Mapping Thunderstorm Electrical Structure in the Troposphere in Warm Season with VLF/LF Total Lightning Monitoring Data over the Pearl River Delta Region, China
Abstract
:1. Introduction
2. Measurement and Methods
2.1. Total Lightning Measurement
2.2. Data Classification
3. Results
3.1. Overview of Total Lightning Data
3.2. Height Distribution in Various Proportion Ranges
3.3. Electrical Structure during Eight Thunderstorm Days
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stolzenburg, M.; Marshall, T.C. Charge structure and dynamics in thunderstorms. Space Sci. Rev. 2008, 137, 355–372. [Google Scholar] [CrossRef]
- Chmielewski, V.C.; Bruning, E.C.; Ancell, B.C. Variations of thunderstorm charge structures in West Texas on 4 June 2012. J. Geophys. Res. Atmos. 2018, 123, 9502–9523. [Google Scholar] [CrossRef] [Green Version]
- Fankhauser, J.C. Thunderstorm-environment interactions determined from aircraft and radar observations. Mon. Weather. Rev. 1971, 99, 171–192. [Google Scholar] [CrossRef]
- Cummins, K.L.; Krider, E.P.; Malone, M.D. The US National Lightning Detection Network/sup TM/and applications of cloud-to-ground lightning data by electric power utilities. IEEE Trans. Electromagn. Compat. 1998, 40, 465–480. [Google Scholar] [CrossRef] [Green Version]
- McCaul, E.W.; Buechler, D.E.; Hodanish, S.; Goodman, S.J. The Almena, Kansas, Tornadic Storm of 3 June 1999 A Long-Lived Supercell with Very Little Cloud-to-Ground Lightning. Mon. Weather Rev. 2002, 130, 407–415. [Google Scholar] [CrossRef]
- Clarke, S.G. The mechanism of a thunderstorm. Proc. R. Soc. Lond. A 1927, 114, 376–401. [Google Scholar]
- Simpson, G.C.; Scrase, F.J. The distribution of electricity in thunderclouds. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1937, 161, 309–352. [Google Scholar]
- Li, Y.; Zhang, G.; Wang, Y.; Wu, B.; Li, J. Observation and analysis of electrical structure change and diversity in thunderstorms on the Qinghai-Tibet Plateau. Atmos. Res. 2017, 194, 130–141. [Google Scholar] [CrossRef]
- Rust, W.D. Possibly inverted-polarity electrical structures in thunderstorms during STEPS. Geophys. Res. Lett. 2002, 29, 12. [Google Scholar] [CrossRef]
- Wiens, K.C.; Rutledge, S.A.; Tessendorf, S.A. The 29 June 2000 Supercell Observed during STEPS. Part II: Lightning and Charge Structure. J. Atmos. Sci. 2005, 62, 4151–4177. [Google Scholar] [CrossRef]
- Zheng, D.; Wang, D.; Zhang, Y.; Wu, T.; Takagi, N. Charge regions indicated by LMA lightning flashes in Hokuriku’s winter thunderstorms. J. Geophys. Res. Atmos. 2019, 124, 7179–7206. [Google Scholar] [CrossRef]
- Bruning, E.C.; Rust, W.D.; Schuur, T.J.; MacGorman, D.R.; Krehbiel, P.R.; Rison, W. Electrical and polarimetric radar observations of a multicell storm in TELEX. Mon. Weather Rev. 2007, 135, 2525–2544. [Google Scholar] [CrossRef]
- Rust, W.D.; Trapp, R.J. Initial balloon soundings of the electric field in winter nimbostratus clouds in the USA. Geophys. Res. Lett. 2002, 29, 20. [Google Scholar] [CrossRef] [Green Version]
- Stolzenburg, M.; Rust, W.D.; Marshall, T.C. Electrical structure in thunderstorm convective regions: 3. Synthesis. J. Geophys. Res. Atmos. 1998, 103, 14097–14108. [Google Scholar] [CrossRef]
- Rison, W.; Thomas, R.J.; Krehbiel, P.R.; Hamlin, T.; Harlin, J. A GPS-based three-dimensional lightning mapping system: Initial observations in central New Mexico. Geophys. Res. Lett. 1999, 26, 3573–3576. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.J.; Krehbiel, P.R.; Rison, W.; Hamlin, T.; Boccippio, D.J.; Goodman, S.J.; Christian, H.J. Comparison of ground-based 3-dimensional lightning mapping observations with satellite-based LIS observations in Oklahoma. Geophys. Res. Lett. 2000, 27, 1703–1706. [Google Scholar] [CrossRef] [Green Version]
- Hager, W.W.; Aslan, B.C.; Sonnenfeld, R.G.; Crum, T.D.; Battles, J.D.; Holborn, M.T.; Ron, R. Three-dimensional charge structure of a mountain thunderstorm. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; Qie, X.; Peng, L.; Li, W. Charge structure of a summer thunderstorm in North China: Simulation using a Regional Atmospheric Model System. Adv. Atmos. Sci. 2014, 31, 1022–1034. [Google Scholar] [CrossRef]
- López, J.A.; Montanyà, J.; Velde, O.A.; Pineda, N.; Salvador, A.; Romero, D.; Aranguren, D.; Taborda, J. Charge structure of two tropical thunderstorms in Colombia. J. Geophys. Res. Atmos. 2019, 124, 5503–5515. [Google Scholar] [CrossRef]
- Bruning, E.C.; Rust, W.D.; MacGorman, D.R.; Biggerstaff, M.I.; Schuur, T.J. Formation of Charge Structures in a Supercell. Mon. Weather Rev. 2010, 138, 3740–3761. [Google Scholar] [CrossRef]
- Cai, L.; Zou, X.; Wang, J.; Li, Q.; Zhou, M.; Fan, Y. The Foshan Total Lightning Location System in China and its initial operation results. Atmosphere 2019, 10, 149. [Google Scholar] [CrossRef] [Green Version]
- Pilkey, J.T.; Uman, M.A.; Hill, J.D.; Ngin, T.; Gamerota, W.R.; Jordan, D.M.; Caicedo, J.; Hare, B. Rocket-triggered lightning propagation paths relative to preceding natural lightning activity and inferred cloud charge. J. Geophys. Res. Atmos. 2014, 119, 13–56. [Google Scholar] [CrossRef]
- Stolzenburg, M.; Marshall, T.C.; Krehbiel, P.R. Initial electrification to the first lightning flash in New Mexico thunderstorms. J. Geophys. Res. Atmos. 2015, 120, 253–276. [Google Scholar] [CrossRef]
- Prentice, S.A.; Mackerras, D. The Ratio of Cloud to Cloud-Ground Lightning Flashes in Thunderstorms. J. Appl. Meteorol. Climatol. 1977, 16, 545–550. [Google Scholar] [CrossRef] [Green Version]
- Rison, W.; Krehbiel, P.R.; Stock, M.G.; Edens, H.E.; Shao, X.-M.; Thomas, R.J.; Stanley, M.A.; Zhang, Y. Observations of narrow bipolar events reveal how lightning is initiated in thunderstorms. Nat. Commun. 2016, 7, 10721. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Zou, X.; Wang, J.; Li, Q.; Zhou, M.; Fan, Y.; Yu, W. Lightning electric-field waveforms associated with transmission-line faults. IET Gener. Transm. Distrib. 2019, 14, 525–531. [Google Scholar] [CrossRef]
- Wang, J.; Li, Q.; Cai, L.; Zhou, M.; Fan, Y.; Xiao, J.; Sunjerga, A. Multiple-station measurements of a return-stroke electric field from rocket-triggered lightning at distances of 68–126 km. IEEE Trans. Electromagn. Compat. 2019, 61, 440–448. [Google Scholar] [CrossRef]
- Bingzhi Zheng, F.W.; Yiming, H. Analysis of Severe Convective Weather Process in Guangdong on 17 May 2014. Guangdong Meteorol. 2015, 37, 10–14. (In Chinese) [Google Scholar]
- Zhongqing Liang, J.C.; Lv, L. Analysis on the Causes of the “May 23” Heavy Rain in Qingyuan. Guangdong Meteorol. 2015, 4, 1–5. (In Chinese) [Google Scholar]
- Leal, A.F.R.; Rakov, V.A.; Rocha, B.R.P. Compact intracloud discharges: New classification of field waveforms and identification by lightning locating systems. Electr. Power Syst. Res. 2019, 173, 251–262. [Google Scholar] [CrossRef]
- Rakov, V.A. Electrical structure of thunderclouds. In Fundamentals of Lightning; Cambridge University Press: Cambridge, MA, USA, 2016; pp. 31–51. [Google Scholar]
- Price, C.G. Lightning applications in weather and climate research. Surv. Geophys. 2013, 34, 755–767. [Google Scholar] [CrossRef]
- Murray, L.T. An uncertain future for lightning. Nat. Clim. Change 2018, 8, 191–192. [Google Scholar] [CrossRef]
- Makowski, J.A.; MacGorman, D.R.; Biggerstaff, M.I.; Beasley, W.H. Total lightning characteristics relative to radar and satellite observations of oklahoma mesoscale convective systems. Mon. Weather Rev. 2013, 141, 1593–1611. [Google Scholar] [CrossRef]
- Lang, T.J.; Rutledge, S.A. Kinematic, microphysical, and electrical aspects of an asymmetric bow-echo mesoscale convective system observed during STEPS 2000. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Chan, L.Y.; Lin, Q.; Feng, W.; Bi, X.; Chen, J.; Tao, H.; Wang, X.; Chen, D.; Sheng, G.; et al. Physical and observable characteristics of cloud-to-ground lightning over the Pearl River Delta region of South China. J. Geophys. Res. Atmos. 2014, 119, 5986–5999. [Google Scholar] [CrossRef]
- Cai, L. Ground-Based VLF/LF Three-Dimensional Total Lightning Location Technology. Ph.D. Thesis, Wuhan University, Wuhan, China, 2013. [Google Scholar]
- Li, Q.; Wang, J.; Cai, L.; Zhou, M.; Fan, Y. On the return-stroke current estimation of Foshan Total Lightning Location System (FTLLS). Atmos. Res. 2021, 248, 105194. [Google Scholar] [CrossRef]
- Lagouvardos, K.; Kotroni, V.; Defer, E.; Bousquet, O. Study of a heavy precipitation event over southern France, in the frame of HYMEX project: Observational analysis and model results using assimilation of lightning. Atmos. Res. 2013, 134, 45–55. [Google Scholar] [CrossRef]
- Defer, E.; Pinty, J.P.; Coquillat, S.; Martin, J.M.; Prieur, S.; Soula, S.; Richard, E.; Rison, W.; Krehbiel, P.; Thomas, R.; et al. An overview of the lightning and atmospheric electricity observations collected in southern France during the HYdrological cycle in Mediterranean EXperiment (HyMeX), Special Observation Period 1. Atmos. Meas. Tech. 2015, 8, 649–669. [Google Scholar] [CrossRef] [Green Version]
- Ribaud, J.F.; Bousquet, O.; Coquillat, S. Relationships between total lightning activity, microphysics and kinematics during the 24 September 2012 HyMeX bow-echo system. Q. J. R. Meteorol. Soc. 2016, 142, 298–309. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Zhao, K.; Xue, M. Spatial and temporal characteristics of warm season convection over Pearl River Delta region, China, based on 3 years of operational radar data. J. Geophys. Res. Atmos. 2014, 119, 447–465. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Mai, B.R.; Huang, Y.G.; Wen, N.Z. Temporal and spatial characteristics of lightning in Guangdong region. In Proceedings of the 2014 International Conference on Lightning Protection (Iclp), Kampala, Uganda, 11–18 October 2014; pp. 1173–1176. [Google Scholar]
- Gremillion, M.S.; Orville, R.E. Thunderstorm Characteristics of Cloud-to-Ground Lightning at the Kennedy Space Center, Florida: A Study of Lightning Initiation Signatures as Indicated by the WSR-88D. Weather Forecast. 1999, 14, 640–649. [Google Scholar] [CrossRef]
- Stano, G.T.; Fuelberg, H.E.; Roeder, W.P. Developing empirical lightning cessation forecast guidance for the Cape Canaveral Air Force Station and Kennedy Space Center. J. Geophys. Res. Atmos. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Lang, T.J.; Rutledge, S.A. A Framework for the Statistical Analysis of Large Radar and Lightning Datasets: Results from STEPS 2000. Mon. Weather Rev. 2011, 139, 2536–2551. [Google Scholar] [CrossRef]
- van der Velde, O.A.; Montanyà, J. Asymmetries in bidirectional leader development of lightning flashes. J. Geophys. Res. Atmos. 2013, 118, 504–519. [Google Scholar] [CrossRef]
- Caicedo, J.A.; Uman, M.A.; Pilkey, J.T. Lightning evolution in two north Central Florida summer multicell storms and three winter/spring frontal storms. J. Geophys. Res. Atmos. 2018, 123, 1155–1178. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.; Zhang, Y.; Meng, Q.; Lu, W.; Zhong, M. Lightning activity and electrical structure in a thunderstorm that continued for more than 24 h. Atmos. Res. 2010, 97, 241–256. [Google Scholar] [CrossRef]
- Tessendorf, S.A. Characteristics of lightning in supercells. In Lightning: Principles, Instruments and Applications; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar]
- Bruning, E.C.; Weiss, S.A.; Calhoun, K.M. Continuous variability in thunderstorm primary electrification and an evaluation of inverted-polarity terminology. Atmos. Res. 2014, 135, 274–284. [Google Scholar] [CrossRef]
Property | 16 May | 17 May | 18 May | 19 May | 20 May | 21 May | 22 May | 23 May |
---|---|---|---|---|---|---|---|---|
Total Lightning | 190,186 | 218,505 | 174,605 | 120,469 | 139,625 | 143,782 | 148,834 | 152,130 |
IC events | 142,909 | 166,397 | 138,945 | 81,726 | 95,986 | 109,753 | 113,939 | 132,259 |
CG events | 44,316 | 49,435 | 34,271 | 35,526 | 41,728 | 32,593 | 33,898 | 19,127 |
NBEs | 2961 | 2673 | 1389 | 3217 | 1911 | 1436 | 997 | 744 |
Highest Temperature (°C) | 32 | 32 | 31 | 31 | 31 | 29 | 30 | 29 |
Lowest Temperature (°C) | 25 | 25 | 23 | 23 | 24 | 24 | 24 | 24 |
Polarity | Range of Average Height (km) | Median Height (km) | ||
---|---|---|---|---|
10–90% | 20–80% | 30–70% | ||
positive | 6.1–13.4 | 7.5–12.4 | 8.6–11.7 | 10.2 |
negative | 3.7–13.1 | 5.3–11.7 | 6.2–10.3 | 8.1 |
Date | Positive | Negative | ||
---|---|---|---|---|
Range of Average Height (km) | Median Height (km) | Range of Average Height (km) | Median Height (km) | |
D140516 | 7.5–12.4 | 10.2 | 5.3–11.7 | 8.1 |
D140517 | 7.9–12.6 | 10.4 | 5.6–11.1 | 7.8 |
D140518 | 7.6–12.2 | 10 | 5.5–10.9 | 7.7 |
D140519 | 7.1–12.1 | 9.8 | 4–11.5 | 6.7 |
D140520 | 7.3–12.4 | 9.9 | 5.2–11.5 | 7.8 |
D140521 | 8.3–13.6 | 11.3 | 6.3–13 | 9.7 |
D140522 | 6.9–11.3 | 9.1 | 5.7–10.5 | 7.9 |
D140523 | 7.3–11.8 | 9.5 | 5.4–10.6 | 7.6 |
Average | 7.5–12.3 | 10 | 5.4–11.4 | 7.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Cheng, S.; Cai, L.; Fan, Y.; Zhou, M.; Li, Q.; Huang, Y. Mapping Thunderstorm Electrical Structure in the Troposphere in Warm Season with VLF/LF Total Lightning Monitoring Data over the Pearl River Delta Region, China. Atmosphere 2022, 13, 1015. https://doi.org/10.3390/atmos13071015
Wang J, Cheng S, Cai L, Fan Y, Zhou M, Li Q, Huang Y. Mapping Thunderstorm Electrical Structure in the Troposphere in Warm Season with VLF/LF Total Lightning Monitoring Data over the Pearl River Delta Region, China. Atmosphere. 2022; 13(7):1015. https://doi.org/10.3390/atmos13071015
Chicago/Turabian StyleWang, Jianguo, Si Cheng, Li Cai, Yadong Fan, Mi Zhou, Quanxin Li, and Yijun Huang. 2022. "Mapping Thunderstorm Electrical Structure in the Troposphere in Warm Season with VLF/LF Total Lightning Monitoring Data over the Pearl River Delta Region, China" Atmosphere 13, no. 7: 1015. https://doi.org/10.3390/atmos13071015
APA StyleWang, J., Cheng, S., Cai, L., Fan, Y., Zhou, M., Li, Q., & Huang, Y. (2022). Mapping Thunderstorm Electrical Structure in the Troposphere in Warm Season with VLF/LF Total Lightning Monitoring Data over the Pearl River Delta Region, China. Atmosphere, 13(7), 1015. https://doi.org/10.3390/atmos13071015