Study of the Effect of Urban Densification and Micrometeorology on the Sustainability of a Coronavirus-Type Pandemic
Abstract
:1. Introduction
1.1. Pandemics Antecedents
1.2. Micrometeorology
1.3. Urban Densification
2. Nonlinear Processes
2.1. Irreversible Processes
2.2. Tools for Analysis in Nonlinear Time Series
3. Materials and Methods
3.1. Area of Study
3.2. The Data
3.2.1. PM2.5 and PM10 Particulate Matter
3.2.2. Tropospheric Ozone (O3)
3.2.3. Meteorological Variables
3.2.4. COVID-19 in Santiago de Chile
Waves
Cumulative Sick Data
4. Results
5. Discussion
6. Conclusions
Future Lines of Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
T | Temperature |
RH | Relative humidity |
WS | Wind speed magnitude |
PM2.5 | 2.5-micrometer particulate matter |
PM10 | 10.0-micrometer particulate matter |
03 | Tropospheric ozone |
SINCA | Chilean Air Quality National Information System |
MINSAL | Chilean Ministry of Health |
MVU | Ministry of housing and urbanism of Chile |
INE | National Statistics Institute of Chile |
WHO | World Health Organization |
SANT | Santiago (Used by SINCA: EMN) |
LC | Las Condes (Used by SINCA: EMM) |
LF | La Florida (Used by SINCA: EML) |
PA | Puente Alto (Used by SINCA: EMS) |
P | Pudahuel (Used by SINCA: EMO) |
EB | El Bosque (Used by SINCA: EMQ) |
IND | Independencia (Used by SINCA: EMF) |
AS | Accumulated sick people |
X = AS/T | Time series of (hourly accumulated patients)/(hourly temperature) |
Y = AS/WS | Time series of (hourly accumulated patients)/(hourly magnitude of the wind speed) |
Z = AS/RH | Time series of (hourly accumulated patients)/(hourly relative humidity) |
W = AS/PM10 | Time series of (hourly accumulated patients)/(hourly PM10 particulate matter) |
U = AS/PM2.5 | Time series of (hourly accumulated patients)/(hourly PM2.5 particulate matter) |
V = AS/O3 | Time series of (hourly accumulated patients)/(hourly tropospheric ozone) |
SK,MV | Entropy of time series of (hourly accumulated patients)/(hourly meteorological variables) |
SK,P | Entropy of time series of (hourly accumulated patients)/(hourly pollutants) |
λ | Lyapunov coefficient |
DC | Correlation dimension |
SK | Correlation entropy |
LZ | Lempel–Ziv complexity |
H | Hurst coefficient |
DAS/MV | The averaged fractal dimension of time series of (hourly accumulated patients)/(hourly meteorological variable) |
DAS/P | The averaged fractal dimension of time series of (hourly accumulated patients)/(hourly pollutants) |
<ΔI>MV | Loss of information from the system (accumulated patients)/(meteorological variable) |
<ΔI>P | Loss of information from the system (accumulated patients)/(pollutants) |
Appendix A
Communes, Population by Commune (2017), Accumulated Sick (31 March 2020–18 April 2022), People Per Capita Income (In US), Multidimensional Poverty Index | ||||
---|---|---|---|---|
Santiago | 404,496 | 98,653 | 471 | 5–10% |
Independencia | 100,281 | 24,082 | 127 | 20–25% |
Las Condes | 294,838 | 51,154 | 1317 | <5% |
Puente Alto | 568,106 | 123,045 | 175 | 20–25% |
El Bosque | 162,505 | 34,385 | 188 | 20–25% |
La Florida | 366,916 | 75,964 | 209 | 15–20% |
Pudahuel | 230,293 | 48,900 | 335 | 20–25% |
Total | 2,127,435 | 456,183 | / | / |
References
- Earn, D.J.D.; Rohani, P.; Bolker, B.M.; Grenfell, B.T. A Simple Model for Complex Dynamical Transitions in Epidemics. Science 2000, 287, 667–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sprott, J.C. Chaos and Time-Series Analysis, 1st ed.; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Baker, R.E.; Yang, W.; Vecchi, G.A.; Metcalf, C.J.E.; Grenfell, B.T. Susceptible supply limits the role of climate in the COVID-19 pandemic. Science 2020, 369, 315–319. [Google Scholar] [CrossRef] [PubMed]
- Salini, G.A.; Pacheco, P.R.; Mera, E.; Parodi, M.C. Probable Relationship between COVID-19, Pollutants and Meteorology: A Case Study at Santiago, Chile. Aerosol Air Qual. Res. 2021, 21, 200434. [Google Scholar] [CrossRef]
- Chilean Air Quality National Information System (SINCA). Available online: https://sinca.mma.gob.cl (accessed on 30 April 2022).
- Chilean Ministry of Health (MINSAL). Available online: https://www.minsal.cl/ (accessed on 30 April 2022).
- Van Doremalen, N.; Bushmaker, T.; Morris, D.H.; Holbrook, M.G.; Gamble, A.; Williamson, B.N.; Tamin, A.; Harcourt, J.L.; Thornburg, N.J.; Gerber, S.I.; et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382, 1564–1567. [Google Scholar] [CrossRef]
- Tang, J.; Bahnfleth, W.; Bluyssen, P.; Buonanno, G.; Jimenez, J.; Kurnitski, J.; Li, Y.; Miller, S.; Sekhar, C.; Morawska, L.; et al. Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). J. Hosp. Infect. 2021, 110, 89–96. [Google Scholar] [CrossRef]
- Fears, A.C.; Klimstra, W.B.; Duprex, P.; Hartman, A.; Weaver, S.C.; Plante, K.S.; Mirchandani, D.; Plante, J.A.; Aguilar, P.V.; Fernández, D.; et al. Persistence of Severe Acute Respiratory Syndrome Coronavirus 2 in Aerosol Suspensions. Emerg. Infect. Dis. 2020, 26, 2168–2171. [Google Scholar] [CrossRef]
- Hamner, L.; Dubbel, P.; Capron, I.; Ross, A.; Jordan, A.; Lee, J.; Lynn, J.; Ball, A.; Narwal, S.; Russell, S.; et al. High SARS-CoV-2 Attack Rate Following Exposure at a Choir Practice—Skagit County, Washington, March 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 606–610. [Google Scholar] [CrossRef]
- Stadnytskyi, V.; Bax, C.E.; Bax, A.; Anfinrud, P. The airborne lifetime of small speech droplets and their potential importance in SARS-CoV-2 transmission. Proc. Natl. Acad. Sci. USA 2020, 117, 11875–11877. [Google Scholar] [CrossRef]
- Iqbal, N.; Fareed, Z.; Shahzad, F.; He, X.; Shahzad, U.; Lina, M. The nexus between COVID-19, temperature and exchange rate in Wuhan city: New findings from partial and multiple wavelet coherence. Sci. Total Environ. 2020, 729, 138916. [Google Scholar] [CrossRef]
- Neiderud, C.-J. How urbanization affects the epidemiology of emerging infectious diseases. Infect. Ecol. Epidemiol. 2015, 5, 27060. [Google Scholar] [CrossRef]
- Martínez, L.; Short, J. The Pandemic City: Urban Issues in the Time of COVID-19. Sustainability 2021, 13, 3295. [Google Scholar] [CrossRef]
- Mouratidis, K.; Yiannakou, A. COVID-19 and urban planning: Built environment, health, and well-being in Greek cities before and during the pandemic. Cities 2021, 121, 103491. [Google Scholar] [CrossRef]
- McConnell, P.J. COVID-19 Pandemic—A Systems Thinking Approach. SSRN. 2021. Available online: https://ssm.com/abstract=3972869 (accessed on 4 March 2022). [CrossRef]
- Bradley, D.T.; Mansouri, M.A.; Kee, F.; Garcia, L.M.T. A systems approach to preventing and responding to COVID-19. eClinicalMedicine 2020, 21, 100325. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Zhang, J.; Meadows, M.E.; Liu, Y.; Hua, T.; Fu, B. A systematic approach is needed to contain COVID-19 globally. Sci. Bull. 2020, 65, 876–878. [Google Scholar] [CrossRef] [Green Version]
- Sahin, O.; Salim, H.; Suprun, E.; Richards, R.; MacAskill, S.; Heilgeist, S.; Rutherford, S.; Stewart, R.A.; Beal, C.D. Developing a Preliminary Causal Loop Diagram for Understanding the Wicked Complexity of the COVID-19 Pandemic. Systems 2020, 8, 20. [Google Scholar] [CrossRef]
- Nieto-Chaupis, H. Identifying Second Wave and New Variants of Covid-19 from Shannon Entropy in Global Pandemic Data. In Proceedings of the 2021 Fifth World Conference on Smart Trends in Systems Security and Sustainability (WorldS4), London, UK, 29–30 July 2021. [Google Scholar] [CrossRef]
- Mauree, D.; Coccolo, S.; Deschamps, L.; Loesch, P.; Becquelin, P.; Scartezzini, J.-L. Mobile Urban Micrometeorological Monitoring (MUMiM). J. Phys. Conf. Ser. 2019, 1343, 12014. [Google Scholar] [CrossRef] [Green Version]
- Foken, T. Micrometeorology; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Klausner, Z.; Ben-Efraim, M.; Arav, Y.; Tas, E.; Fattal, E. The Micrometeorology of the Haifa Bay Area and Mount Carmel during the summer. Atmosphere 2021, 12, 354. [Google Scholar] [CrossRef]
- Stull, R.B. Introduction to Boundary Layer Meteorology; Kluwer Academic: Alphen aan den Rijn, The Netherlands, 1988; 666p. [Google Scholar]
- Fattal, E.; David-Saroussi, H.; Klausner, Z.; Buchman, O. An Urban Lagrangian Stochastic Dispersion Model for Simulating Traffic Particulate-Matter Concentration Fields. Atmosphere 2021, 12, 580. [Google Scholar] [CrossRef]
- Garratt, J.R.; Pearman, G.I. Retrospective Analysis of Micrometeorological Observations Above an Australian Wheat Crop. Bound.-Layer Meteorol. 2020, 177, 613–641. [Google Scholar] [CrossRef]
- INE-Plataforma de Datos Estadísticos. Available online: https://www.ine.cl/docs/default-source/encuesta-suplementaria-de-ingresos/publicaciones-y-anuarios/sntesis-de-resultados/2019/síntesis-nacional-esi-2019.pdf (accessed on 4 January 2022).
- MVU, Ministerio de Vivienda y Urbanismo (Ministry of Housing and Urbanism); Centro de Estudios de Ciudad y Territorio. Available online: https://www.observatoriourbano.cl (accessed on 3 January 2022).
- WHO. Europe 2013. Review of Evidence on Health Aspects of Air Pollution—REVIHAAP Project Technical Report, World Health Organization, Regional Office for Europe, Copenhagen, Denmark. Available online: https://www.eea.europa.eu/data-and-maps/indicators/exceedance-of-air-quality-limit-3/who-2013 (accessed on 10 September 2021).
- Eckert, K.; Bestehorn, M.; Thess, A. Square cells in surface-tension-driven Bénard convection: Experiment and theory. J. Fluid Mech. 1998, 356, 155–197. [Google Scholar] [CrossRef] [Green Version]
- Richardson, L.F. Weather Prediction by Numerical Process; Cambridge University Press: Cambridge, UK, 1922. [Google Scholar]
- Manriquez, R. Estructuras disipativas. De la termodinámica a la psicoterapia familiar. Rev. Asoc. Esp. Neuropsiquiatría 1987, 7, 435–454. [Google Scholar]
- Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds FV. Dokl. Akad. Nauk. SSSR 1941, 30, 301–305. [Google Scholar]
- Pacheco, P.R.; Salini, G.A.; Mera, E.M. Entropía y neguentropía: Una aproximación al proceso de difusión de contami-nantes y su sostenibilidad. Rev. Int. Contam. Ambient. 2021, 37, 167–185. [Google Scholar]
- Lorenz, E. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef] [Green Version]
- Salini-Calderón, G.-A.; Perez, P. A Study of the Dynamic Behaviour of Fine Particulate Matter in Santiago, Chile. Aerosol Air Qual. Res. 2015, 15, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, J.; Feng, J. Understanding the Fractal Dimensions of Urban Forms through Spatial. Entropy 2017, 19, 600. [Google Scholar] [CrossRef] [Green Version]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom. 1985, 16, 285–317. [Google Scholar] [CrossRef] [Green Version]
- Grassberger, P.; Procaccia, I. Characterization of Strange Attractors. Phys. Rev. Lett. 1983, 50, 346–349. [Google Scholar] [CrossRef]
- Horna, J.; Dionicio, J.; Martinez, R.; Zavaleta, A.; Brenis, Y. Dinámica simbólica y algunas aplicaciones. Sel. Mat. 2016, 3, 101–106. [Google Scholar] [CrossRef]
- Chilean Ministry of the Environment (MMA). Available online: https://sinca.mma.gob.cl/index.php (accessed on 30 April 2022).
- Government of Chile. Official Data COVID-19. Available online: https://www.gob.cl/coronavirus/cifrasoficiales/ (accessed on 30 April 2022).
- Gramsch, E.; Morales, L.; Baeza, M.; Ayala, C.; Soto, C.; Neira, J.; Pérez, P.; Moreno, F. Citizens’ Surveillance Micro-network for the Mapping of PM2.5 in the City of Concón, Chile. Aerosol Air Qual. Res. 2020, 20, 358–368. [Google Scholar] [CrossRef]
- Đorđević, D.; Đuričić-Milanković, J.; Pantelić, A.; Petrović, S.; Gambaro, A. Coarse, fine and ultrafine particles of sub-urban continental aerosols measured using an 11-stage Berner cascade impactor. Atmos. Pollut. Res. 2020, 11, 499–510. [Google Scholar] [CrossRef]
- Iwasaka, Y.; Minoura, H.; Nagaya, K. The transport and spacial scale of Asian dust-storm clouds: A case study of the dust-storm event of April 1979. Tellus B Chem. Phys. Meteorol. 1983, 35, 189–196. [Google Scholar] [CrossRef]
- Nuvolone, D.; Petri, D.; Voller, F. The effects of ozone on human health. Environ. Sci. Pollut. Res. 2017, 25, 8074–8088. [Google Scholar] [CrossRef] [PubMed]
- Díaz, J.; Ortiz, C.; Falcón, I.; Salvador, C.; Linares, C. Short-term effect of tropospheric ozone on daily mortality in Spain. Atmos. Environ. 2018, 187, 107–116. [Google Scholar] [CrossRef]
- Byass, P. Eco-epidemiological assessment of the COVID-19 epidemic in China, January–February 2020. Glob. Health Action 2020, 13, 1760490. [Google Scholar] [CrossRef]
- Silveman, B.W.; Jones, M.C.; Fix, E.; Hodges, J.L. An Important Contribution to Nonparametric Discriminant Analysis and Density Estimation. Int. Stat. Rev. 1951, 57, 233. [Google Scholar] [CrossRef]
- Pacheco, P.R.; Mera, E.M.; Salini, G.A. Medición Localizada de Contaminantes Atmosféricos y Variables Meteorológicas: Segunda Ley de la Termodinámica. Inf. Technol. 2019, 30, 105–116. [Google Scholar] [CrossRef] [Green Version]
- Census. XIX Censo Nacional de Población y VIII de Vivienda o Censo de Población y Vivienda 2017, Gobierno de Chile e Instituto Nacional de Estadísticas de Chile. 2017. Available online: https://www.ine.cl (accessed on 23 November 2021).
- Sprott, J.C. Chaos Data Analyzer Software. Michigan, EEUU. 1995. Available online: https://sprott.physics.wisc.edu./cda.htm (accessed on 15 April 2020).
- Burra, P.; Soto-Díaz, K.; Chalen, I.; Gonzalez-Ricon, R.J.; Istanto, D.; Caetano-Anollés, G. Temperature and Latitude Correlate with SARS-CoV-2 Epidemiological Variables but not with Genomic Change Worldwide. Evol. Bioinform. 2021, 17, 1176934321989695. [Google Scholar] [CrossRef]
- Pacheco, P.; Mera, E.; Salini, G. Urban Densification Effect on Micrometeorology in Santiago, Chile: A Comparative Study Based on Chaos Theory. Sustainability 2022, 14, 2845. [Google Scholar] [CrossRef]
- Green, D.G. Connectivity and the evolution of biological systems. J. Biol. Syst. 1994, 2, 91–103. [Google Scholar] [CrossRef]
- Kesten, H. Percolation Theory and Ergodic Theory of Infinite Particle Systems; Springer: New York, NY, USA, 1987. [Google Scholar]
Station Name | Geography | Climate | Pollution | Wind | T (°C) Annual average | RH (%)Annual average |
---|---|---|---|---|---|---|
1.La Florida, EML, masl: 784 (m) | Located in the Andes piedmont | Cold, wet with little rainfall winters; hot and dry summers | Presence in descending order PM10, CO, PM2.5,NO2, O3, SO2 | West–east day East–west night | 14.5 | 58.3 |
2.Las Condes, EMM, masl: 709 (m) | Located in the Andes piedmont | Cold, dry winters; hot, dry summers | Presence in descending order PM10, CO, PM2.5,NO2, O3, SO2 | West–east day East–west night | 12.9 | 44.9 |
3.Santiago- Parque O’Higgins, EMN,masl: 570 (m) | Located in the middle of the basin plane | Cold, dry winters; hot, dry summers | Presence in descending order PM10, PM2.5, CO, SO2, NO2, O3 | West–east day East–south night | 13.4 | 44.7 |
4.Pudahuel, EMO, masl: 469 (m) | Located at the bottom of the basin | Cold, dry winters; hot, dry summers | Presence in descending order PM10, PM2.5, CO, SO2, NO2, O3 | South–east day East–south night | 15.3 | 57.7 |
5.Puente Alto, EMS, masl: 698 (m) | Located in the Andes piedmont | Cold and wet winters with moderate rainfall; hot and dry summers | Presence in descending order PM10, CO, PM2.5,NO2, O3, SO2 | West–east day East–west night | 13.5 | 46.5 |
6. Independencia, EMF, masl: 554 (m) | Situated in the intermediate zone of the basin | Cold, dry winters; hot, dry summers | Presence in descending order PM10, PM2.5, CO, SO2, NO2,O3 | North–east day East–south night | 15.25 | 58.3 |
7. El Bosque EMQ, mnsl: 575 (m) | Located at the bottom of the basin | Cold and wet winters; hot and dry summers | Presence in descending order PM10, PM2.5, NO2, CO, SO2, O3 | South–east day East–south night | 15.21 | 48.83 |
Station Name | Location | PM10 | PM2.5 | O3 | T | RH | WV | OWNER |
---|---|---|---|---|---|---|---|---|
1.La Florida, EML, masl: 784 (m) | 33°30′59.7″ S 70°35′17.4″ W | Beta attenuation: Met One 1020 | Beta attenuation: Met One 1020 | Gas correlation filter IR photometry: Thermo 48i | VAISALA HMP35A | VAISALA HMP35A | Sensor: Met One 010C | SINCA |
2.Las Condes, EMM, masl: 709 (m) | 33°22′35.8″ S 70°31′23.6″ W | Beta attenuation: Met One 1020 | Beta attenuation: Met One 1020 | Gas correlation filter IR photometry: Thermo 48i | VAISALA HMP35A | VAISALA HMP35A | Sensor: Met One 010C | SINCA |
3.Santiago- Parque O’Higgins, EMN, masl: 570 (m) | 33°27′50.5″ S 70°39′38.5″ W | Beta attenuation: Met One 1020 | Beta attenuation: Met One 1020 | Gas correlation filter IR photometry: Thermo 48i | VAISALA HMP35A | VAISALA HMP35A | Sensor: Met One 010C | SINCA |
4.Pudahuel, EMO, masl: 469 (m) | 33°27′06.2″ S 70°40′07.8″ W | Beta attenuation: Met One 1020 | Beta attenuation: Met One 1020 | Gas correlation filter IR photometry: Thermo 48i | VAISALA HMP35A | VAISALA HMP35A | Sensor: Met One 010C | SINCA |
5.Puente Alto, EMS, masl: 698 (m) | 33°33′01.3″ S 70°34′51.4″ W | Beta attenuation: Met One 1020 | Beta attenuation: Met One 1020 | Gas correlation filter IR photometry: Thermo 48i | VAISALA HMP35A | VAISALA HMP35A | Sensor: Met One 010C | SINCA |
6. Independencia, EMF, masl: 554 (m) | 33°25′22.3″ S 70°39′03.5″ W | Beta attenuation: Met One 1020 | Beta attenuation: Met One 1020 | Gas correlation filter IR photometry: Thermo 48i | VAISALA HMP35A | VAISALA HMP35A | Sensor: Met One 020C | SINCA |
7. El Bosque EMQ, mnsl: 575 (m) | 33°32′49.4″ S 70°39′58.1″ W | Beta attenuation: Met One 1020 | Beta attenuation: Met One 1020 | Gas correlation filter IR photometry: Thermo 48i | Sensor: MetOne 083D | Sensor: MetOne 083D | Sensor: Met One 020C | SINCA |
Communes | λ (bits/h) | Dc | Sk (bits/h) | H | LZ | Τ = 1/SK (h) | |
---|---|---|---|---|---|---|---|
Las Condes(LC) | |||||||
X | 0.220 ± 0.015 | 2.107 ± 0.129 | 0.601 | 0.9045120 | 0.11084 | 1.664 | −0.730 |
Y | 0.081 ± 0.013 | 2.132 ± 1.245 | 0.224 | 0.7382310 | 0.09167 | 4.464 | −0.269 |
Z | 0.167 ± 0.013 | 1.056 ± 0.190 | 0.273 | 0.8751019 | 0.48358 | 3.662 | −0.555 |
SK, MV = 1.098 | 0.8392816 | 0.22869 | ₸ = 3.263 | −1.554 | |||
W | 0.178 ± 0.014 | 4.300 ± 0.339 | 0.515 | 0.8736139 | 0.60204 | 1.942 | −0.591 |
U | 0.335 ± 0.020 | 4.322 ± 0.157 | 0.369 | 0.8517962 | 0.59863 | 2.710 | −1.113 |
V | 0.511 ± 0.024 | 3.776 ± 0.127 | 0.364 | 0.8710493 | 0.65302 | 2.747 | −1.697 |
SK, P = 1.248 | 0.8654864 | 0.61789 | ₸ = 2.466 | −3.401 | |||
Santiago (SANT) | |||||||
X | 0.164 ± 0.013 | 4.030 ± 0.335 | 0.383 | 0.9044871 | 0.35591 | 2.611 | −0.545 |
Y | 0.365 ± 0.024 | 1.619 ± 0.508 | 0.283 | 0.7555030 | 0.08699 | 3.533 | −1.213 |
Z | 0.170 ± 0.013 | 4.050 ± 0.310 | 0.397 | 0.8796455 | 0.51118 | 2.519 | −0.565 |
SK, MV = 1.063 | 0.8463875 | 0.31802 | ₸ = 2.887 | −2.323 | |||
W | 0.264 ± 0.016 | 4.358 ± 0.339 | 0.510 | 0.8768554 | 0.54719 | 1.960 | −0.877 |
U | 0.398 ± 0.023 | 3.653 ± 0.330 | 0.280 | 0.8455945 | 0.48358 | 3.571 | −1.322 |
V | 0.794 ± 0.030 | 3.626 ± 0.312 | 0.381 | 0.8990721 | 0.56218 | 2.625 | −2.638 |
SK, P = 1.171 | 0.8738406 | 0.53098 | ₸ = 2.718 | −4.837 | |||
Independencia (IND) | |||||||
X | 0.226 ± 0.015 | 2.093 ± 0.151 | 0.540 | 0.9021288 | 0.10570 | 1.851 | −0.751 |
Y | 0.043 ± 0.016 | 2.620 ± 0.870 | 0.309 | 0.7029083 | 0.08104 | 3.236 | −0.143 |
Z | 0.131 ± 0.012 | 3.916 ± 0.225 | 0.436 | 0.8960688 | 0.49434 | 2.293 | −0.435 |
SK, MV = 1.285 | 0.8337019 | 0.22702 | ₸ = 2.460 | −1.329 | |||
W | 0.187 ± 0.014 | 4.216 ± 0.341 | 0.499 | 0.8875034 | 0.5977 | 2.004 | −0.621 |
U | 0.281 ± 0.018 | 4.137 ± 0.284 | 0.520 | 0.8850430 | 0.5874 | 1.923 | −0.934 |
V | 0.531 ± 0.025 | 3.728 ± 0.183 | 0.356 | 0.8823231 | 0.6254 | 2.808 | −1.764 |
SK, P = 1.375 | 0.8849565 | 0.6035 | ₸ = 2.245 | −3.319 | |||
La Florida (LF) | |||||||
X | 0.168 ± 0.013 | 3.994 ± 0.325 | 0.376 | 0.9090196 | 0.35497 | 2.659 | −0.558 |
Y | 0.205 ± 0.020 | 1.351 ± 0.771 | 0.281 | 0.7696180 | 0.08512 | 3.558 | −0.681 |
Z | 0.207 ± 0.014 | 4.075 ± 0.316 | 0.399 | 0.8837728 | 0.50650 | 2.506 | −0.687 |
SK, MV = 1.056 | 0.8541368 | 0.31553 | ₸ = 2.907 | −1.926 | |||
W | 0.282 ± 0.016 | 4.028 ± 0.297 | 0.455 | 0.8737329 | 0.56356 | 2.197 | −0.934 |
U | 0.388 ± 0.022 | 2.454 ± 0.299 | 0.306 | 0.8507282 | 0.49668 | 3.268 | −1.289 |
V | 0.730 ± 0.029 | 3.841 ± 0.014 | 0.355 | 0.8996184 | 0.59801 | 2.816 | −2.425 |
SK, P = 1.116 | 0.8746931 | 0.55281 | ₸ = 2.760 | −4.648 | |||
Puente Alto (PA) | |||||||
X | 0.140 ± 0.012 | 3.118 ± 0.232 | 0.421 | 0.9052035 | 0.39940 | 2.375 | −0.465 |
Y | 0.227 ± 0.020 | 1.358 ± 0.595 | 0.380 | 0.6558216 | 0.08559 | 2.631 | −0.754 |
Z | 0.188 ± 0.013 | 4.429 ± 0.320 | 0.475 | 0.8926700 | 0.43635 | 2.105 | −0.625 |
SK, MV = 1.276 | 0.8178983 | 0.30711 | ₸ = 2.370 | −1.844 | |||
W | 0.267 ± 0.016 | 4.394 ± 0.314 | 0.505 | 0.8790419 | 0.50089 | 1.980 | −0.887 |
U | 0.418 ± 0.025 | 1.982 ± 0.514 | 1.020 | 0.8690351 | 0.37882 | 0.980 | −1.389 |
V | 0.326 ± 0.024 | 3.119 ± 0.698 | 0.206 | 0.8184465 | 0.56567 | 4.854 | −1.083 |
SK, P = 1.730 | 0.8555078 | 0.48179 | ₸ = 2.605 | −3.359 | |||
El Bosque (EB) | |||||||
X | 0.233 ± 0.014 | 2.099 ± 0.140 | 0.617 | 0.9086927 | 0.10616 | 1.620 | −0.774 |
Y | 0.078 ± 0.016 | 2.681 ± 0.840 | 0.291 | 0.7583736 | 0.08278 | 3.436 | −0.259 |
Z | 0.191 ± 0.014 | 3.975 ± 0.256 | 0.436 | 0.8896019 | 0.47750 | 2.293 | −0.635 |
SK, MV = 1.344 | 0.8522227 | 0.22214 | ₸ = 2.449 | −1.668 | |||
W | 0.262 ± 0.015 | 4.280 ± 0.355 | 0.525 | 0.8836760 | 0.62342 | 1.905 | −0.870 |
U | 0.328 ± 0.019 | 4.249 ± 0.326 | 0.550 | 0.8719152 | 0.59225 | 1.818 | −1.089 |
V | 0.630 ± 0.027 | 3.695 ± 0.122 | 0.354 | 0.8949134 | 0.63096 | 2.825 | −2.093 |
SK, P = 1.429 | 0.8835015 | 0.61554 | ₸ = 2.183 | −4.052 | |||
Pudahuel (P) | |||||||
X | 0.243 ± 0.015 | 3.025 ± 0.180 | 0.240 | 0.9079999 | 0.37461 | 4.166 | −0.807 |
Y | 0.114 ± 0.019 | 2.183 ± 0.900 | 0.284 | 0.7344763 | 0.07389 | 3.521 | −0.379 |
Z | 0.167 ± 0.013 | 4.428 ± 0.348 | 0.452 | 0.8911070 | 0.49668 | 2.212 | −0.555 |
SK, MV = 0.976 | 0.8445277 | 0.31506 | ₸ = 3.300 | −1.741 | |||
W | 0.271 ± 0.016 | 4.306 ± 0.335 | 0.495 | 0.8855349 | 0.56028 | 2.020 | −0.900 |
U | 0.380 ± 0.021 | 3.752 ± 0.168 | 0.343 | 0.8631509 | 0.54999 | 2.915 | −1.262 |
V | 0.707 ± 0.028 | 3.713 ± 0.136 | 0.365 | 0.8893363 | 0.60232 | 2.740 | −2.349 |
SK, P = 1.203 | 0.8793407 | 0.57086 | ₸ = 2.558 | −4.511 |
Communes | AS | SK, MV/SK, P |
---|---|---|
LF | 75,964 | 0.95 |
LC | 51,154 | 0.88 |
SANT | 98,653 | 0.91 |
P | 48,900 | 0.81 |
PA | 123,045 | 0.74 |
EB | 34,386 | 0.94 |
IND | 24,092 | 0.94 |
Communes | 2010 | 2020 | Δm2 | AS 2020–2022 |
---|---|---|---|---|
LF | 44,054 | 118,300 | 74,246 | 75,964 |
LC | 127,342 | 145,306 | 17,964 | 51,154 |
SANT | 94,043 | 190,862 | 96,819 | 98,653 |
P | 18,788 | 63,090 | 44,302 | 48,900 |
PA | 226,665 | 292,000 | 65,335 | 123,045 |
Communes | |||
---|---|---|---|
LC | 1.16 | 1.14 | 0.983 |
SANT | 1.15 | 1.13 | 0.982 |
IND | 1.17 | 1.12 | 0.957 |
LF | 1.15 | 1.13 | 0.982 |
PA | 1.69 | 1.15 | 0.680 |
EB | 1.15 | 1.12 | 0.974 |
P | 1.16 | 1.12 | 0.965 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacheco, P.; Mera, E. Study of the Effect of Urban Densification and Micrometeorology on the Sustainability of a Coronavirus-Type Pandemic. Atmosphere 2022, 13, 1073. https://doi.org/10.3390/atmos13071073
Pacheco P, Mera E. Study of the Effect of Urban Densification and Micrometeorology on the Sustainability of a Coronavirus-Type Pandemic. Atmosphere. 2022; 13(7):1073. https://doi.org/10.3390/atmos13071073
Chicago/Turabian StylePacheco, Patricio, and Eduardo Mera. 2022. "Study of the Effect of Urban Densification and Micrometeorology on the Sustainability of a Coronavirus-Type Pandemic" Atmosphere 13, no. 7: 1073. https://doi.org/10.3390/atmos13071073
APA StylePacheco, P., & Mera, E. (2022). Study of the Effect of Urban Densification and Micrometeorology on the Sustainability of a Coronavirus-Type Pandemic. Atmosphere, 13(7), 1073. https://doi.org/10.3390/atmos13071073