A Climatology of Mesoscale Convective Systems in Northwest Mexico during the North American Monsoon
Abstract
:1. Introduction
2. Study Area, Data and Methodology
2.1. Study Area
2.2. Data
2.2.1. Satellite Images
2.2.2. Lightning
2.2.3. ERA5 Reanalysis Data
2.3. GOES IR Classification of MCS
2.4. MCS Detection Algorithm
2.5. MCS Trajectory Analysis
3. Results
3.1. Spatial Distribution
3.2. Interannual and Monthly Variability
3.3. Diurnal Cycle of MCS
3.4. Lightning Activity of MCS
3.5. MCS Propagation
4. Summary and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Houze, R.A. Mesoscale convective systems. Rev. Geophys. 2004, 42, 1–43. [Google Scholar] [CrossRef] [Green Version]
- Houze, R.A. 100 years of research on mesoscale convective systems. Meteorol. Monogr. 2018, 59, 17.1–17.54. [Google Scholar] [CrossRef]
- McAnelly, R.L.; Cotton, W.R. The precipitation life cycle of mesoscale convective complexes over the central United States. Mon. Weather Rev. 1989, 117, 784–808. [Google Scholar] [CrossRef] [Green Version]
- Houze, R.A.; Smull, B.F.; Dodge, P. Mesoscale Organization of Springtime Rainstorms in Oklahoma. Mon. Weather Rev. 1990, 118, 613–654. [Google Scholar] [CrossRef]
- Schumacher, C.; Houze, R.A. Stratiform rain in the tropics as seen by the TRMM precipitation radar. J. Clim. 2003, 16, 1739–1756. [Google Scholar] [CrossRef]
- Houze, R.A.; Rasmussen, K.L.; Zuluaga, M.D.; Brodzik, S.R. The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Rev. Geophys. 2015, 53, 994–1021. [Google Scholar] [CrossRef]
- Houze, R.A.; Rasmussen, K.L.; Medina, S.; Brodzik, S.R.; Romatschke, U. Anomalous Atmospheric Events Leading to the Summer 2010 Floods in Pakistan. Bull. Am. Meteorol. Soc. 2011, 92, 291–298. [Google Scholar] [CrossRef]
- Rasmussen, K.L.; Zuluaga, M.D.; Houze, R.A., Jr. Severe convection and lightning in subtropical South America. Geophys. Res. Lett. 2014, 41, 7359–7366. [Google Scholar] [CrossRef]
- Wiston, M.; Mphale, K.M. Mesoscale Convective Systems: A Case Scenario of the “Heavy Rainfall” Event of 15–20 January 2013 over Southern Africa. Climate 2019, 7, 73. [Google Scholar] [CrossRef] [Green Version]
- Mohr, K.I.; Zipser, E.J. Defining Mesoscale Convective Systems by Their 85-GHz Ice-Scattering Signatures. Bull. Am. Meteorol. Soc. 1996, 77, 1179–1190. [Google Scholar] [CrossRef] [Green Version]
- Yuan, J.; Houze, R.A. Global Variability of Mesoscale Convective System Anvil Structure from A-Train Satellite Data. J. Clim. 2010, 23, 5864–5888. [Google Scholar] [CrossRef]
- Hartmann, D.L.; Hendon, H.H.; Houze, R.A. Some Implications of the Mesoscale Circulations in Tropical Cloud Clusters for Large-Scale Dynamics and Climate. J. Atmos. Sci. 1984, 41, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Houze, R.A. Observed structure of mesoscale convective systems and implications for large-scale heating. Q. J. R. Meteorol. Soc. 1989, 115, 425–461. [Google Scholar] [CrossRef]
- Mechem, D.B.; Chen, S.S.; Houze, R.A. Momentum transport processes in the stratiform regions of mesoscale convective systems over the western Pacific warm pool. Q. J. R. Meteorol. Soc. 2006, 132, 709–736. [Google Scholar] [CrossRef]
- Schumacher, C.; Houze, R.A.; Kraucunas, I. The Tropical Dynamical Response to Latent Heating Estimates Derived from the TRMM Precipitation Radar. J. Atmos. Sci. 2004, 61, 1341–1358. [Google Scholar] [CrossRef] [Green Version]
- Fuchs-Stone, Ž.; Raymond, D.J.; Sentić, S. OTREC2019: Convection over the east Pacific and southwest Caribbean. Geophys. Res. Lett. 2020, 47, e2020GL087564. [Google Scholar] [CrossRef]
- Doswell, C.A.; Brooks, H.E.; Maddox, R.A. Flash Flood Forecasting: An Ingredients-Based Methodology. Weather Forecast. 1996, 11, 560–581. [Google Scholar] [CrossRef]
- Schumacher, R.S.; Johnson, R.H. Organization and Environmental Properties of Extreme-Rain-Producing Mesoscale Convective Systems. Mon. Weather Rev. 2005, 133, 961–976. [Google Scholar] [CrossRef]
- Taylor, C.M.; Harris, P.P.; Parker, D.J. Impact of soil moisture on the development of a Sahelian mesoscale convective system: A case-study from the AMMA Special Observing Period. Q. J. R. Meteorol. Soc. 2010, 136, 456–470. [Google Scholar] [CrossRef]
- Adler, B.; Kalthoff, N.; Gantner, L. The impact of soil moisture inhomogeneities on the modification of a mesoscale convective system: An idealised model study. Atmos. Res. 2011, 101, 354–372. [Google Scholar] [CrossRef]
- Birch, C.E.; Parker, D.J.; O’Leary, A.; Marsham, J.H.; Taylor, C.M.; Harris, P.P.; Lister, G.M.S. Impact of soil moisture and convectively generated waves on the initiation of a West African mesoscale convective system. Q. J. R. Meteorol. Soc. 2013, 139, 1712–1730. [Google Scholar] [CrossRef] [Green Version]
- Erlingis, J.M.; Barros, A.P. A study of the role of daytime land–atmosphere interactions on nocturnal convective activity in the southern Great Plains during CLASIC. J. Hydrometeorol. 2014, 15, 1932–1953. [Google Scholar] [CrossRef]
- Chu, C.M.; Lin, Y.L. Effects of Orography on the Generation and Propagation of Mesoscale Convective Systems in a Two-Dimensional Conditionally Unstable Flow. J. Atmos. Sci. 2000, 57, 3817–3837. [Google Scholar] [CrossRef]
- Houze, R.A. Orographic effects on precipitating clouds. Rev. Geophys. 2012, 50, 1–47. [Google Scholar] [CrossRef]
- Mulholland, J.P.; Nesbitt, S.W.; Trapp, R.J. A case study of terrain influences on upscale convective growth of a supercell. Mon. Weather Rev. 2019, 147, 4305–4324. [Google Scholar] [CrossRef]
- Houze, R.A.; Geotis, S.G.; Marks, F.D.; West, A.K. Winter Monsoon Convection in the Vicinity of North Borneo. Part I: Structure and Time Variation of the Clouds and Precipitation. Mon. Weather Rev. 1981, 109, 1595–1614. [Google Scholar] [CrossRef] [Green Version]
- Wapler, K.; Lane, T.P. A case of offshore convective initiation by interacting land breezes near Darwin, Australia. Meteorol. Atmos. Phys. 2012, 115, 123–137. [Google Scholar] [CrossRef]
- Mapes, B.E.; Warner, T.T.; Xu, M. Diurnal Patterns of Rainfall in Northwestern South America. Part III: Diurnal Gravity Waves and Nocturnal Convection Offshore. Mon. Weather Rev. 2003, 131, 830–844. [Google Scholar] [CrossRef]
- Ichikawa, H.; Yasunari, T. Intraseasonal variability in diurnal rainfall over New Guinea and the surrounding oceans during austral summer. J. Clim. 2008, 21, 2852–2868. [Google Scholar] [CrossRef] [Green Version]
- Hassim, M.; Lane, T.; Grabowski, W. The diurnal cycle of rainfall over New Guinea in convection-permitting WRF simulations. Atmos. Chem. Phys. 2016, 16, 161–175. [Google Scholar] [CrossRef] [Green Version]
- Bougeault, P.; Binder, P.; Buzzi, A.; Dirks, R.; Houze, R.; Kuettner, J.; Smith, R.B.; Steinacker, R.; Volkert, H. The MAP special observing period. Bull. Am. Meteorol. Soc. 2001, 82, 433–462. [Google Scholar] [CrossRef] [Green Version]
- Rotunno, R.; Houze, R.A. Lessons on orographic precipitation from the Mesoscale Alpine Programme. Q. J. R. Meteorol. Soc. 2007, 133, 811–830. [Google Scholar] [CrossRef]
- Wulfmeyer, V.; Behrendt, A.; Bauer, H.S.; Kottmeier, C.; Corsmeier, U.; Blyth, A.; Craig, G.; Schumann, U.; Hagen, M.; Crewell, S.; et al. The Convective and Orographically induced Precipitation Study: A research and development project of the World Weather Research Program for improving quantitative precipitation forecasting in low-mountain regions. Bull. Am. Meteorol. Soc. 2008, 89, 1477–1486. [Google Scholar]
- Wulfmeyer, V.; Behrendt, A.; Kottmeier, C.; Corsmeier, U.; Barthlott, C.; Craig, G.C.; Hagen, M.; Althausen, D.; Aoshima, F.; Arpagaus, M.; et al. The Convective and Orographically-induced Precipitation Study (COPS): The scientific strategy, the field phase, and research highlights. Q. J. R. Meteorol. Soc. 2011, 137, 3–30. [Google Scholar] [CrossRef]
- Serra, Y.L.; Adams, D.K.; Minjarez-Sosa, C.; Moker, J.M.; Arellano, A.F.; Castro, C.L.; Quintanar, A.I.; Alatorre, L.; Granados, A.; Vazquez, G.E.; et al. The North American Monsoon GPS Transect Experiment 2013. Bull. Am. Meteorol. Soc. 2016, 97, 2103–2115. [Google Scholar] [CrossRef]
- Trapp, R.J.; Kosiba, K.A.; Marquis, J.N.; Kumjian, M.R.; Nesbitt, S.W.; Wurman, J.; Salio, P.; Grover, M.A.; Robinson, P.; Hence, D.A. Multiple-platform and multiple-Doppler radar observations of a supercell thunderstorm in South America during RELAMPAGO. Mon. Weather Rev. 2020, 148, 3225–3241. [Google Scholar] [CrossRef]
- Nesbitt, S.W.; Salio, P.V.; Ávila, E.; Bitzer, P.; Carey, L.; Chandrasekar, V.; Deierling, W.; Dominguez, F.; Dillon, M.E.; Garcia, C.M.; et al. A storm safari in Subtropical South America: Proyecto RELAMPAGO. Bull. Am. Meteorol. Soc. 2021, 102, E1621–E1644. [Google Scholar] [CrossRef]
- Varble, A.C.; Nesbitt, S.W.; Salio, P.; Hardin, J.C.; Bharadwaj, N.; Borque, P.; DeMott, P.J.; Feng, Z.; Hill, T.C.; Marquis, J.N.; et al. Utilizing a storm-generating hotspot to study convective cloud transitions: The CACTI experiment. Bull. Am. Meteorol. Soc. 2021, 102, E1597–E1620. [Google Scholar] [CrossRef]
- Parker, M.D.; Johnson, R.H. Organizational Modes of Midlatitude Mesoscale Convective Systems. Mon. Weather Rev. 2000, 128, 3413–3436. [Google Scholar] [CrossRef]
- Jirak, I.L.; Cotton, W.R.; McAnelly, R.L. Satellite and Radar Survey of Mesoscale Convective System Development. Mon. Weather Rev. 2003, 131, 2428–2449. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Fei, J.; Huang, X.; Cheng, X.; Carvalho, L.M.V.; He, H. Characteristics of Mesoscale Convective Systems over China and Its Vicinity Using Geostationary Satellite FY2. J. Clim. 2015, 28, 4890–4907. [Google Scholar] [CrossRef]
- Gallus, W.A., Jr.; Snook, N.A.; Johnson, E.V. Spring and summer severe weather reports over the Midwest as a function of convective mode: A preliminary study. Weather Forecast. 2008, 23, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Duda, J.D.; Gallus, W.A., Jr. Spring and summer midwestern severe weather reports in supercells compared to other morphologies. Weather Forecast. 2010, 25, 190–206. [Google Scholar] [CrossRef] [Green Version]
- Maddox, R.A. Mesoscale convective complexes. Bull. Am. Meteorol. Soc. 1980, 61, 1374–1387. [Google Scholar] [CrossRef]
- Anderson, C.J.; Arritt, R.W. Mesoscale convective complexes and persistent elongated convective systems over the United States during 1992 and 1993. Mon. Weather Rev. 1998, 126, 578–599. [Google Scholar] [CrossRef]
- Laing, A.G.; Fritsch, J.M. The Large-Scale Environments of the Global Populations of Mesoscale Convective Complexes. Mon. Weather Rev. 2000, 128, 2756–2776. [Google Scholar] [CrossRef]
- Douglas, M.W.; Maddox, R.A.; Howard, K.; Reyes, S. The Mexican Monsoon. J. Clim. 1993, 6, 1665–1677. [Google Scholar] [CrossRef]
- Adams, D.K.; Comrie, A.C. The North American Monsoon. Bull. Am. Meteorol. Soc. 1997, 78, 2197–2214. [Google Scholar] [CrossRef] [Green Version]
- Zehnder, J.A.; Zhang, L.; Hansford, D.; Radzan, A.; Selover, N.; Brown, C.M. Using Digital Cloud Photogrammetry to Characterize the Onset and Transition from Shallow to Deep Convection over Orography. Mon. Weather Rev. 2006, 134, 2527–2546. [Google Scholar] [CrossRef] [Green Version]
- Damiani, R.; Zehnder, J.; Geerts, B.; Demko, J.; Haimov, S.; Petti, J.; Poulos, G.S.; Razdan, A.; Hu, J.; Leuthold, M.; et al. The Cumulus, Photogrammetric, In Situ, and Doppler Observations Experiment of 2006. Bull. Am. Meteorol. Soc. 2008, 89, 57–74. [Google Scholar] [CrossRef] [Green Version]
- Ciesielski, P.E.; Johnson, R.H. Diurnal Cycle of Surface Flows during 2004 NAME and Comparison to Model Reanalysis. J. Clim. 2008, 21, 3890–3913. [Google Scholar] [CrossRef]
- Johnson, R.H.; Ciesielski, P.E.; L’Ecuyer, T.S.; Newman, A.J. Diurnal Cycle of Convection during the 2004 North American Monsoon Experiment. J. Clim. 2010, 23, 1060–1078. [Google Scholar] [CrossRef] [Green Version]
- Finch, Z.O.; Johnson, R.H. Observational Analysis of an Upper-Level Inverted Trough during the 2004 North American Monsoon Experiment. Mon. Weather Rev. 2010, 138, 3540–3555. [Google Scholar] [CrossRef] [Green Version]
- Newman, A.; Johnson, R.H. Mechanisms for Precipitation Enhancement in a North American Monsoon Upper-Tropospheric Trough. J. Atmos. Sci. 2012, 69, 1775–1792. [Google Scholar] [CrossRef] [Green Version]
- Moker, J.M.; Castro, C.L.; Arellano, A.F., Jr.; Serra, Y.L.; Adams, D.K. Convective-permitting hindcast simulations during the North American Monsoon GPS Transect Experiment 2013: Establishing baseline model performance without data assimilation. J. Appl. Meteorol. Climatol. 2018, 57, 1683–1710. [Google Scholar] [CrossRef]
- Lang, T.J.; Ahijevych, D.A.; Nesbitt, S.W.; Carbone, R.E.; Rutledge, S.A.; Cifelli, R. Radar-Observed Characteristics of Precipitating Systems during NAME 2004. J. Clim. 2007, 20, 1713–1733. [Google Scholar] [CrossRef] [Green Version]
- Mazon, J.J.; Castro, C.L.; Adams, D.K.; Chang, H.I.; Carrillo, C.M.; Brost, J.J. Objective Climatological Analysis of Extreme Weather Events in Arizona during the North American Monsoon. J. Appl. Meteorol. Climatol. 2016, 55, 2431–2450. [Google Scholar] [CrossRef] [Green Version]
- Luong, T.M.; Castro, C.L.; Chang, H.I.; Lahmers, T.; Adams, D.K.; Ochoa-Moya, C.A. The More Extreme Nature of North American Monsoon Precipitation in the Southwestern United States as Revealed by a Historical Climatology of Simulated Severe Weather Events. J. Appl. Meteorol. Climatol. 2017, 56, 2509–2529. [Google Scholar] [CrossRef]
- Farfán, L.M.; Zehnder, J.A. Moving and Stationary Mesoscale Convective Systems over Northwest Mexico during the Southwest Area Monsoon Project. Weather Forecast. 1994, 9, 630–639. [Google Scholar] [CrossRef] [Green Version]
- Lerach, D.G.; Rutledge, S.A.; Williams, C.R.; Cifelli, R. Vertical Structure of Convective Systems during NAME 2004. Mon. Weather Rev. 2010, 138, 1695–1714. [Google Scholar] [CrossRef] [Green Version]
- Rowe, A.K.; Rutledge, S.A.; Lang, T.J. Investigation of Microphysical Processes Occurring in Organized Convection during NAME. Mon. Weather Rev. 2012, 140, 2168–2187. [Google Scholar] [CrossRef]
- Valdés-Manzanilla, A.; Barradas Miranda, V.L. Mesoscale convective systems during NAME. Atmósfera 2012, 25, 155–170. [Google Scholar]
- Mejia, J.F.; Douglas, M.W.; Lamb, P.J. Observational investigation of relationships between moisture surges and mesoscale- to large-scale convection during the North American monsoon. Int. J. Climatol. 2016, 36, 2555–2569. [Google Scholar] [CrossRef]
- Higgins, W.; Ahijevych, D.; Amador, J.; Barros, A.; Berbery, E.H.; Caetano, E.; Carbone, R.; Ciesielski, P.; Cifelli, R.; Cortez-Vazquez, M.; et al. The NAME 2004 Field Campaign and Modeling Strategy. Bull. Am. Meteorol. Soc. 2006, 87, 79–94. [Google Scholar] [CrossRef]
- Higgins, W.; Gochis, D. Synthesis of Results from the North American Monsoon Experiment (NAME) Process Study. J. Clim. 2007, 20, 1601–1607. [Google Scholar] [CrossRef] [Green Version]
- Risanto, C.B.; Castro, C.L.; Arellano, A.F., Jr.; Moker, J.M., Jr.; Adams, D.K. The Impact of Assimilating GPS Precipitable Water Vapor in Convective-Permitting WRF-ARW on North American Monsoon Precipitation Forecasts over Northwest Mexico. Mon. Weather Rev. 2021, 149, 3013–3035. [Google Scholar] [CrossRef]
- Gochis, D.J.; Watts, C.J.; Garatuza-Payan, J.; Cesar-Rodriguez, J. Spatial and temporal patterns of precipitation intensity as observed by the NAME event rain gauge network from 2002 to 2004. J. Clim. 2007, 20, 1734–1750. [Google Scholar] [CrossRef] [Green Version]
- Rowe, A.K.; Rutledge, S.A.; Lang, T.J.; Ciesielski, P.E.; Saleeby, S.M. Elevation-dependent trends in precipitation observed during NAME. Mon. Weather Rev. 2008, 136, 4962–4979. [Google Scholar] [CrossRef]
- Nesbitt, S.W.; Gochis, D.J.; Lang, T.J. The diurnal cycle of clouds and precipitation along the Sierra Madre Occidental observed during NAME-2004: Implications for warm season precipitation estimation in complex terrain. J. Hydrometeorol. 2008, 9, 728–743. [Google Scholar] [CrossRef] [Green Version]
- Farfán, L.M.; Barrett, B.S.; Raga, G.; Delgado, J.J. Characteristics of mesoscale convection over northwestern Mexico, the Gulf of California, and Baja California Peninsula. Int. J. Climatol. 2021, 41, E1062–E1084. [Google Scholar] [CrossRef]
- Maddox, R.A.; McCollum, D.M.; Howard, K.W. Large-scale patterns associated with severe summertime thunderstorms over central Arizona. Weather Forecast. 1995, 10, 763–778. [Google Scholar] [CrossRef] [Green Version]
- McCollum, D.M.; Maddox, R.A.; Howard, K.W. Case study of a severe mesoscale convective system in central Arizona. Weather Forecast. 1995, 10, 643–665. [Google Scholar] [CrossRef] [Green Version]
- Zehnder, J.A.; Hu, J.; Radzan, A. Evolution of the vertical thermodynamic profile during the transition from shallow to deep convection during CuPIDO 2006. Mon. Weather Rev. 2009, 137, 937–953. [Google Scholar] [CrossRef]
- Adams, D.K.; Souza, E.P. CAPE and Convective Events in the Southwest during the North American Monsoon. Mon. Weather Rev. 2009, 137, 83–98. [Google Scholar] [CrossRef]
- Lang, T.J.; Rutledge, S.A.; Cifelli, R. Polarimetric radar observations of convection in northwestern Mexico during the North American Monsoon Experiment. J. Hydrometeorol. 2010, 11, 1345–1357. [Google Scholar] [CrossRef] [Green Version]
- Smith, W.P.; Gall, R.L. Tropical Squall Lines of the Arizona Monsoon. Mon. Weather Rev. 1989, 117, 1553–1569. [Google Scholar] [CrossRef] [Green Version]
- Pytlak, E.; Goering, M.; Bennett, A. Upper tropospheric troughs and their interaction with the North American monsoon. In Proceedings of the 19th Conference on Hydrology, San Diego, CA, USA, 9–13 January 2005. [Google Scholar]
- Lahmers, T.M.; Castro, C.L.; Adams, D.K.; Serra, Y.L.; Brost, J.J.; Luong, T. Long-Term Changes in the Climatology of Transient Inverted Troughs over the North American Monsoon Region and Their Effects on Precipitation. J. Clim. 2016, 29, 6037–6064. [Google Scholar] [CrossRef]
- Pascale, S.; Carvalho, L.M.; Adams, D.K.; Castro, C.L.; Cavalcanti, I.F. Current and future variations of the monsoons of the Americas in a warming climate. Curr. Clim. Chang. Rep. 2019, 5, 125–144. [Google Scholar] [CrossRef]
- Risanto, C.B.; Castro, C.L.; Moker, J.M.; Arellano, A.F.; Adams, D.K.; Fierro, L.M.; Minjarez Sosa, C.M. Evaluating Forecast Skills of Moisture from Convective-Permitting WRF-ARW Model during 2017 North American Monsoon Season. Atmosphere 2019, 10, 694. [Google Scholar] [CrossRef] [Green Version]
- Berbery, E.H. Mesoscale moisture analysis of the North American monsoon. J. Clim. 2001, 14, 121–137. [Google Scholar] [CrossRef]
- Becker, E.J.; Berbery, E.H. The diurnal cycle of precipitation over the North American monsoon region during the NAME 2004 field campaign. J. Clim. 2008, 21, 771–787. [Google Scholar] [CrossRef]
- Johnson, R.H.; Ciesielski, P.E.; McNoldy, B.D.; Rogers, P.J.; Taft, R.K. Multiscale Variability of the Flow during the North American Monsoon Experiment. J. Clim. 2007, 20, 1628–1648. [Google Scholar] [CrossRef]
- Gochis, D.J.; Jimenez, A.; Watts, C.J.; Garatuza-Payan, J.; Shuttleworth, W.J. Analysis of 2002 and 2003 warm-season precipitation from the North American Monsoon Experiment event rain gauge network. Mon. Weather Rev. 2004, 132, 2938–2953. [Google Scholar] [CrossRef]
- Holle, R.L.; Murphy, M.J. Lightning in the North American monsoon: An exploratory climatology. Mon. Weather Rev. 2015, 143, 1970–1977. [Google Scholar] [CrossRef]
- Goyens, C.; Lauwaet, D.; Schröder, M.; Demuzere, M.; Van Lipzig, N.P.M. Tracking mesoscale convective systems in the Sahel: Relation between cloud parameters and precipitation. Int. J. Climatol. 2012, 32, 1921–1934. [Google Scholar] [CrossRef] [Green Version]
- Adams, D.K.; Gutman, S.I.; Holub, K.L.; Pereira, D.S. GNSS observations of deep convective time scales in the Amazon. Geophys. Res. Lett. 2013, 40, 2818–2823. [Google Scholar] [CrossRef]
- Huang, X.; Hu, C.; Huang, X.; Chu, Y.; Tseng, Y.h.; Zhang, G.J.; Lin, Y. A long-term tropical mesoscale convective systems dataset based on a novel objective automatic tracking algorithm. Clim. Dyn. 2018, 51, 3145–3159. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Deckers, D. Features of atmospheric deep convection in Northwestern South America obtained from infrared satellite data. Q. J. R. Meteorol. Soc. 2022, 148, 338–350. [Google Scholar] [CrossRef]
- Arnaud, Y.; Desbois, M.; Maizi, J. Automatic Tracking and Characterization of African Convective Systems on Meteosat Pictures. J. Appl. Meteorol. 1992, 31, 443–453. [Google Scholar] [CrossRef] [Green Version]
- Machado, L.A.T.; Rossow, W.B.; Guedes, R.L.; Walker, A.W. Life Cycle Variations of Mesoscale Convective Systems over the Americas. Mon. Weather Rev. 1998, 126, 1630–1654. [Google Scholar] [CrossRef]
- Mathon, V.; Laurent, H. Life cycle of Sahelian mesoscale convective cloud systems. Q. J. R. Meteorol. Soc. 2001, 127, 377–406. [Google Scholar] [CrossRef]
- Cummins, K.L.; Murphy, M.J. An overview of lightning locating systems: History, techniques, and data uses, with an in-depth look at the US NLDN. IEEE Trans. Electromagn. Compat. 2009, 51, 499–518. [Google Scholar] [CrossRef]
- Nag, A.; Murphy, M.J.; Schulz, W.; Cummins, K.L. Lightning locating systems: Insights on characteristics and validation techniques. Earth Space Sci. 2015, 2, 65–93. [Google Scholar] [CrossRef]
- Minjarez-Sosa, C.M.; Castro, C.L.; Cummins, K.L.; Krider, E.P.; Waissmann, J. Toward development of improved QPE in complex terrain using cloud-to-ground lightning data: A case study for the 2005 monsoon in southern Arizona. J. Hydrometeorol. 2012, 13, 1855–1873. [Google Scholar] [CrossRef] [Green Version]
- Minjarez-Sosa, C.M.; Castro, C.L.; Cummins, K.L.; Waissmann, J.; Adams, D.K. An improved QPE over complex terrain employing cloud-to-ground lightning occurrences. J. Appl. Meteorol. Climatol. 2017, 56, 2489–2507. [Google Scholar] [CrossRef]
- Goodman, S.J.; Buechler, D.E.; Wright, P.D.; Rust, W.D. Lightning and precipitation history of a microburst-producing storm. Geophys. Res. Lett. 1988, 15, 1185–1188. [Google Scholar] [CrossRef]
- Williams, E.; Weber, M.; Orville, R. The relationship between lightning type and convective state of thunderclouds. J. Geophys. Res. Atmos. 1989, 94, 13213–13220. [Google Scholar] [CrossRef] [Green Version]
- Buechler, D.; Driscoll, K.; Goodman, S.; Christian, H. Lightning activity within a tornadic thunderstorm observed by the Optical Transient Detector (OTD). Geophys. Res. Lett. 2000, 27, 2253–2256. [Google Scholar] [CrossRef]
- Mattos, E.V.; Machado, L.A. Cloud-to-ground lightning and Mesoscale Convective Systems. Atmos. Res. 2011, 99, 377–390. [Google Scholar] [CrossRef] [Green Version]
- Yusnaini, H.; Muharsyah, R.; Vonnisa, M.; Tangang, F. Influence of topography on lightning density in Sumatra. J. Phys. Conf. Ser. 2021, 1876, 012022. [Google Scholar] [CrossRef]
- Said, R.; Inan, U.; Cummins, K. Long-range lightning geolocation using a VLF radio atmospheric waveform bank. J. Geophys. Res. Atmos. 2010, 115, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Said, R.; Murphy, M. GLD360 upgrade: Performance analysis and applications. In Proceedings of the 24th International Lightning Detection Conference, San Diego, CA, USA, 18–21 April 2016. [Google Scholar]
- Yun, Y.; Liu, C.; Luo, Y.; Liang, X.; Chen, F.; Rasmmusen, R. Simulating Warm-Season Precipitation in China with a Convection-Permitting Regional Climate Model. In Geophysical Research Abstracts; European Geosciences Union (EGU): Vienna, Austria, 2019; Volume 21. [Google Scholar]
- Mathias, L.; Ludwig, P.; Pinto, J.G. Synoptic-scale conditions and convection-resolving hindcast experiments of a cold-season derecho on 3 January 2014 in western Europe. Nat. Hazards Earth Syst. Sci. 2019, 19, 1023–1040. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Mu noz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Velasco, I.; Fritsch, J.M. Mesoscale convective complexes in the Americas. J. Geophys. Res. Atmos. 1987, 92, 9591–9613. [Google Scholar] [CrossRef]
- Laing, A.G.; Michael Fritsch, J. The global population of mesoscale convective complexes. Q. J. R. Meteorol. Soc. 1997, 123, 389–405. [Google Scholar] [CrossRef]
- Augustine, J.A.; Howard, K.W. Mesoscale convective complexes over the United States during 1985. Mon. Weather Rev. 1988, 116, 685–701. [Google Scholar] [CrossRef] [Green Version]
- Augustine, J.A.; Howard, K.W. Mesoscale convective complexes over the United States during 1986 and 1987. Mon. Weather Rev. 1991, 119, 1575–1589. [Google Scholar] [CrossRef] [Green Version]
- Durkee, J.D.; Mote, T.L. A climatology of warm-season mesoscale convective complexes in subtropical South America. Int. J. Climatol. 2010, 30, 418–431. [Google Scholar] [CrossRef]
- Blamey, R.C.; Reason, C.J.C. Mesoscale Convective Complexes over Southern Africa. J. Clim. 2012, 25, 753–766. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.; Houze, R.A. Satellite-Observed Characteristics of Winter Monsoon Cloud Clusters. Mon. Weather Rev. 1987, 115, 505–519. [Google Scholar] [CrossRef] [Green Version]
- Mapes, B.E.; Houze, R.A. Cloud Clusters and Superclusters over the Oceanic Warm Pool. Mon. Weather Rev. 1993, 121, 1398–1416. [Google Scholar] [CrossRef]
- Chen, S.S.; Houze, R.A.; Mapes, B.E. Multiscale Variability of Deep Convection In Realation to Large-Scale Circulation in TOGA COARE. J. Atmos. Sci. 1996, 53, 1380–1409. [Google Scholar] [CrossRef] [Green Version]
- Machado, L.A.T.; Laurent, H. The Convective System Area Expansion over Amazonia and Its Relationships with Convective System Life Duration and High-Level Wind Divergence. Mon. Weather Rev. 2004, 132, 714–725. [Google Scholar] [CrossRef]
- Pope, M.; Jakob, C.; Reeder, M.J. Objective Classification of Tropical Mesoscale Convective Systems. J. Clim. 2009, 22, 5797–5808. [Google Scholar] [CrossRef] [Green Version]
- Pope, M.; Jakob, C.; Reeder, M.J. Convective Systems of the North Australian Monsoon. J. Clim. 2008, 21, 5091–5112. [Google Scholar] [CrossRef] [Green Version]
- Cheeks, S.M.; Fueglistaler, S.; Garner, S.T. A Satellite-Based Climatology of Central and Southeastern US Mesoscale Convective Systems. Mon. Weather Rev. 2020, 148, 2607–2621. [Google Scholar] [CrossRef]
- Boer, E.; Ramanathan, V. Lagrangian approach for deriving cloud characteristics from satellite observations and its implications to cloud parameterization. J. Geophys. Res. Atmos. 1997, 102, 21383–21399. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, L.M.V.; Jones, C. A Satellite Method to Identify Structural Properties of Mesoscale Convective Systems Based on the Maximum Spatial Correlation Tracking Technique (MASCOTTE). J. Appl. Meteorol. 2001, 40, 1683–1701. [Google Scholar] [CrossRef] [Green Version]
- Laurent, H.; Machado, L.A.T.; Morales, C.A.; Durieux, L. Characteristics of the Amazonian mesoscale convective systems observed from satellite and radar during the WETAMC/LBA experiment. J. Geophys. Res. Atmos. 2002, 107, LBA 21-1–LBA 21-17. [Google Scholar] [CrossRef]
- Schröder, M.; König, M.; Schmetz, J. Deep convection observed by the Spinning Enhanced Visible and Infrared Imager on board Meteosat 8: Spatial distribution and temporal evolution over Africa in summer and winter 2006. J. Geophys. Res. Atmos. 2009, 114, 1–14. [Google Scholar] [CrossRef]
- Vila, D.A.; Machado, L.A.T.; Laurent, H.; Velasco, I. Forecast and Tracking the Evolution of Cloud Clusters (ForTraCC) Using Satellite Infrared Imagery: Methodology and Validation. Weather Forecast. 2008, 23, 233–245. [Google Scholar] [CrossRef]
- García-Herrera, R.; Hernández, E.; Paredes, D.; Barriopedro, D.; Correoso, J.F.; Prieto, L. A MASCOTTE-based characterization of MCSs over Spain, 2000–2002. Atmos. Res. 2005, 73, 261–282. [Google Scholar] [CrossRef]
- Morel, C.; Senesi, S. A climatology of mesoscale convective systems over Europe using satellite infrared imagery. I: Methodology. Q. J. R. Meteorol. Soc. 2002, 128, 1953–1971. [Google Scholar] [CrossRef]
- Sakamoto, M.S.; Ambrizzi, T.; Poveda, G. Moisture sources and life cycle of convective systems over Western Colombia. Adv. Meteorol. 2011, 2011, 890759. [Google Scholar] [CrossRef]
- Heinselman, P.L.; Schultz, D.M. Intraseasonal variability of summer storms over central Arizona during 1997 and 1999. Weather Forecast. 2006, 21, 559–578. [Google Scholar] [CrossRef] [Green Version]
- Morel, C.; Senesi, S. A climatology of mesoscale convective systems over Europe using satellite infrared imagery. II: Characteristics of European mesoscale convective systems. Q. J. R. Meteorol. Soc. 2002, 128, 1973–1995. [Google Scholar] [CrossRef]
- Kolios, S.; Feidas, H. A warm season climatology of mesoscale convective systems in the Mediterranean basin using satellite data. Theor. Appl. Climatol. 2010, 102, 29–42. [Google Scholar] [CrossRef]
- Gutzler, D.S. An index of interannual precipitation variability in the core of the North American monsoon region. J. Clim. 2004, 17, 4473–4480. [Google Scholar] [CrossRef]
- Castro, C.L.; Pielke Sr, R.A.; Adegoke, J.O.; Schubert, S.D.; Pegion, P.J. Investigation of the summer climate of the contiguous United States and Mexico using the Regional Atmospheric Modeling System (RAMS). Part II: Model climate variability. J. Clim. 2007, 20, 3866–3887. [Google Scholar] [CrossRef] [Green Version]
- Turrent, C.; Cavazos, T. Role of the land-sea thermal contrast in the interannual modulation of the North American Monsoon. Geophys. Res. Lett. 2009, 36, 1–5. [Google Scholar] [CrossRef]
- Bieda, S.W.; Castro, C.L.; Mullen, S.L.; Comrie, A.C.; Pytlak, E. The Relationship of Transient Upper-Level Troughs to Variability of the North American Monsoon System. J. Clim. 2009, 22, 4213–4227. [Google Scholar] [CrossRef] [Green Version]
- Seastrand, S.; Serra, Y.; Castro, C.; Ritchie, E. The dominant synoptic-scale modes of North American monsoon precipitation. Int. J. Climatol. 2015, 35, 2019–2032. [Google Scholar] [CrossRef]
- Douglas, A.V.; Englehart, P.J. A Climatological Perspective of Transient Synoptic Features during NAME 2004. J. Clim. 2007, 20, 1947–1954. [Google Scholar] [CrossRef]
- Wheeler, M.; McBride, J. Australian-Indonesian monsoon. In Intraseasonal Variability in the Atmosphere-Ocean Climate System; Springer: Berlin/Heidelberg, Germany, 2005; pp. 125–173. [Google Scholar]
- Couvreux, F.; Guichard, F.; Bock, O.; Campistron, B.; Lafore, J.P.; Redelsperger, J.L. Synoptic variability of the monsoon flux over West Africa prior to the onset. Q. J. R. Meteorol. Soc. 2010, 136, 159–173. [Google Scholar] [CrossRef]
- Gadgil, S. The Indian monsoon and its variability. Annu. Rev. Earth Planet. Sci. 2003, 31, 429–467. [Google Scholar] [CrossRef] [Green Version]
- Carleton, A. Synoptic and satellite aspects of the southwestern US summer ‘monsoon’. J. Climatol. 1985, 5, 389–402. [Google Scholar] [CrossRef]
- Carleton, A.M. Synoptic-dynamic character of ‘bursts’ and ‘breaks’ in the South-West US summer precipitation singularity. J. Climatol. 1986, 6, 605–623. [Google Scholar] [CrossRef]
- Vera, C.; Higgins, W.; Amador, J.; Ambrizzi, T.; Garreaud, R.; Gochis, D.; Gutzler, D.; Lettenmaier, D.; Marengo, J.; Mechoso, C.; et al. Toward a unified view of the American monsoon systems. J. Clim. 2006, 19, 4977–5000. [Google Scholar] [CrossRef]
- Carey, L.; Rutledge, S. A multiparameter radar case study of the microphysical and kinematic evolution of a lightning producing storm. Meteorol. Atmos. Phys. 1996, 59, 33–64. [Google Scholar] [CrossRef]
- Deierling, W.; Petersen, W.A. Total lightning activity as an indicator of updraft characteristics. J. Geophys. Res. Atmos. 2008, 113, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Wiens, K.C.; Rutledge, S.A.; Tessendorf, S.A. The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci. 2005, 62, 4151–4177. [Google Scholar] [CrossRef]
- Williams, E.R. The electrification of severe storms. In Severe Convective Storms; Springer: Berlin/Heidelberg, Germany, 2001; pp. 527–561. [Google Scholar]
- Williams, E.R. The tripole structure of thunderstorms. J. Geophys. Res. Atmos. 1989, 94, 13151–13167. [Google Scholar] [CrossRef]
- Lang, T.J.; Rutledge, S.A. Relationships between convective storm kinematics, precipitation, and lightning. Mon. Weather Rev. 2002, 130, 2492–2506. [Google Scholar] [CrossRef]
- Goodman, S.J.; MacGorman, D.R. Cloud-to-ground lightning activity in mesoscale convective complexes. Mon. Weather Rev. 1986, 114, 2320–2328. [Google Scholar] [CrossRef] [Green Version]
- Rutledge, S.A.; MacGorman, D.R. Cloud-to-ground lightning activity in the 10–11 June 1985 mesoscale convective system observed during the Oklahoma–Kansas PRE-STORM project. Mon. Weather Rev. 1988, 116, 1393–1408. [Google Scholar] [CrossRef] [Green Version]
- MacGorman, D.R.; Morgenstern, C.D. Some characteristics of cloud-to-ground lightning in mesoscale convective systems. J. Geophys. Res. Atmos. 1998, 103, 14011–14023. [Google Scholar] [CrossRef] [Green Version]
- Parker, M.D.; Rutledge, S.A.; Johnson, R.H. Cloud-to-ground lightning in linear mesoscale convective systems. Mon. Weather Rev. 2001, 129, 1232–1242. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, Y.; Liu, H.; Yao, W.; Meng, Q. Characteristics of cloud-to-ground lightning strikes in the stratiform regions of mesoscale convective systems. Atmos. Res. 2016, 178, 207–216. [Google Scholar] [CrossRef]
- Kotroni, V.; Lagouvardos, K. Lightning occurrence in relation with elevation, terrain slope, and vegetation cover in the Mediterranean. J. Geophys. Res. Atmos. 2008, 113, 1–7. [Google Scholar] [CrossRef]
- Goswami, B.B.; Mukhopadhyay, P.; Mahanta, R.; Goswami, B. Multiscale interaction with topography and extreme rainfall events in the northeast Indian region. J. Geophys. Res. Atmos. 2010, 115, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Orville, R.E. Lightning ground flash density in the contiguous United States-1989. Mon. Weather Rev. 1991, 119, 573–577. [Google Scholar] [CrossRef] [Green Version]
- Makowski, J.A.; MacGorman, D.R.; Biggerstaff, M.I.; Beasley, W.H. Total lightning characteristics relative to radar and satellite observations of Oklahoma mesoscale convective systems. Mon. Weather Rev. 2013, 141, 1593–1611. [Google Scholar] [CrossRef]
- Fovell, R.G.; Mullendore, G.L.; Kim, S.H. Discrete Propagation in Numerically Simulated Nocturnal Squall Lines. Mon. Weather Rev. 2006, 134, 3735–3752. [Google Scholar] [CrossRef] [Green Version]
- Lane, T.P.; Moncrieff, M.W. Long-lived mesoscale systems in a low–convective inhibition environment. Part I: Upshear propagation. J. Atmos. Sci. 2015, 72, 4297–4318. [Google Scholar] [CrossRef]
- Moncrieff, M.W.; Lane, T.P. Long-lived mesoscale systems in a low–convective inhibition environment. Part II: Downshear propagation. J. Atmos. Sci. 2015, 72, 4319–4336. [Google Scholar] [CrossRef]
- Jain, D.; Chakraborty, A.; Nanjundaiah, R.S. A mechanism for the southward propagation of mesoscale convective systems over the Bay of Bengal. J. Geophys. Res. Atmos. 2018, 123, 3893–3913. [Google Scholar] [CrossRef]
- Zhang, S.; Parsons, D.B.; Wang, Y. Wave disturbances and their role in the maintenance, structure, and evolution of a mesoscale convection system. J. Atmos. Sci. 2020, 77, 51–77. [Google Scholar] [CrossRef]
- Engerer, N.A.; Stensrud, D.J.; Coniglio, M.C. Surface Characteristics of Observed Cold Pools. Mon. Weather Rev. 2008, 136, 4839–4849. [Google Scholar] [CrossRef]
- Provod, M.; Marsham, J.H.; Parker, D.J.; Birch, C.E. A Characterization of Cold Pools in the West African Sahel. Mon. Weather Rev. 2016, 144, 1923–1934. [Google Scholar] [CrossRef]
- Schmidt, J.M.; Cotton, W.R. Interactions between Upper and Lower Tropospheric Gravity Waves on Squall Line Structure and Maintenance. J. Atmos. Sci. 1990, 47, 1205–1222. [Google Scholar] [CrossRef]
- Mapes, B.E. Gregarious Tropical Convection. J. Atmos. Sci. 1993, 50, 2026–2037. [Google Scholar] [CrossRef] [Green Version]
- Corfidi, S.; Meritt, J.; Fritsch, J. Predicting the movement of mesoscale convective complexes. Weather Forecast. 1996, 11, 41–46. [Google Scholar] [CrossRef]
- Campbell, M.A.; Cohen, A.E.; Coniglio, M.C.; Dean, A.R.; Corfidi, S.F.; Corfidi, S.J.; Mead, C.M. Structure and motion of severe-wind-producing mesoscale convective systems and derechos in relation to the mean wind. Weather Forecast. 2017, 32, 423–439. [Google Scholar] [CrossRef]
- Corfidi, S.F. Cold Pools and MCS Propagation: Forecasting the Motion of Downwind-Developing MCSs. Weather Forecast. 2003, 18, 997–1017. [Google Scholar] [CrossRef]
- Grant, L.D.; Lane, T.P.; van den Heever, S.C. The Role of Cold Pools in Tropical Oceanic Convective Systems. J. Atmos. Sci. 2018, 75, 2615–2634. [Google Scholar] [CrossRef]
- Moore, J.T.; Glass, F.H.; Graves, C.E.; Rochette, S.M.; Singer, M.J. The environment of warm-season elevated thunderstorms associated with heavy rainfall over the central United States. Weather Forecast. 2003, 18, 861–878. [Google Scholar] [CrossRef] [Green Version]
- Mathias, L.; Ermert, V.; Kelemen, F.D.; Ludwig, P.; Pinto, J.G. Synoptic analysis and hindcast of an intense bow echo in western Europe: The 9 June 2014 storm. Weather Forecast. 2017, 32, 1121–1141. [Google Scholar] [CrossRef]
- Zhang, L.; Min, J.; Zhuang, X.; Schumacher, R.S. General features of extreme rainfall events produced by MCSs over East China during 2016–17. Monthly Weather. Rev. 2019, 147, 2693–2714. [Google Scholar] [CrossRef]
- Yang, L.; Smith, J.; Baeck, M.L.; Morin, E. Flash flooding in arid/semiarid regions: Climatological analyses of flood-producing storms in central Arizona during the North American monsoon. J. Hydrometeorol. 2019, 20, 1449–1471. [Google Scholar] [CrossRef]
- Reyes, S.; Douglas, M.W.; Maddox, R.A. El monzón del suroeste de Norteamérica (TRAVASON/SWAMP). Atmósfera 2009, 7, 117–137. [Google Scholar]
- Mo, K.C.; Chelliah, M.; Carrera, M.L.; Higgins, R.W.; Ebisuzaki, W. Atmospheric moisture transport over the United States and Mexico as evaluated in the NCEP regional reanalysis. J. Hydrometeorol. 2005, 6, 710–728. [Google Scholar] [CrossRef]
- Cerezo-Mota, R.; Allen, M.; Jones, R. Mechanisms controlling precipitation in the northern portion of the North American monsoon. J. Clim. 2011, 24, 2771–2783. [Google Scholar] [CrossRef]
- Carleton, A.M. Summer circulation climate of the American Southwest, 1945–1984. Ann. Assoc. Am. Geogr. 1987, 77, 619–634. [Google Scholar] [CrossRef]
- Zeitler, J.W.; Bunkers, M.J. Operational forecasting of supercell motion: Review and case studies using multiple datasets. Natl. Wea. Dig. 2005, 29, 81–97. [Google Scholar]
- Klimowski, B.A.; Bunkers, M.J. Comments on Satellite Observations of a Severe Supercell Thunderstorm on 24 July 2000 Made during the GOES-11 Science Test. Weather Forecast. 2002, 17, 1111–1117. [Google Scholar] [CrossRef]
- Weaver, J.F.; Knaff, J.A.; Bikos, D.; Wade, G.S.; Daniels, J.M. Satellite observations of a severe supercell thunderstorm on 24 July 2000 made during the GOES-11 science test. Weather Forecast. 2002, 17, 124–138. [Google Scholar] [CrossRef] [Green Version]
- Freitas, S.R.; Putman, W.M.; Arnold, N.P.; Adams, D.K.; Grell, G.A. Cascading toward a kilometer-scale GCM: Impacts of a scale-aware convection parameterization in the Goddard Earth Observing System GCM. Geophys. Res. Lett. 2020, 47, e2020GL087682. [Google Scholar] [CrossRef]
Year | No. | Time (h) | Distance (km) | Speed (m/s) | ||||
---|---|---|---|---|---|---|---|---|
2011 | 3 | 1 | 8.7 (±0.9) | 8.3 | 224.5 (±84.5) | 147.0 | 7.4 (±4.6) | 5.0 |
2012 | 9 | 8.3 (±1.9) | 231.7 (±51.8) | 8.0 (±2.4) | ||||
2013 | 7 | 1 | 8.7 (±2.6) | 8.3 | 220.2 (±89.4) | 83.7 | 9.2 (±3.0) | 2.8 |
2014 | 4 | 1 | 9.0 (±1.5) | 6.5 | 104.7 (±96.2) | 76.5 | 3.2 (±3.0) | 3.3 |
2015 | 5 | 7.9 (±1.3) | 187.4 (±64.0) | 6.6 (±1.8) | ||||
2016 | 6 | 10.4 (±3.9) | 160.1 (±47.2) | 4.7 (±1.9) | ||||
2017 | 7 | 3 | 8.9 (±2.8) | 8.1 (±0.8) | 125.3 (±55.7) | 128.8 (±13.9) | 3.8 (±1.4) | 4.5 (±0.9) |
All MCS | 39 | 6 | 8.8 (±2.4) | 7.9 (±0.8) | 182.8 (±78.2) | 115.6 (±29.8) | 6.2 (±3.0) | 4.1 (±1.0) |
Year | No. | Time (h) | Distance (km) | Speed (m/s) | ||||
---|---|---|---|---|---|---|---|---|
2011 | 6 | 10.3 (±4.4) | 222.6 (±76.0) | 7.1 (±4.1) | ||||
2012 | 12 | 1 | 9.5 (±2.0) | 6.5 | 257.6 (±86.9) | 92.0 | 7.8 (±2.6) | 3.9 |
2013 | 4 | 1 | 11.1 (±1.4) | 6.7 | 279.5 (±158.4) | 52.0 | 6.8 (±2.9) | 2.2 |
2014 | 2 | 8.0 (±1.4) | 298.0 (±110.5) | 10.9 (±5.8) | ||||
2015 | 9 | 9.8 (±3.7) | 174.8 (±72.2) | 5.4 (±2.2) | ||||
2016 | 6 | 8.1 (±1.1) | 162.9 (±94.0) | 5.6 (±3.0) | ||||
2017 | 7 | 3 | 9.4 (±1.7) | 6.5 (±0.9) | 258.3 (±56.0) | 92.0 (±52.8) | 7.8 (±2.1) | 3.8 (±1.9) |
All MCS | 46 | 5 | 9.5 (±2.6) | 6.5 (±0.6) | 228.2 (±93.4) | 84.0 (±41.4) | 7.0 (±3.0) | 3.5 (±1.6) |
Year | No. | Time (h) | Distance (km) | Speed (m/s) | ||||
---|---|---|---|---|---|---|---|---|
2011 | 1 | 7.3 | 241.9 | 9.2 | ||||
2012 | 1 | 7.8 | 189.9 | 6.8 | ||||
2013 | 1 | 3 | 6.3 | 8.8 (±3.1) | 223.0 | 125.4 (±89.4) | 9.9 | 3.9 (±3.0) |
2014 | 3 | 1 | 8.0 (±2.3) | 7.0 | 259.7 (±147.8) | 233.5 | 8.8 (±4.1) | 9.3 |
2015 | 3 | 1 | 8.4 (±2.4) | 10.3 | 152.1 (±37.0) | 245.2 | 5.1 (±0.3) | 6.6 |
2016 | 4 | 8.7 (±1.9) | 201.7 (±54.3) | 6.8 (±2.4) | ||||
2017 | 2 | 2 | 7.1 (±0.5) | 8.6 (±0.9) | 152.3 (±69.0) | 278.1 (±199.7) | 6.1 (±3.1) | 8.7 (±5.5) |
All MCS | 15 | 7 | 8.0 (±1.7) | 8.7 (±2.1) | 200.1 (±77.7) | 201.6 (±121.0) | 7.1 (±2.6) | 6.4 (±3.8) |
Year | No. | Time (h) | Distance (km) | Speed (m/s) |
---|---|---|---|---|
2011 | 4 | 9.5 (±3.5) | 361.5 (±219.2) | 9.8 (±3.0) |
2012 | 5 | 12.6 (±7.1) | 351.3 (±138.8) | 8.4 (±1.4) |
2013 | 8 | 10.8 (±2.5) | 350.7 (±199.2) | 8.6 (±3.5) |
2014 | 7 | 11.5 (±3.5) | 335.0 (±90.9) | 8.6 (±2.7) |
2015 | 10 | 9.5 (±2.5) | 285.4 (±148.5) | 8.1 (±3.0) |
2016 | 7 | 9.1 (±2.8) | 329.5 (±129.2) | 9.9 (±1.5) |
2017 | 5 | 8.9 (±1.3) | 259.7 (±115.1) | 7.9 (±3.0) |
All MCS | 46 | 10.0 (±3.4) | 313.3 (±136.8) | 8.7 (±2.7) |
Year | No. | Time (h) | Distance (km) | Speed (m/s) |
---|---|---|---|---|
2011 | 3 | 10.4 (±3.7) | 399.2 (±273.6) | 9.7 (±4.2) |
2012 | 2 | 8.3 (±2.8) | 452.9 (±37.6) | 15.9 (±4.0) |
2013 | 5 | 9.4 (±3.7) | 357.1 (±258.1) | 9.9 (±5.9) |
2014 | 1 | 9.1 | 117.5 | 3.6 |
2015 | 4 | 13.4 (±7.5) | 326.2 (±186.8) | 6.8 (±3.7) |
2016 | 1 | 6.8 | 45.8 | 1.9 |
2017 | 5 | 8.1 (±1.2) | 328.6 (±146.7) | 11.0 (±4.4) |
All MCS | 21 | 9.8 (±4.2) | 333.4 (±197.8) | 9.4 (±5.1) |
Type | No. | Lifetime (h) | Distance (km) | Speed (m/s) | Area_i (km2) | Eccentricity_i | Area_f (km2) | Eccentricity_f |
---|---|---|---|---|---|---|---|---|
MCC | 12 | 8.2 (±1.7) | 243.7 (±209.6) | 7.8 (±5.6) | 7532.5 (±2630.9) | 0.73 (±0.03) | 30,594.4 (±23,758.7) | 0.23 (±0.14) |
PECS | 1582 | 9.1 (±2.9) | 267.6 (±156.3) | 8.2 (±4.2) | 17,969.1 (±12,982.2) | 0.22 (±0.13) | 28,806.0 (±21,310.1 ) | 0.24 (±0.14) |
Trajectory 1 Band A | 220 | 8.9 (±2.6) | 223.7 (±106.1) | 7.2 (±3.2) | 18,102.0 (±13,789) | 0.20 (0.12) | 21,948.588 (±16,845.5) | 0.24 (0.15) |
Trajectory 1 Band B | 176 | 9.1 (±2.7) | 215.3 (±100.5) | 6.7 (±2.6) | 21,907.1 (±16,170.4) | 0.22 (±0.13) | 35,004.4 (±26,624.5) | 0.23 (±0.13) |
Trayectory 1 Band C | 77 | 8.2 (±2.2) | 205.3 (±106.5) | 7.1 (±3.4) | 25,952.9 (±14,623.0) | 0.23 (±0.15) | 27,710.1 (±22,776.6) | 0.26 (±0.17) |
Trayectory 2 Northward | 250 | 9.2 (±3.1) | 310.2 (±178.7) | 9.5 (±4.9) | 17,179.4 (±11,840.3) | 0.23 (±0.15) | 30,673.6 (±21,860.7) | 0.24 (±0.14) |
Trayectory 2 Southward | 165 | 9.1 (±2.8) | 253.1 (±150.4) | 7.8 (±4.2) | 20,112.8 (±13,625.4) | 0.23 (±0.14) | 29,282.4 (±22,316.8) | 0.23 (±0.14) |
Trayectory 3 Band A | 33 | 8.8 (±2.1) | 164.7 (±151.0) | 5.1 (±3.6) | 15,276.1 (±9565.361) | 0.18 (±0.12) | 18,946.2 (±13,292.1) | 0.19 (±0.12) |
Trayectory 3 Band B | 34 | 8.1 (±2.1) | 179.882 (±132.993) | 5.9 (±2.8) | 17,790.6 (±8345.5) | 0.23 (±0.18) | 33,001.4 (±27,862.2) | 0.25 (±0.16) |
Trayectory 3 Band C | 29 | 8.2 (±1.9) | 211.0 (±148.0) | 7.1 (±4.6) | 25,296.5 (±19,769.7) | 0.26 (±0.14) | 22,055.142 (±16,108.0) | 0.22 (±0.10) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Pérez, O.; Adams, D.K.; Ochoa-Moya, C.A.; Quintanar, A.I. A Climatology of Mesoscale Convective Systems in Northwest Mexico during the North American Monsoon. Atmosphere 2022, 13, 665. https://doi.org/10.3390/atmos13050665
Ramos-Pérez O, Adams DK, Ochoa-Moya CA, Quintanar AI. A Climatology of Mesoscale Convective Systems in Northwest Mexico during the North American Monsoon. Atmosphere. 2022; 13(5):665. https://doi.org/10.3390/atmos13050665
Chicago/Turabian StyleRamos-Pérez, Omar, David K. Adams, Carlos A. Ochoa-Moya, and Arturo I. Quintanar. 2022. "A Climatology of Mesoscale Convective Systems in Northwest Mexico during the North American Monsoon" Atmosphere 13, no. 5: 665. https://doi.org/10.3390/atmos13050665
APA StyleRamos-Pérez, O., Adams, D. K., Ochoa-Moya, C. A., & Quintanar, A. I. (2022). A Climatology of Mesoscale Convective Systems in Northwest Mexico during the North American Monsoon. Atmosphere, 13(5), 665. https://doi.org/10.3390/atmos13050665