Characterizing Long Island’s Extreme Precipitation and Its Relationship to Tropical Cyclones
Abstract
:1. Introduction
2. Methodology
3. Results
- (a)
- Mean Precipitation
- (b)
- Extreme Precipitation
- (c)
- Relation of Extreme Precipitation on Long Island to TCs
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moustakis, Y.; Papalexiou, S.M.; Onof, C.J.; Paschalis, A. Seasonality, Intensity, and Duration of Rainfall Extremes Change in a Warmer Climate. Earth’s Future 2021, 9, e2020EF001824. [Google Scholar] [CrossRef]
- Werbowski, L.M.; Gilbreath, A.N.; Munno, K.; Zhu, X.; Grbic, J.; Wu, T.; Sutton, R.; Sedlak, M.D.; Deshpande, A.D.; Rochman, C.M. Urban Stormwater Runoff: A Major Pathway for Anthropogenic Particles, Black Rubbery Fragments, and Other Types of Microplastics to Urban Receiving Waters. ACS EST Water 2021, 1, 1420–1428. [Google Scholar] [CrossRef]
- Walsh, J.; Wuebbles, D.; Hayhoe, K.; Kossin, J.; Kunkel, K.; Stephens, G.; Thorne, P.; Vose, R.; Wehner, M.; Willis, J.; et al. Ch. 2: Our Changing Climate. In Climate Change Impacts in the United States: The Third National Climate Assessment; Melillo, J.M., Richmond, T.C., Yohe, G.W., Eds.; U.S. Global Change Research Program Rep; Cambridge University Press: Cambridge, NY, USA, 2014; pp. 19–67. [Google Scholar] [CrossRef]
- Karmalkar, A.V.; Horton, R.M. Drivers of exceptional coastal warming in the northeastern United States. Nat. Clim. Chang. 2021, 11, 854–860. [Google Scholar] [CrossRef]
- Mitchell, J.F.B.; Wilson, C.A.; Cunnington, W.M. On Co2 climate sensitivity and model dependence of results. Q. J. R. Meteorol. Soc. 1987, 113, 293–322. [Google Scholar] [CrossRef]
- Trenberth, K.E. Conceptual Framework for Changes of Extremes of the Hydrological Cycle with Climate Change. Clim. Chang. 1999, 42, 327–339. [Google Scholar] [CrossRef]
- Pfahl, S.; O’Gorman, P.A.; Fischer, S.P.E.M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Chang. 2017, 7, 423–427. [Google Scholar] [CrossRef]
- Martinkova, M.; Kysely, J. Overview of Observed Clausius-Clapeyron Scaling of Extreme Precipitation in Midlatitudes. Atmosphere 2020, 11, 786. [Google Scholar] [CrossRef]
- Howarth, M.E.; Thorncroft, C.D.; Bosart, L.F. Changes in Extreme Precipitation in the Northeast United States: 1979–2014. J. Hydrometeorol. 2019, 20, 673–689. Available online: https://journals.ametsoc.org/view/journals/hydr/20/4/jhm-d-18-0155_1.xml (accessed on 20 February 2022). [CrossRef]
- Agel, L.; Barlow, M.; Qian, J.-H.; Colby, F.; Douglas, E.; Eichler, T. Climatology of Daily Precipitation and Extreme Precipitation Events in the Northeast United States. J. Hydrometeorol. 2015, 16, 2537–2557. Available online: https://journals.ametsoc.org/view/journals/hydr/16/6/jhm-d-14-0147_1.xml (accessed on 14 April 2020). [CrossRef]
- Kunkel, K.E.; Easterling, D.R.; Kristovich, D.; Gleason, B.; Stoecker, L.; Smith, R. Meteorological Causes of the Secular Variations in Observed Extreme Precipitation Events for the Conterminous United States. J. Hydrometeorol. 2012, 13, 1131–1141. Available online: https://journals.ametsoc.org/view/journals/hydr/13/3/jhm-d-11-0108_1.xml (accessed on 16 June 2021). [CrossRef]
- Huang, H.; Winter, J.M.; Osterberg, E.C. Mechanisms of Abrupt Extreme Precipitation Change Over the Northeastern United States. J. Geophys. Res. Atmos. 2018, 123, 7179–7192. [Google Scholar] [CrossRef]
- Kim, H.-M.; Chang, E.K.M.; Zhang, M. Statistical–Dynamical Seasonal Forecast for Tropical Cyclones Affecting New York State. Weather Forecast. 2015, 30, 295–307. Available online: https://journals.ametsoc.org/view/journals/wefo/30/2/waf-d-14-00089_1.xml (accessed on 16 May 2022). [CrossRef]
- Bacmeister, J.T.; Reed, K.A.; Hannay, C.; Lawrence, P.; Bates, S.; Truesdale, J.E.; Rosenbloom, N.; Levy, M. Projected changes in tropical cyclone activity under future warming scenarios using a high-resolution climate model. Clim. Chang. 2016, 146, 547–560. [Google Scholar] [CrossRef]
- Gutmann, E.D.; Rasmussen, R.M.; Liu, C.; Ikeda, K.; Bruyere, C.L.; Done, J.M.; Garrè, L.; Friis-Hansen, P.; Veldore, V. Changes in Hurricanes from a 13-Yr Convection-Permitting Pseudo–Global Warming Simulation. J. Clim. 2018, 31, 3643–3657. [Google Scholar] [CrossRef]
- Kim, H.-S.; Vecchi, G.A.; Knutson, T.R.; Anderson, W.G.; Delworth, T.L.; Rosati, A.; Zeng, F.; Zhao, M. Tropical Cyclone Simulation and Response to CO2 Doubling in the GFDL CM2.5 High-Resolution Coupled Climate Model. J. Clim. 2014, 27, 8034–8054. [Google Scholar] [CrossRef]
- Knutson, T.R.; Sirutis, J.J.; Zhao, M.; Tuleya, R.E.; Bender, M.; Vecchi, G.; Villarini, G.; Chavas, D. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. J. Clim. 2015, 28, 7203–7224. [Google Scholar] [CrossRef] [Green Version]
- Wehner, M.; Prabhat; Reed, K.; Stone, D.; Collins, W.; Bacmeister, J. Resolution Dependence of Future Tropical Cyclone Projections of CAM5.1 in the U.S. CLIVAR Hurricane Working Group Idealized Configurations. J. Clim. 2015, 28, 3905–3925. [Google Scholar] [CrossRef]
- Bhatia, K.; Vecchi, G.; Murakami, H.; Underwood, S.; Kossin, J. Projected Response of Tropical Cyclone Intensity and Intensification in a Global Climate Model. J. Clim. 2018, 31, 8281–8303. [Google Scholar] [CrossRef]
- Emanuel, K.A. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proc. Natl. Acad. Sci. USA 2013, 110, 12219–12224. [Google Scholar] [CrossRef] [Green Version]
- Vecchi, G.A.; Delworth, T.L.; Murakami, H.; Underwood, S.D.; Wittenberg, A.T.; Zeng, F.; Zhang, W.; Baldwin, J.W.; Bhatia, K.T.; Cooke, W.; et al. Tropical cyclone sensitivities to CO2 doubling: Roles of atmospheric resolution, synoptic variability and background climate changes. Clim. Dyn. 2019, 53, 5999–6033. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Vecchi, G.A.; Smith, J.A.; Murakami, H. Projection of Landfalling–Tropical Cyclone Rainfall in the Eastern United States under Anthropogenic Warming. J. Clim. 2018, 31, 7269–7286. [Google Scholar] [CrossRef]
- Knutson, T.R.; Sirutis, J.J.; Vecchi, G.A.; Garner, S.; Zhao, M.; Kim, H.-S.; Bender, M.; Tuleya, R.E.; Held, I.M.; Villarini, G. Dynamical Downscaling Projections of Twenty-First-Century Atlantic Hurricane Activity: CMIP3 and CMIP5 Model-Based Scenarios. J. Clim. 2013, 26, 6591–6617. [Google Scholar] [CrossRef]
- Patricola, C.M.; Wehner, M.F. Anthropogenic influences on major tropical cyclone events. Nature 2018, 563, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Fowler, H.J.; Lenderink, G.; Prein, A.F.; Westra, S.; Allan, R.P.; Ban, N.; Barbero, R.; Berg, P.; Blenkinsop, S.; Do, H.X.; et al. Anthropogenic intensification of short-duration rainfall extremes. Nat. Rev. Earth Environ. 2021, 2, 107–122. [Google Scholar] [CrossRef]
- van Oldenborgh, G.J.; van der Wiel, K.; Sebastian, A.; Singh, R.; Arrighi, J.; Otto, F.; Haustein, K.; Li, S.; Vecchi, G.; Cullen, H. Attribution of extreme rainfall from Hurricane Harvey, August 2017. Environ. Res. Lett. 2017, 12, 124009. [Google Scholar] [CrossRef]
- Risser, M.D.; Wehner, M.F. Attributable Human-Induced Changes in the Likelihood and Magnitude of the Observed Extreme Precipitation during Hurricane Harvey. Geophys. Res. Lett. 2017, 44, 12457–12464. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K. Assessing the present and future probability of Hurricane Harvey’s rainfall. Proc. Natl. Acad. Sci. USA 2017, 114, 12681–12684. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.-Y.S.; Zhao, L.; Yoon, J.-H.; Klotzbach, P.; Gillies, R.R. Quantitative attribution of climate effects on Hurricane Harvey’s extreme rainfall in Texas. Environ. Res. Lett. 2018, 13, 054014. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Cheng, L.; Jacobs, P.; Zhang, Y.; Fasullo, J. Hurricane Harvey Links to Ocean Heat Content and Climate Change Adaptation. Earth’s Future 2018, 6, 730–744. [Google Scholar] [CrossRef]
- Reed, K.A.; Stansfield, A.M.; Wehner, M.F.; Zarzycki, C.M. Forecasted attribution of the human influence on Hurricane Florence. Sci. Adv. 2020, 6, eaaw9253. [Google Scholar] [CrossRef] [Green Version]
- Kossin, J.P. A global slowdown of tropical-cyclone translation speed. Nature 2018, 558, 104–107. [Google Scholar] [CrossRef] [PubMed]
- Hall, T.M.; Kossin, J.P. Hurricane stalling along the North American coast and implications for rainfall. NPJ Clim. Atmos. Sci. 2019, 2, 17. [Google Scholar] [CrossRef]
- United States Census Bureau. Suffolk County, New York. Available online: https://data.census.gov/cedsci/profile?g=0500000US36103 (accessed on 2 March 2022).
- United States Census Bureau. Nassau County, New York. Available online: https://data.census.gov/cedsci/profile?g=0500000US36059 (accessed on 2 March 2022).
- United States Census Bureau. Queens County, New York. Available online: https://data.census.gov/cedsci/profile?g=0500000US36081 (accessed on 2 March 2022).
- United States Census Bureau. Kings County, New York. Available online: https://data.census.gov/cedsci/profile?g=0500000US36047 (accessed on 2 March 2022).
- Maxwell, J.T.; Bregy, J.C.; Robeson, S.M.; Knapp, P.A.; Soulé, P.T.; Trouet, V. Recent increases in tropical cyclone precipitation extremes over the US east coast. Proc. Natl. Acad. Sci. USA 2021, 118, e2105636118. [Google Scholar] [CrossRef]
- Rappaport, E.N. Fatalities in the United States from Atlantic Tropical Cyclones: New Data and Interpretation. Bull. Am. Meteorol. Soc. 2014, 95, 341–346. Available online: https://journals.ametsoc.org/view/journals/bams/95/3/bams-d-12-00074.1.xml (accessed on 18 December 2021). [CrossRef]
- Historic Tropical Depression Ida. Northeast Regional Climate Center. Web. 2021. Available online: https://www.nrcc.cornell.edu/services/blog/2021/09/03/index.html (accessed on 7 September 2021).
- US Department of Commerce; NOAA; NESDIS. Record of Climatological Observations: NY CITY CENTRAL PARK, NY US USW00094728. National Centers for Environmental Information (NCEI). Available online: https://www.ncei.noaa.gov/access/homr/#ncdcstnid=20019453&tab=MSHR (accessed on 17 May 2022).
- US Department of Commerce; NOAA; NESDIS. Record of Climatological Observations: LaGuardia Airport, NY US USW00014732. National Centers for Environmental Information (NCEI). Available online: https://www.ncei.noaa.gov/access/homr/#ncdcstnid=20019451&tab=MSHR (accessed on 3 January 2022).
- US Department of Commerce; NOAA; National Weather Service. Final Ida Storm Total Rainfall; Public Information Statement, National Weather Service: New York, NY, USA, 2022. Available online: https://nwschat.weather.gov/p.php?pid=202109031510-KOKX-NOUS41-PNSOKX (accessed on 4 January 2022).
- National Centers for Environmental Information (NCEI) and Regional Climate Centers. Monthly Climate Normals (1991–2020)-Syosett, NY. NOWData-NOAA Online Weather Data. Available online: https://www.weather.gov/wrh/Climate?wfo=okx (accessed on 3 January 2022).
- Khouakhi, A.; Villarini, G.; Vecchi, G. Contribution of Tropical Cyclones to Rainfall at the Global Scale. J. Clim. 2017, 30, 359–372. [Google Scholar] [CrossRef]
- Pendergrass, A.G. What precipitation is extreme? Science 2018, 360, 1072–1073. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wires Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Singh, D.; Tsiang, M.; Rajaratnam, B.; Diffenbaugh, N.S. Precipitation extremes over the continental United States in a transient, high-resolution, ensemble climate model experiment. J. Geophys. Res. Atmos. 2013, 118, 7063–7086. [Google Scholar] [CrossRef]
- Krishnamurthy, V.; Stan, C. Prediction of extreme events in precipitation and temperature over CONUS during boreal summer in the UFS coupled model. Clim. Dyn. 2022, 59, 109–125. [Google Scholar] [CrossRef]
- Sharma, K.K.; Verdon-Kidd, D.C.; Magee, A.D. A decision tree approach to identify predictors of extreme rainfall events—A case study for the Fiji Islands. Weather Clim. Extrem. 2021, 34, 100405. [Google Scholar] [CrossRef]
- Schär, C.; Ban, N.; Fischer, E.M.; Rajczak, J.; Schmidli, J.; Frei, C.; Giorgi, F.; Karl, T.R.; Kendon, E.J.; Tank, A.M.G.K.; et al. Percentile indices for assessing changes in heavy precipitation events. Clim. Chang. 2016, 137, 201–216. [Google Scholar] [CrossRef] [Green Version]
- Meals, D.W.; Spooner, J.; Dressing, S.A.; Harcum, J.B. Statistical analysis for monotonic trends, Tech Notes 6, November 2011. Developed for U.S. Environmental Protection Agency by Tetra Tech, Inc., Fairfax, VA. 2011; p. 23. Available online: https://www.epa.gov/polluted-runoff-nonpoint-source-pollution/nonpoint-source-monitoringtechnical-notes (accessed on 5 March 2021).
- Xie, P.; Chen, M.; Yang, S.; Yatagai, A.; Hayasaka, T.; Fukushima, Y.; Liu, C. A Gauge-Based Analysis of Daily Precipitation over East Asia. J. Hydrometeorol. 2007, 8, 607–626. [Google Scholar] [CrossRef]
- Chen, M.; Shi, W.; Xie, P.; Silva, V.B.S.; Kousky, V.E.; Higgins, R.W.; Janowiak, J.E. Assessing objective techniques for gauge-based analyses of global daily precipitation. J. Geophys. Res. Earth Surf. 2008, 113, D04110. [Google Scholar] [CrossRef]
- Chen, M.; Xie, P. CPC Unified Gauge-based Analysis of Global Daily Precipiation. In Proceedings of the Western Pacific Geophysics Meeting, Cairns, Australia, 29 July–1 August 2008. [Google Scholar]
- Huffman, G.J.; Stocker, E.F.; Bolvin, D.T.; Nelkin, E.J.; Tan, J. GPM IMERG Final Precipitation L3 1 Day 0.1 Degree × 0.1 Degree V06, Edited by Andrey Savtchenko; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2019. [Google Scholar] [CrossRef]
- Thornton, M.M.; Shrestha, R.; Wei, Y.; Thornton, P.E.; Kao, S.; Wilson, B.E. Daymet: Daily Surface Weather Data on a 1-km Grid for North America; Version 4; ORNL DAAC: Oak Ridge, TN, USA, 2020. [Google Scholar] [CrossRef]
- Landsea, C.; Franklin, J.; Beven, J. The Revised Atlantic Hurricane Database (HURDAT2). National Hurricane Center (NHC). May 2015. Web. Available online: https://www.nhc.noaa.gov/data/hurdat/hurdat2-format-atlantic.pdf (accessed on 2 February 2021).
- Wehner, M.F.; Reed, K.A.; Li, F.; Prabhat; Bacmeister, J.; Chen, C.-T.; Paciorek, C.; Gleckler, P.J.; Sperber, K.R.; Collins, W.D.; et al. The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J. Adv. Model. Earth Syst. 2014, 6, 980–997. [Google Scholar] [CrossRef]
- Bador, M.; Boé, J.; Terray, L.; Alexander, L.V.; Baker, A.; Bellucci, A.; Haarsma, R.; Koenigk, T.; Moine, M.-P.; Lohmann, K.; et al. Impact of Higher Spatial Atmospheric Resolution on Precipitation Extremes Over Land in Global Climate Models. J. Geophys. Res. Atmos. 2020, 125, e2019JD032184. [Google Scholar] [CrossRef]
- Ren, L.; Arkin, P.; Smith, T.M.; Shen, S.S. Global precipitation trends in 1900-2005 from a reconstruction and coupled model simulations. J. Geophys. Res. Atmos. 2013, 118, 1679–1689. [Google Scholar] [CrossRef]
- Adler, R.F.; Kidd, C.; Petty, G.W.; Morissey, M.; Goodman, H.M. Intercomparison of Global Precipitation Products: The Third Precipitation Intercomparison Project (PIP–3). Bull. Am. Meteorol. Soc. 2001, 82, 1377–1396. [Google Scholar] [CrossRef]
- Catto, J.L.; Pfahl, S. The importance of fronts for extreme precipitation. J. Geophys. Res. Atmos. 2013, 118, 10791–10801. [Google Scholar] [CrossRef] [Green Version]
- Lau, K.-M.; Zhou, Y.P.; Wu, H.-T. Have tropical cyclones been feeding more extreme rainfall? J. Geophys. Res. Earth Surf. 2008, 113, D23113. [Google Scholar] [CrossRef] [Green Version]
- Dhakal, N. Changing Impacts of North Atlantic Tropical Cyclones on Extreme Precipitation Distribution across the Mid-Atlantic United States. Geosciences 2019, 9, 207. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Qian, L.; Rui, H.; Zuo, T.; Zheng, D.; Xu, Y.; Xu, C.-Y. Assessing the effects of urbanization on annual runoff and flood events using an integrated hydrological modeling system for Qinhuai River basin, China. J. Hydrol. 2012, 464–465, 127–139. [Google Scholar] [CrossRef]
- Dong, Q.; Chen, X.; Chen, T. Characteristics and Changes of Extreme Precipitation in the Yellow–Huaihe and Yangtze–Huaihe Rivers Basins, China. J. Clim. 2011, 24, 3781–3795. Available online: https://journals.ametsoc.org/view/journals/clim/24/14/2010jcli3653.1.xml (accessed on 16 May 2022). [CrossRef]
- Thiombiano, A.N.; St-Hilaire, A.; El Adlouni, S.-E.; Ouarda, T.B.M.J. Nonlinear response of precipitation to climate indices using a non-stationary Poisson-generalized Pareto model: Case study of southeastern Canada. Int. J. Clim. 2018, 38, e875–e888. [Google Scholar] [CrossRef]
- Reed, K.; Wehner, M.F.; Stansfield, A.M.; Zarzycki, C.M. Anthropogenic Influence on Hurricane Dorian’s Extreme Rainfall. Bull. Am. Meteorol. Soc. 2021, 102, S9–S15. Available online: https://journals.ametsoc.org/view/journals/bams/102/1/BAMS-D-20-0160.1.xml (accessed on 6 December 2021). [CrossRef]
- Bell, J.E.; Brown, C.L.; Conlon, K.; Herring, S.; Kunkel, K.E.; Lawrimore, J.; Luber, G.; Schreck, C.; Smith, A.; Uejio, C. Changes in extreme events and the potential impacts on human health. J. Air Waste Manag. Assoc. 2018, 68, 265–287. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reed, A.T.; Stansfield, A.M.; Reed, K.A. Characterizing Long Island’s Extreme Precipitation and Its Relationship to Tropical Cyclones. Atmosphere 2022, 13, 1070. https://doi.org/10.3390/atmos13071070
Reed AT, Stansfield AM, Reed KA. Characterizing Long Island’s Extreme Precipitation and Its Relationship to Tropical Cyclones. Atmosphere. 2022; 13(7):1070. https://doi.org/10.3390/atmos13071070
Chicago/Turabian StyleReed, Austin T., Alyssa M. Stansfield, and Kevin A. Reed. 2022. "Characterizing Long Island’s Extreme Precipitation and Its Relationship to Tropical Cyclones" Atmosphere 13, no. 7: 1070. https://doi.org/10.3390/atmos13071070
APA StyleReed, A. T., Stansfield, A. M., & Reed, K. A. (2022). Characterizing Long Island’s Extreme Precipitation and Its Relationship to Tropical Cyclones. Atmosphere, 13(7), 1070. https://doi.org/10.3390/atmos13071070