Enhanced Methane Oxidation Potential of Landfill Cover Soil Modified with Aged Refuse
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Material Properties
2.2. Methane Oxidation Potential Test
2.3. Test Scheme
3. Results and Discussion
3.1. Community Structure of Methane-Oxidizing Bacteria in Aged Refuse
3.2. Effect of the Amount of Aged Refuse on the Methane Oxidation Potential of Cover Soil
3.3. Effect of Water Content on the Methane Oxidation Rate of Cover Soil Modified with Aged Refuse
3.4. Effect of Temperature on the Methane Oxidation Rate of Cover Soil Modified with Aged Refuse
3.5. Effect of Gas Composition on the Methane Reaction Rate of Cover Soil Modified with Aged Refuse
4. Conclusions
- The microbial community analysis of aged refuse shows that it mainly includes Methylobacter, Methylocaldum, and Methylocaldum. The type I and type II methane-oxidizing bacteria account for 56.27% and 43.73% of the total methane-oxidizing bacteria, respectively.
- Adding aged refuse to cover soil can significantly enhance its methane oxidation potential. When the amount of aged refuse gradually increases from 5% to 50%, the methane oxidation capacity of cover soil is basically linear and positively correlated with the amount of aged refuse. However, the methane oxidation capacity of cover soil does not increase with the further increase in the amount of aged refuse, indicating that the optimal mixing ratio between aged refuse and cover soil is approximately 1:1.
- When the amount of aged refuse reaches 50%, the optimal temperature and water content are approximately 25 °C and 30%, respectively, and the maximum methane oxidation rate measured in batch incubation tests is 308.5 (μg CH4/g)/h.
- When the initial concentration of methane in the serum bottle is 15%, the methane oxidation capacity of cover soil modified with aged refuse is significantly affected by the O2/CH4 ratio, but is little affected by the CO2/CH4 ratio. When the O2/CH4 ratio is in the range of 0.8–1.2, the methane oxidation capacity of cover soil modified with aged refuse is negatively correlated with the O2/CH4 ratio. In follow-up research, it is necessary to study the effect of oxygen concentration on the production of EPSs in the methane oxidation process of cover soil modified with aged refuse.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.C.; Chen, Y.M.; Zhan, T.L.T. Opportunities and challenges of environmental geotechnics in China. Environ. Geotech. 2014, 2, 331–335. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- Powell, J.T.; Townsend, T.G.; Zimmerman, J.B. Estimates of solid waste disposal rates and reduction targets for landfill gas emissions. Nat. Clim. Change 2016, 6, 162–165. [Google Scholar] [CrossRef]
- Inglezakis, V.J.; Rojas–Solórzano, L.; Kim, J.; Aitbekova, A.; Ismailova, A. Comparison between landfill gas and waste incineration for power generation in Astana, Kazakhstan. Waste Manag. Res. 2015, 33, 486–494. [Google Scholar] [CrossRef] [PubMed]
- Purmessur, B.; Surroop, D. Power generation using landfill gas generated from new cell at the existing landfill site. J. Environ. Chem. Eng. 2019, 7, 103060. [Google Scholar] [CrossRef]
- Yazdani, R.; Imhoff, P.T.; Han, B.; Mei, C.; Augenstein, D. Quantifying capture efficiency of gas collection wells with gas tracers. Waste Manag. 2015, 43, 319–327. [Google Scholar] [CrossRef]
- Coskuner, G.; Jassim, M.S.; Nazeer, N.; Damindra, G.H. Quantification of landfill gas generation and renewable energy potential in arid countries: Case study of Bahrain. Waste Manag. Res. 2020, 38, 1110–1118. [Google Scholar] [CrossRef]
- Mønster, J.; Kjeldsen, P.; Scheutz, C. Methodologies for measuring fugitive methane emissions from landfills–A review. Waste Manag. 2019, 87, 835–859. [Google Scholar] [CrossRef]
- Niskanen, A.; Värri, H.; Havukainen, J.; Uusitalo, V.; Horttanainen, M. Enhancing landfill gas recovery. J. Clean. Prod. 2013, 55, 67–71. [Google Scholar] [CrossRef]
- Spokas, K.; Bogner, J.; Chanton, J.; Morcet, M.; Aran, C.; Graff, C.; Moreau-Le Golvan, Y.; Hebe, I. Methane mass balance at three landfill sites: What is the efficiency of capture by gas collection systems? Waste Manag. 2006, 26, 516–525. [Google Scholar] [CrossRef]
- Bian, R.; Zhang, T.; Zhao, F.; Chen, J.; Liang, C.; Li, W.; Sun, Y.; Chai, X.; Fang, X.; Yuan, L. Greenhouse gas emissions from waste sectors in China during 2006–2019: Implications for carbon mitigation. Process Saf. Environ. Prot. 2022, 161, 488–497. [Google Scholar] [CrossRef]
- Van Tienen, Y.M.D.S.; De Lima, G.M.; Mazur, D.L.; Martins, K.G.; Stroparo, E.C.; Schirmer, W.N. Methane Oxidation Biosystem In Landfill Fugitive Emissions Using Conventional Cover Soil and Compost as Alternative Substrate–A Field Study. Clean Technol. Environ. Policy 2021, 23, 2627–2637. [Google Scholar] [CrossRef]
- Zhan, L.T.; Wu, T.; Feng, S.; Li, G.Y.; He, H.J.; Lan, J.W.; Chen, Y.M. Full-scale experimental study of methane emission in a loess-gravel capillary barrier cover under different seasons. Waste Manag. 2020, 107, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Bian, R.; Chen, J.; Li, W.; Sun, Y.; Chai, X.; Wang, H.; Wang, Y.; Zhao, J. Numerical modeling of methane oxidation and emission from landfill cover soil coupling water-heat-gas transfer: Effects of meteorological factors. Process Saf. Environ. Prot. 2021, 146, 647–655. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Reisinger, A., Eds.; IPCC: Geneva, Switzerland, 2007. [Google Scholar]
- Safari, E.; Al-Suwaidi, G.; Rayhani, M.T. Performance of Biocover in Mitigating Fugitive Methane Emissions from Municipal Solid Waste Landfills in Cold Climates. J. Environ. Eng. 2017, 143, 06017003. [Google Scholar] [CrossRef]
- Streese, J.; Stegmann, R. Microbial oxidation of methane from old landfills in biofilters. Waste Manag. 2003, 23, 573–580. [Google Scholar] [CrossRef]
- Stark, T.; Newman, E. Design of a landfill final cover system. Geosynth. Int. 2010, 17, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Zuo, X.; Chen, Y.; Wang, L.; Xie, H.; Shen, S. Multicomponent landfill gas transport in soil cover: Column tests and numerical modelling. Environ. Geotech. 2020, 40, 1–16. [Google Scholar] [CrossRef]
- Cassini, F.; Scheutz, C.; Skov, B.H.; Mou, Z.; Kjeldsen, P. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 1. System design and gas distribution. Waste Manag. 2017, 63, 213–225. [Google Scholar] [CrossRef] [Green Version]
- Scheutz, C.; Pedersen, R.B.; Petersen, P.H.; Jørgensen, J.H.B.; Ucendo, I.M.B.; Mønster, J.G.; Samuelsson, J.; Kjeldsen, P. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system. Waste Manag. 2014, 34, 1179–1190. [Google Scholar] [CrossRef]
- Sadasivam, B.Y.; Reddy, K.R. Landfill methane oxidation in soil and bio-based cover systems: A review. Rev. Environ. Sci. Bio/Technol. 2014, 13, 79–107. [Google Scholar] [CrossRef]
- Scheutz, C.; Kjeldsen, P.; Bogner, J.E.; De Visscher, A.; Gebert, J.; Hilger, H.A.; Huber-Humer, M.; Spokas, K. Microbial methane oxidation processes and technologies for mitigation of landfill gas emissions. Waste Manag. Res. 2009, 27, 409–455. [Google Scholar] [CrossRef] [PubMed]
- Cabral, A.R.; Moreira, J.F.V.; Jugnia, L.B. Biocover performance of landfill methane oxidation: Experimental results. J. Environ. Eng. 2010, 136, 785–793. [Google Scholar] [CrossRef]
- Chanton, J.; Liptay, K. Seasonal variation in methane oxidation in a landfill cover soil as determined by an in situ stable isotope technique. Glob. Biogeochem. Cycles 2000, 14, 51–60. [Google Scholar] [CrossRef]
- Chiemchaisri, C.; Chiemchaisri, W.; Kumar, S.; Wicramarachchi, P.N. Reduction of methane emission from landfill through microbial activities in cover soil: A brief review. Crit. Rev. Environ. Sci. Technol. 2012, 42, 412–434. [Google Scholar] [CrossRef]
- Niemczyk, M.; Berenjkar, P.; Wilkinson, N.; Lozecznik, S.; Sparling, R.; Yuan, Q. Enhancement of CH4 oxidation potential in bio-based landfill cover materials. Process Saf. Environ. Prot. 2021, 146, 943–951. [Google Scholar] [CrossRef]
- Feng, S.; Ng, C.W.W.; Leung, A.K.; Liu, H. Numerical modelling of methane oxidation efficiency and coupled water-gas-heat reactive transfer in a sloping landfill cover. Waste Manag. 2017, 68, 355–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majdinasab, A.; Yuan, Q. Performance of the biotic systems for reducing methane emissions from landfill sites: A review. Ecol. Eng. 2017, 104, 116–130. [Google Scholar] [CrossRef]
- Spokas, K.A.; Bogner, J.E. Limits and dynamics of methane oxidation in landfill cover soils. Waste Manag. 2011, 31, 823–832. [Google Scholar] [CrossRef]
- Abushammala, M.F.; Basri, N.E.A.; Younes, M.K. Seasonal Variation of Landfill Methane and Carbon Dioxide Emissions in a Tropical Climate. Int. J. Environ. Sci. Dev. 2016, 7, 586. [Google Scholar] [CrossRef] [Green Version]
- Henneberger, R.; Chiri, E.; Bodelier, P.E.L.; Frenzel, P.; Lüke, C.; Schroth, M.H. Field-scale tracking of active methane-oxidizing communities in a landfill cover soil reveals spatial and seasonal variability. Environ. Microbiol. 2015, 17, 1721–1737. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Jung, H.; Ryu, H.W.; Oh, K.C.; Jeon, J.M.; Cho, K.S. Seasonal characteristics of odor and methane mitigation and the bacterial community dynamics in an on-site biocover at a sanitary landfill. Waste Manag. 2018, 71, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Albanna, M.; Fernandes, L. Effects of temperature, moisture content, and fertilizer addition on biological methane oxidation in landfill cover soils. Pract. Period. Hazard. Toxic Radioact. Waste Manag. 2009, 13, 187–195. [Google Scholar] [CrossRef]
- Cabral, A.; Tremblay, P.; Lefebvre, G. Determination of the diffusion coefficient of oxygen for a cover system including a pulp and paper by-product. Geotech. Test. J. 2004, 27, 184–197. [Google Scholar]
- Zhan, T.; Yang, Y.; Chen, R.; Ng, C.; Chen, Y. Influence of clod size and water content on gas permeability of a compacted loess. Can. Geotech. J. 2014, 51, 1468–1474. [Google Scholar] [CrossRef]
- Scheutz, C.; Cassini, F.; De, S.J.; Kjeldsen, P. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 2. Methane oxidation. Waste Manag. 2017, 63, 203–212. [Google Scholar] [CrossRef] [Green Version]
- Han, D.; Zhao, Y.; Xue, B.; Chai, X. Effect of bio-column composed of aged refuse on methane abatement–A novel configuration of biological oxidation in refuse landfill. J. Environ. Sci. 2010, 22, 769–776. [Google Scholar] [CrossRef]
- Lou, Z.; Wang, L.; Zhao, Y. Consuming un-captured methane from landfill using aged refuse bio-cover. Bioresour. Technol. 2011, 102, 2328–2332. [Google Scholar] [CrossRef]
- Zhang, H.; Yan, X.; Cai, B.; Zhang, Y.; Liu, J.; Ao, H. The effects of aged refuse and sewage sludge on landfill CH4 oxidation and N2O emissions: Roles of moisture content and temperature. Ecol. Eng. 2015, 74, 345–350. [Google Scholar] [CrossRef]
- Zhao, Y.C. Excavation and characterization of refuse in closed landfill. J. Environ. Sci. 2002, 14, 303–308. [Google Scholar]
- Mei, J.; Zhen, G.; Zhao, Y. Bio-oxidation of escape methane from landfill using leachate-modified aged refuse. Arab. J. Sci. Eng. 2016, 41, 2493–2500. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Jia, B.; Wang, W.; Zhu, W.; Huang, T.; Kong, X. Landfill CH4 oxidation by mineralized refuse: Effects of NH4+ N incubation, water content and temperature. Sci. Total Environ. 2012, 426, 406–413. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Wang, L.; Han, D.; Zhao, Y. Methanotrophic community structure of aged refuse and its capability for methane bio-oxidation. J. Environ. Sci. 2011, 23, 868–874. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, K.; Yan, X.; Sun, Q.; Li, Y.; Zhang, Y.; Zun, Z.; Ke, F. Effects of nitrogen conversion and environmental factors on landfill CH4 oxidation and N2O emissions in aged refuse. J. Environ. Manag. 2013, 126, 174–181. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; He, C.; Zhang, L.; Quan, X.; Zhao, Y. Kinetics of affinity to methane oxidation by Chryseobacterium sp. from aged-refuse. CIESC J. 2011, 62, 1915–1921. [Google Scholar]
- Chen, Y.; Guo, R.; Li, Y.C.; Liu, H.; Zhan, T.L. A degradation model for high kitchen waste content municipal solid waste. Waste Manag. 2016, 58, 376–385. [Google Scholar] [CrossRef]
- Chen, Y.; Zhan, L.; Li, Y. Biochemical, hydraulic and mechanical behaviours of landfills with high-kitchen-waste-content MSW. In Proceedings of the 7th International Congress on Environmental Geotechnics, Melbourne, Australia, 10–14 November 2014; pp. 232–259. [Google Scholar]
- Zhan, L.T.; Xu, H.; Chen, Y.M.; Lü, F.; Lan, J.W.; Shao, L.M.; Lin, W.A.; He, P.J. Biochemical, hydrological and mechanical behaviors of high food waste content MSW landfill: Preliminary findings from a large-scale experiment. Waste Manag. 2017, 63, 27–40. [Google Scholar] [CrossRef]
- Liu, H.; Zhou, J.; Chen, Y.; Li, Y.; Zhan, L. Evaluation of municipal solid waste landfill stabilization. J. Zhejiang Univ. Eng. Sci. 2016, 50, 2336–2342. (In Chinese) [Google Scholar]
- Xu, H. large-Scale Experiment on Biochemo-Hvdro-Mechanica Behaviors of High-Food-Waste-Conetnt MSW and Applications; Zhejiang University: Hangzhou, China, 2016. (In Chinese) [Google Scholar]
- Haiba, E.; Ivask, M.; Olle, L.; Peda, J.; Kuu, A.; Kutti, S.; Nei, L. Transformation of nutrients and organic matter in vermicomposting of sewage sludge and kitchen wastes. J. Agric. Sci. 2014, 6, 114. [Google Scholar] [CrossRef] [Green Version]
- Chi, Z.; Lu, W.; Wang, H. Spatial patterns of methane oxidation and methanotrophic diversity in landfill cover soils of Southern China. J. Microbiol. Biotechnol. 2015, 25, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Christophersen, M.; Linderød, L.; Jensen, P.E.; Kjeldsen, P. Methane Oxidation at Low Temperatures in Soil Exposed to Landfill Gas; American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America: Madison, WI, USA, 2000; pp. 1989–1997. [Google Scholar]
- Mor, S.; De Visscher, A.; Ravindra, K.; Dahiya, R.; Chandra, A.; Van Cleemput, O. Induction of enhanced methane oxidation in compost: Temperature and moisture response. Waste Manag. 2006, 26, 381–388. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Zhan, L.; Chen, Y.; Shi, W. Methane oxidation capacity of landfill cover loess and its impact factors. China Environ. Sci. 2015, 35, 484–492. (In Chinese) [Google Scholar]
- Perdikea, K.; Mehrotra, A.K.; Hettiaratchi, J.P.A. Study of thin biocovers (TBC) for oxidizing uncaptured methane emissions in bioreactor landfills. Waste Manag. 2008, 28, 1364–1374. [Google Scholar] [CrossRef] [PubMed]
- Gebert, J.; Groengroeft, A.; Miehlich, G. Kinetics of microbial landfill methane oxidation in biofilters. Waste Manag. 2003, 23, 609–619. [Google Scholar] [CrossRef]
- Börjesson, G.; Sundh, I.; Svensson, B. Microbial oxidation of CH4 at different temperatures in landfill cover soils. FEMS Microbiol. Ecol. 2004, 48, 305–312. [Google Scholar] [CrossRef]
- Wilshusen, J.; Hettiaratchi, J.; De Visscher, A.; Saint-Fort, R. Methane oxidation and formation of EPS in compost: Effect of oxygen concentration. Environ. Pollut. 2004, 129, 305–314. [Google Scholar] [CrossRef]
- Zhan, L.T. Moisture and gas flow properties of compacted loess final covers for MSW landfills in Northwest China. In Unsaturated Soil Mechanics-From Theory to Practice, Proceedings of the 6th Asia Pacific Conference on Unsaturated Soils, Guilin, China, 23–26 October 2015; CRC Press: Boca Raton, FL, USA, 2015; p. 103. [Google Scholar]
Natural Water Content (%) | Particle Composition (%) | Proportion | Organic Matter Content (%) | pH | ||
---|---|---|---|---|---|---|
2–0.075 mm | 0.075–0.005 mm | <0.005 mm | ||||
23.2 | 70.3 | 25.0 | 4.7 | 2.74 | 0.9 | 7.9 |
Organic Fines | Plastics | Glass and Metal | Animal Bone | Large Stone | Plant Rhizome |
---|---|---|---|---|---|
53.38% | 21.65% | 2.02% | 10.95% | 10.65% | 1.36% |
Working Condition | Soil Sample No. | Amount of Aged Refuse (%) | Water Content (%) | Temperature (°C) | CO2 Volume (mL) | CH4 Volume (mL) |
---|---|---|---|---|---|---|
I | R0 | 0 | 30 | 30 | 0 | 15 |
R5 | 5 | |||||
R10 | 10 | |||||
R25 | 25 | |||||
R50 | 50 | |||||
R100 | 100 | |||||
II | W5 | 50 | 5 | 30 | 0 | 15 |
W15 | 15 | |||||
W25 | 25 | |||||
W35 | 35 | |||||
W45 | 45 | |||||
III | T15 | 50 | 30 | 15 | 0 | 15 |
T25 | 25 | |||||
T35 | 35 | |||||
IV | C0 | 50 | 30 | 30 | 0 | 15 |
C0.5 | 7.5 | |||||
C1 | 15 | |||||
C2 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, H.; Wu, T.; Qiu, Z.; Zhao, C.; Wang, S.; Yao, J.; Hong, J. Enhanced Methane Oxidation Potential of Landfill Cover Soil Modified with Aged Refuse. Atmosphere 2022, 13, 802. https://doi.org/10.3390/atmos13050802
He H, Wu T, Qiu Z, Zhao C, Wang S, Yao J, Hong J. Enhanced Methane Oxidation Potential of Landfill Cover Soil Modified with Aged Refuse. Atmosphere. 2022; 13(5):802. https://doi.org/10.3390/atmos13050802
Chicago/Turabian StyleHe, Haijie, Tao Wu, Zhanhong Qiu, Chenxi Zhao, Shifang Wang, Jun Yao, and Jie Hong. 2022. "Enhanced Methane Oxidation Potential of Landfill Cover Soil Modified with Aged Refuse" Atmosphere 13, no. 5: 802. https://doi.org/10.3390/atmos13050802
APA StyleHe, H., Wu, T., Qiu, Z., Zhao, C., Wang, S., Yao, J., & Hong, J. (2022). Enhanced Methane Oxidation Potential of Landfill Cover Soil Modified with Aged Refuse. Atmosphere, 13(5), 802. https://doi.org/10.3390/atmos13050802