|---|
Stage i | nd | nd | nd | nd | nm |
Stage ii | 8.60 ± 1.04 | 8.21 ± 0.83 | 7.40 ± 1.41 | 8.81 ± 1.15 | nm |
Stage iii | nm | nm | 4.07 ± 1.05 | 3.81 ± 0.40 | 3.56 ± 0.44 |
Stage iv | 7.83 ± 0.59 | 7.76 ± 1.08 | 7.86 ± 1.19 | 7.15 ± 0.69 | 6.81 ± 0.16 |
Stage v | 3.55 ± 0.20 | 3.00 ± 0.45 | nm | 4.00 ± 0.48 | 3.06 ± 0.80 |
Total (kg ha−1yr−1) | 19.98 ± 1.68 a | 18.97 ± 2.46 a | 19.33 ± 3.86 a | 23.77 ± 2.69 a | 13.43 ± 1.85 b |
GHGIndirect (CO2-e kg ha−1yr−1) | 52.65 ± 4.5 a | 502.7 ± 6.5 a | 51.22 ± 10.2 a | 62.99 ± 7.1 a | 35.59 ± 4.9 b |
AEFNH3 (%) | 4.4 ± 0.37 b | 4.2 ± 0.54 b | 4.3 ± 0.86 b | 5.6 ± 0.63 a | 4.1 ± 0.56 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liao, W.; Liu, C.; Zhang, X.; Wang, S.; Fan, Y.; Gao, Z. Evaluating Gas Emissions from Different Feed Cropping Systems in the North China Plain: A Two-Year Field Measurement. Atmosphere 2022, 13, 1153. https://doi.org/10.3390/atmos13071153
Liao W, Liu C, Zhang X, Wang S, Fan Y, Gao Z. Evaluating Gas Emissions from Different Feed Cropping Systems in the North China Plain: A Two-Year Field Measurement. Atmosphere. 2022; 13(7):1153. https://doi.org/10.3390/atmos13071153
Chicago/Turabian StyleLiao, Wenhua, Chunjing Liu, Xinxing Zhang, Shanshan Wang, Yujing Fan, and Zhiling Gao. 2022. "Evaluating Gas Emissions from Different Feed Cropping Systems in the North China Plain: A Two-Year Field Measurement" Atmosphere 13, no. 7: 1153. https://doi.org/10.3390/atmos13071153
APA StyleLiao, W., Liu, C., Zhang, X., Wang, S., Fan, Y., & Gao, Z. (2022). Evaluating Gas Emissions from Different Feed Cropping Systems in the North China Plain: A Two-Year Field Measurement. Atmosphere, 13(7), 1153. https://doi.org/10.3390/atmos13071153