Impact of AIS Data Thinning on Ship Air Pollutant Emissions Inventories
Abstract
:1. Introduction
2. Data
3. Methodology
3.1. Data Thinning
3.2. Theoretical Analysis
3.3. Verification
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goldsworthy, L.; Goldsworthy, B. Modelling of ship engine exhaust emissions in ports and extensive coastal waters based on terrestrial AIS data—An Australian case study. Environ. Model. Softw. 2015, 63, 45–60. [Google Scholar] [CrossRef]
- Aksoyoglu, S.; Baltensperger, U.; Prév?T, A.S. Contribution of ship emissions to the concentration and deposition of air pollutants in Europe. Atmos. Chem. Phys. 2016, 16, 1895–1906. [Google Scholar] [CrossRef] [Green Version]
- Brandt, J.; Silver, D.J.; Christensen, H.J.; Andersen, S.M.; Bnlkke, H.J.; Sigsgaard, T. Assessment of past, present and future health-cost externalities of air pollution in Europe and the contribution from international ship traffic using the EVA model system. Atmos. Chem. Phys. 2013, 13, 7747–7764. [Google Scholar] [CrossRef] [Green Version]
- The Research Group of the Second National Pollution Source Census. Mobile Source Census Technical Specifications Formulating, and Organizing and Implementing Pollutant Emissions Accounting from Ships for the Second National Pollution Source Census. China Waterborne Transport Research Institute: Beijing, China, 2019. Available online: https://www.mee.gov.cn/xxgk2018/xxgk/xxgk01/202006/t20200610_783547.html (accessed on 10 May 2022).
- Liu, H.; Shang, Y.; Jin, X.-X.; Fu, X.-L. Review of methods and progress on shipping emission inventory studies. J. Environ. Sci. 2018, 38, 1–12. (In Chinese) [Google Scholar] [CrossRef] [PubMed]
- Olivier, J.; Peters, J. International Marine and Aviation Bunker Fuel: Trends, Ranking of Countries and Comparison with National CO2 Emissions; RIVM Report 773301002; National Institute of Public Health and the Environment (RIVM): Catharijnesingel, The Netherlands, 1999; Available online: http://www.rivm.nl/bibliotheek/rapporten/773301002.pdf (accessed on 10 May 2022).
- Dentener, F.; Drevet, J.; Lamarque, J.F.; Bey, I.; Eickhout, B.; Fiore, A.M.; Hauglustaine, D.; Horowitz, L.W.; Krol, M.; Kulshrestha, U.C.; et al. Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Glob. Biogeochem. Cycles 2006, 20, 16615. [Google Scholar] [CrossRef]
- Jalkanen, J.P.; Johansson, L.; Kukkonen, J.; Brink, A.; Kalli, J.; Stipa, T. Extension of an assessment model of ship traffic exhaust emissions for particulate matter and carbon monoxide. Atmos. Chem. Phys. 2012, 12, 2641–2659. [Google Scholar] [CrossRef] [Green Version]
- International Maritime Organization. The 2ed IMO GHG Study 2014; International Maritime Organization: London, UK, 2009. [Google Scholar]
- Yang, D.; Kwan, S.H.; Lu, T.; Fu, Q.; Cheng, J.; Streets, D.G.; Wu, Y.; Li, J. An Emission Inventory of Marine Vessels in Shanghai in 2003. Environ. Sci. Technol. 2007, 41, 5183–5190. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.Y.; Shen, Y.; Zhang, J. On the ship pollutant emission inventory in Shanghai port. J. Saf. Environ. 2012, 12, 57–64. (In Chinese) [Google Scholar]
- Li, Z.; He, L. Emission inventory estimation methods study of ship pollutants. Guangxi. J. Light Ind. 2011, 150, 79–80. (In Chinese) [Google Scholar]
- Ng, S.K.W.; Loh, C.; Lin, C.; Booth, V.; Chan, J.W.M.; Yip, A.C.K.; Li, Y.; Lau, A.K.H. Policy change driven by an AIS-assisted marine emission inventory in HongKong and the Pearl River Delta. Atmos. Environ. 2013, 76, 102–112. [Google Scholar] [CrossRef]
- Chen, D.-S.; Zhao, Y.-H.; Nelson, P.; Li, Y.; Wang, X.-T.; Zhou, Y.; Lang, J.-L.; Guo, X.-R. Estimating ship emissions based on AIS data for port of Tianjin, China. Atmos. Environ. 2016, 145, 10–18. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Z.; Liu, Y.-Y.; Chen, S.-Y.; Wu, Y.-C.; He, Y.-Y.; Yang, X.-Y. Vessels’ Air Pollutant Emissions Inventory and Emission Characteristics in the Xiamen Emission Control Area. Environ. Sci. 2020, 41, 3572–3580. (In Chinese) [Google Scholar]
- Tokuslu, A. Assessment of Environmental Costs of Ship Emissions: Case Study on the Samsun Port. Environ. Eng. Manag. J. 2021, 20, 739–747. [Google Scholar] [CrossRef]
- Toscano, D.; Murena, F.; Quaranta, F.; Mocerino, L. Assessment of the impact of ship emissions on air quality based on a complete annual emission inventory using AIS data for the port of Naples. Sci. Total Environ. 2021, 232, 146869. [Google Scholar] [CrossRef]
- Yang, L.; Zhang, Q.; Zhang, Y.; Lv, Z.; Mao, H. An AIS-based emission inventory and the impact on air quality in Tianjin port based on localized emission factors. Sci. Total Environ. 2021, 783, 146869. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.-R.; Zhang, Y.; Patton, A.P.; Ma, W.-C.; Kan, H.-D.; Wu, L.-B.; Fung, F.; Wang, S.-X.; Ding, D.; Walker, K. Projection of ship emissions and their impact on air quality in 2030 in Yangtze River delta, China. Environ. Pollut. 2020, 263, 114643. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, Y.; Ma, D.; Lu, J.; Luo, W.; Fu, Y.; Li, S.; Feng, J.; Huang, C.; Ge, W. Port-Related Emissions, Environmental Impacts and Their Implication on Green Traffic Policy in Shanghai. Sustainability 2020, 12, 4162. [Google Scholar] [CrossRef]
- EPA. Nonroad Engine and Vehicle Emission: Study Report and Appendixes—Draft Report; Technical Report; EPA: Frankfurt, Germany, 1991. [Google Scholar]
- Perez, H.M.; Chang, R.; Billings, R.; Kosub, T.L. Automatic Identification Systems (AIS) Data Use in Marine Vessel Emission Estimation. In Proceedings of the 18th Annual International Emissions Inventory Conference, Baltimore, MD, USA, 14–17 April 2009. [Google Scholar]
- International Maritime Organization. The Third IMO GHG Study 2014; International Maritime Organization: London, UK, 2014. [Google Scholar]
- Li, C.; Yuan, Z.-B.; Ou, J.-M.; Fan, X.-L.; Ye, S.-Q.; Xiao, T.; Shi, Y.-Q.; Huang, Z.-J.; Ng, S.K.W.; Zhong, Z.-M.; et al. An AIS-based high-resolution ship emission inventory and its uncertainty in Pearl River Delta region, China. Sci. Total Environ. 2016, 573, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Fan, Q.-Z.; Zhang, Y.; Ma, W.C.; Ma, H.-X.; Feng, J.-L.; Yu, Q.; Yang, X.; Ng, S.K.W.; Fu, Q.-Y.; Chen, L.-M. Spatial and seasonal dynamics of ship emissions over the Yangtze River Delta and East China Sea and their potential environ-mental influence. Environ. Sci. Technol. 2016, 50, 1322–1329. [Google Scholar] [CrossRef] [PubMed]
- Jalkanen, J.P.; Brink, A.; Kalli, J.; Pettersson, H.; Kukkonen, J.; Stipa, T. A modelling system for the exhaust emissions of marine traffic and its application in the baltic sea area. Atmos. Chem. Phys. 2009, 9, 9209–9223. [Google Scholar] [CrossRef] [Green Version]
Ship Number | MMSI | Navigation Status | Power of Main Engine (Kw) | Design Maximum Speed (Knots) |
---|---|---|---|---|
1 | 353498000 | maneuvering | 2000 | 13.50 |
2 | 412044760 | maneuvering | 5736 | 14.75 |
3 | 412379280 | in-and-out port | 15,120 | 15.00 |
4 | 412379830 | in-and-out port | 15,120 | 15.00 |
5 | 413050000 | cruising | 54,720 | 25.70 |
6 | 413055000 | cruising | 36,480 | 24.20 |
Ship Number | Time Interval (min) | Air Pollution Emissions (t) | |||||
---|---|---|---|---|---|---|---|
CO2 | CO | HC | NOX | PM10 | SO2 | ||
1 | 0 | 0.8442 | 0.0015 | 0.0007 | 0.0171 | 0.0005 | 0.0026 |
1 | 0.8435 | 0.0015 | 0.0007 | 0.0171 | 0.0005 | 0.0026 | |
3 | 0.8425 | 0.0015 | 0.0007 | 0.0171 | 0.0005 | 0.0026 | |
10 | 0.8355 | 0.0015 | 0.0007 | 0.017 | 0.0005 | 0.0026 | |
30 | 0.7946 | 0.0014 | 0.0007 | 0.0161 | 0.0005 | 0.0024 | |
60 | 0.6818 | 0.0013 | 0.0006 | 0.0138 | 0.0004 | 0.0021 | |
2 | 0 | 2.7308 | 0.0048 | 0.0022 | 0.0555 | 0.0016 | 0.0084 |
1 | 2.6982 | 0.0048 | 0.0022 | 0.0549 | 0.0016 | 0.0083 | |
3 | 2.6677 | 0.0047 | 0.0021 | 0.0542 | 0.0016 | 0.0082 | |
10 | 2.5154 | 0.0045 | 0.002 | 0.0511 | 0.0015 | 0.0077 | |
30 | 2.1392 | 0.0038 | 0.0017 | 0.0434 | 0.0013 | 0.0066 | |
60 | 1.5648 | 0.0028 | 0.0013 | 0.0317 | 0.0009 | 0.0048 | |
3 | 0 | 14.3691 | 0.025 | 0.0114 | 0.2927 | 0.0085 | 0.044 |
1 | 14.2225 | 0.0248 | 0.0113 | 0.2897 | 0.0084 | 0.0436 | |
3 | 13.5242 | 0.0236 | 0.0107 | 0.2754 | 0.008 | 0.0414 | |
10 | 11.2162 | 0.0198 | 0.009 | 0.2281 | 0.0066 | 0.0344 | |
30 | 8.4511 | 0.015 | 0.0068 | 0.1717 | 0.005 | 0.0259 | |
60 | 7.9612 | 0.0143 | 0.0065 | 0.1616 | 0.0047 | 0.0244 | |
4 | 0 | 38.571 | 0.0659 | 0.03 | 0.7877 | 0.0227 | 0.1182 |
1 | 38.4256 | 0.0657 | 0.0299 | 0.7847 | 0.0226 | 0.1178 | |
3 | 38.0748 | 0.0651 | 0.0296 | 0.7775 | 0.0224 | 0.1167 | |
10 | 35.8932 | 0.0614 | 0.0279 | 0.7329 | 0.0211 | 0.11 | |
30 | 32.6486 | 0.0563 | 0.0256 | 0.666 | 0.0192 | 0.1001 | |
60 | 28.3502 | 0.0493 | 0.0224 | 0.5776 | 0.0167 | 0.0869 | |
5 | 0 | 126.4682 | 0.3204 | 0.1373 | 3.6223 | 0.0758 | 0.3888 |
1 | 126.3367 | 0.32 | 0.1371 | 3.6186 | 0.0757 | 0.3884 | |
3 | 126.1431 | 0.3195 | 0.1369 | 3.6132 | 0.0756 | 0.3878 | |
10 | 126.0959 | 0.3193 | 0.1369 | 3.6121 | 0.0756 | 0.3876 | |
30 | 126.154 | 0.3195 | 0.1369 | 3.6135 | 0.0756 | 0.3878 | |
60 | 126.6537 | 0.3208 | 0.1375 | 3.6287 | 0.0759 | 0.3893 | |
6 | 0 | 110.3725 | 0.2638 | 0.113 | 3.1866 | 0.0657 | 0.3393 |
1 | 110.3043 | 0.2631 | 0.1128 | 3.1847 | 0.0656 | 0.3391 | |
3 | 110.3133 | 0.2632 | 0.1128 | 3.1849 | 0.0656 | 0.3391 | |
10 | 110.3044 | 0.263 | 0.1127 | 3.1848 | 0.0656 | 0.3391 | |
30 | 110.1606 | 0.2623 | 0.1124 | 3.1806 | 0.0655 | 0.3386 | |
60 | 109.7978 | 0.2611 | 0.1119 | 3.1702 | 0.0653 | 0.3375 |
Ship Number | Time Interval (min) | Air Pollution Emissions 1 (%) | |||||
---|---|---|---|---|---|---|---|
CO2 | CO | HC | NOX | PM10 | SO2 | ||
1 | 0 1 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
1 | 95.48 | 95.56 | 95.56 | 95.47 | 95.49 | 95.49 | |
3 | 95.41 | 95.50 | 95.50 | 95.40 | 95.43 | 95.43 | |
10 | 94.17 | 94.27 | 94.27 | 94.15 | 94.18 | 94.18 | |
30 | 89.79 | 89.94 | 89.94 | 89.77 | 89.81 | 89.81 | |
60 | 87.49 | 87.63 | 87.63 | 87.47 | 87.51 | 87.51 | |
2 | 0 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
1 | 99.67 | 99.67 | 99.67 | 99.68 | 99.68 | 99.68 | |
3 | 99.02 | 99.06 | 99.06 | 99.03 | 99.04 | 99.04 | |
10 | 95.48 | 95.69 | 95.69 | 95.46 | 95.52 | 95.52 | |
30 | 85.67 | 86.59 | 86.59 | 85.56 | 85.79 | 85.79 | |
60 | 74.90 | 77.03 | 77.03 | 74.63 | 75.17 | 75.17 | |
3 | 0 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
1 | 99.03 | 99.04 | 99.04 | 99.02 | 99.03 | 99.03 | |
3 | 97.24 | 97.28 | 97.28 | 97.24 | 97.25 | 97.25 | |
10 | 90.62 | 90.81 | 90.81 | 90.60 | 90.65 | 90.65 | |
30 | 77.56 | 78.25 | 78.25 | 77.48 | 77.65 | 77.65 | |
60 | 66.75 | 67.84 | 67.84 | 66.62 | 66.89 | 66.89 | |
4 | 0 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
1 | 97.12 | 97.14 | 97.14 | 97.12 | 97.12 | 97.12 | |
3 | 95.16 | 95.21 | 95.21 | 95.16 | 95.17 | 95.17 | |
10 | 89.03 | 89.21 | 89.21 | 89.01 | 89.05 | 89.05 | |
30 | 75.62 | 76.24 | 76.24 | 75.54 | 75.70 | 75.70 | |
60 | 64.56 | 65.64 | 65.64 | 64.43 | 64.70 | 64.70 | |
5 | 0 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
1 | 93.38 | 93.54 | 93.54 | 93.37 | 93.41 | 93.41 | |
3 | 92.36 | 92.52 | 92.52 | 92.34 | 92.38 | 92.38 | |
10 | 91.48 | 91.66 | 91.66 | 91.46 | 91.51 | 91.51 | |
30 | 90.23 | 90.50 | 90.50 | 90.20 | 90.27 | 90.27 | |
60 | 88.76 | 89.03 | 89.03 | 88.73 | 88.80 | 88.80 | |
6 | 0 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
1 | 97.57 | 97.67 | 97.67 | 97.55 | 97.58 | 97.58 | |
3 | 96.62 | 96.77 | 96.77 | 96.59 | 96.63 | 96.63 | |
10 | 96.09 | 96.28 | 96.28 | 96.06 | 96.11 | 96.11 | |
30 | 95.11 | 95.34 | 95.34 | 95.07 | 95.13 | 95.13 | |
60 | 94.61 | 94.86 | 94.86 | 94.57 | 94.64 | 94.64 | |
Sum emission | 0 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
1 | 96.08 | 96.02 | 96.05 | 95.89 | 96.09 | 96.10 | |
3 | 94.89 | 94.91 | 94.93 | 94.74 | 94.91 | 94.91 | |
10 | 92.73 | 93.14 | 93.11 | 92.90 | 92.76 | 92.76 | |
30 | 88.40 | 89.74 | 89.60 | 89.29 | 88.50 | 88.48 | |
60 | 84.69 | 86.80 | 86.56 | 86.17 | 84.83 | 84.80 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Ren, L.; Wang, H.; Li, T.; Yuan, Y.; Zhang, Y. Impact of AIS Data Thinning on Ship Air Pollutant Emissions Inventories. Atmosphere 2022, 13, 1135. https://doi.org/10.3390/atmos13071135
Tian Y, Ren L, Wang H, Li T, Yuan Y, Zhang Y. Impact of AIS Data Thinning on Ship Air Pollutant Emissions Inventories. Atmosphere. 2022; 13(7):1135. https://doi.org/10.3390/atmos13071135
Chicago/Turabian StyleTian, Yujun, Lili Ren, Hongyan Wang, Tao Li, Yupeng Yuan, and Yan Zhang. 2022. "Impact of AIS Data Thinning on Ship Air Pollutant Emissions Inventories" Atmosphere 13, no. 7: 1135. https://doi.org/10.3390/atmos13071135
APA StyleTian, Y., Ren, L., Wang, H., Li, T., Yuan, Y., & Zhang, Y. (2022). Impact of AIS Data Thinning on Ship Air Pollutant Emissions Inventories. Atmosphere, 13(7), 1135. https://doi.org/10.3390/atmos13071135