Vehicular Traffic in Urban Areas: Health Burden and Influence of Sustainable Urban Planning and Mobility
Abstract
:1. Introduction
2. Methodology
2.1. Selection of Study Cities and Baseline Scenarios
Site Location | Population Estimate | Population Density | GDP (PPP) * | Latitude | Longitude | Site Typology | PM2.5 (µgm−3) | Source Apportionment Method | Reference Author | Reference Year | Study Year | Season | Traffic (%) | Traffic (µgm−3) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(Inhabitants km−2) | ||||||||||||||
Barcelona (Spain) | 1,593,083 | 15,726 | 45,752 | 41.39 | 2.17 | urban | 15 | PMF | Amato et al. [55] | 2016 | 2013–2014 | year | 20.0 | 3.1 |
Budapest (Hungary) | 1,757,618 | 3347 | 37,399 | 47.50 | 19.04 | urban | 17.4 | PMF | Perrone et al. [56] | 2018 | 2015 | year | 19.0 | 3.3 |
Florence (Italy) | 370,292 | 3616 | 44,543 | 43.77 | 11.26 | urban | 13 | PMF | Amato et al. [55] | 2016 | 2013–2014 | year | 20.0 | 2.8 |
Krakow (Poland) | 761,873 | 2330 | 29,695 | 50.06 | 19.94 | urban | 31 | PMF | Samek et a. [57] | 2017 | 2014–2015 | year | 8.3 | 2.6 |
Madrid (Spain) | 3,172,867 | 5250 | 43,074 | 40.42 | −3.68 | urban | 21 | PMF | Salvador et al. [58] | 2011 | 2007–2008 | year | 39.0 | 8.1 |
Milan (Italy) | 1,316,000 | 7239 | 51,768 | 45.46 | 9.19 | urban | 30 | PMF | Amato et al. [55] | 2016 | 2013–2014 | year | 14.0 | 4.3 |
Paris (France) | 2,221,000 | 21,072 | 61,883 | 48.86 | 2.35 | urban | 14 | PMF | AIRPARIF/LSCE [59] | 2012 | 2009–2011 | year | 18.0 | 2.5 |
Porto (Portugal) | 222,252 | 5366 | 24,819 | 41.15 | −8.61 | urban | 25.8 | PMF | Pio et al. [60] | 2020 | 2013–2014 | year | 36.0 | 9.2 |
Thessaloniki (Greece) | 315,196 | 16,323 | 19,745 | 40.64 | 22.93 | urban | 40.5 | PMF | Saraga et al. [61] | 2019 | 2011–2012 | year | 32.0 | 13.0 |
Warsaw (Poland) | 1,735,442 | 3355 | 49,722 | 52.23 | 21.01 | urban | 18.8 | PMF | Juda-Rezler et al. [62] | 2020 | 2016 | year | 24.2 | 4.6 |
Zagreb (Croatia) | 791,946 | 1235 | 21,600 | 45.84 | 15.98 | urban | 21.9 | PMF | Perrone et al. [56] | 2018 | 2013 | year | 21.0 | 4.6 |
Zurich (Switzerland) | 366,765 | 4173 | 64,302 | 47.38 | 8.53 | urban | 21 | PMF | Richard et al. [63] | 2011 | 2008–2009 | year | 9.0 | 1.9 |
2.2. Intervention Scenarios
2.3. Population and Mortality Statistics
2.4. Urban Indicators
2.5. Health Impact Functions
- For short-term exposures: Ostro et al. [45] for specific chemical components in PM2.5 related to traffic.
- For long-term exposures: Hoek et al. [68] for bulk PM2.5 mass, while Atkinson et al. [69] was used for NO2 concentrations. It is worth mentioning that the coefficients reported in Hoek et al. [68] are based on a meta-analysis of 13 cohort studies, and are recommended by the HRAPIE project [4]. Atkinson et al. [69] is a recent study that calculates meta-analytic summary estimates using fixed/random-effects models, based on 48 articles analyzing 28 cohorts, with a high proportion of them performed in Europe.
- ß: mortality risk estimate
- Yo: baseline mortality rate
- POP: exposed population
- ∆Y: mortality change (change in the number of deaths expected per year)
- ∆PM: change in concentration
- A: 1/365
- *Applied when mortality risk ratios were obtained from short-term assessments
2.6. Health Impact Assessment Model
2.7. Methodological Limitations
3. Results
3.1. Review of Mitigation Strategies
3.2. City Characteristics
3.3. Road Traffic Contributions to PM2.5 and NO2 Concentrations
3.4. Health Impact Assessment
4. Summary and Conclusions
- Practical initiatives to achieve sustainable city design, in terms of transport, include the creation of LEZ, fostering active transport modes, redistribution of public space, promotion of public transport, traffic policies/taxes, and technological improvement/roads management. These measures are known to be able to translate into a reduction of traffic-related air pollutants, which would in turn decrease associated premature mortality. The need for the different measures was proposed to be guided by key city indicators. In this study, the evaluation of urban indicators showed two main trends. On the one hand, cities with the most heterogeneous distribution of public transport stops, as an indicator of poor accessibility, are also those with the lowest proportion of km dedicated to cycleways and footways. This highlights the need in these cities for more sustainable mobility management. On the other hand, the percentage of green and outdoor leisure areas may influence the share of journeys by bicycle, pointing out that promoting the perception of green routes is relevant to enhancing the potential of active transport modes.
- The influence of city indicators on air quality parameters was elucidated for the selected cities. The traffic contribution to PM2.5 showed a moderate negative linear relationship with the mean percentage of green and outdoor leisure areas, while NO2 concentrations, available for a higher number of measurement sites, showed a significant linear relationship with the mean distance of each site to the primary roads of the city. This highlights that citizens’ exposure to air pollution is to a large degree dependent on urban planning decisions.
- Using the source-specific risk estimates, short-term exposure to PM2.5 traffic emissions accounted for 10–90 (CI: 7–130) premature deaths per 100,000 inhabitants per year. When the long-term risk ratio for bulk PM2.5 was used the results were very similar (10–85 premature deaths). Accordingly, premature mortality due to exposure to traffic-PM2.5 accounted for between 0.9% and 8.2% of the baseline mortality. These results were comparable to the literature [42,44].
- Long-term exposure to NO2 was estimated to account for 42–122 (CI: 20–170) premature deaths per year. These results correspond to percentages between 3% and 15% of the baseline mortality.
- The intervention scenarios proposed could result in up to a 1.7% reduction in premature mortality due to exposure to traffic-derived PM2.5, and up to a 1.0% due to exposure to NO2, as the mean for all the cities. The relatively low reductions estimated indicate that more ambitious abatement measures should be targeted. Some recent studies point out that combining these measures with optimistic fleet renewal and demand reductions is the only way to achieve relevant global emission reductions [89]. It is also worthy to mention the research revealing the importance of focusing efforts on heavy goods vehicles [90], as well as on the high contribution of secondary compounds to PM2.5 and on the need to identify major precursor reduction targets [91].
- While HIA results from traffic-derived PM2.5 are expected to be more accurately showing the effects of the reviewed intervention measures, the higher spatial availability of NO2 is useful to study the complexity of the urban scale air pollution.
- Analysis performed within this study evidenced that a sensitivity analysis is highly recommended when selecting risk ratios and air pollution descriptive variables as input for the HIA models. Efforts are needed to provide mortality risk estimates associated with specific aerosol sources and their related chemical components.
- Despite the limitations and uncertainties of this work, this study illustrates the importance of continued air pollution controls to reduce air pollution-related mortality.
- This work is based on open source databases. Open data should be promoted as an essential tool for comprehensive studies, aiming to raise environmental awareness in citizens and empower them to participate in urban governance, encouraging policymakers to constantly reevaluate city plans.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burnett, R.T.; Pope, C.A., III; Ezzati, M.; Olives, C.; Lim, S.S.; Mehta, S.; Cohen, A. An integrated risk function for estimating the Global Burden of Disease attributable to ambient fine particulate matter exposure. Environ. Health Perspect. 2014, 122, 397–403. [Google Scholar] [CrossRef] [PubMed]
- Mak, H.W.L.; Ng, D.C.Y. Spatial and Socio-Classification of Traffic Pollutant Emissions and Associated Mortality Rates in High-Density Hong Kong via Improved Data Analytic Approaches. Int. J. Environ. Res. Public Health 2021, 18, 6532. [Google Scholar] [CrossRef]
- Manisalidis, I.; Stavropoulou, E.; Stavropoulou, A.; Bezirtzoglou, E. Environmental and Health Impacts of Air Pollution: A Review. Front. Public Health 2020, 8, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization (WHO). Health Risks of Air Pollution in Europe—HRAPIE. Recommendations for Concentration-Response Functions for Cost-Benefit Analysis of Particulate Matter, Ozone and Nitrogen Dioxide. Copenhagen. 2013. Available online: https://apps.who.int/iris/handle/10665/153692 (accessed on 10 July 2021).
- Querol, X.; Alastuey, A.; Viana, M.; Moreno, T.; Reche, C.; Minguillón, M.C.; Ripoll, A.; Pandolfi, M.; Amato, F.; Karanasiou, A.; et al. Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: Implications for air quality policy. Atmos. Chem. Phys. 2013, 13, 6185–6206. [Google Scholar] [CrossRef] [Green Version]
- Reche, C.; Querol, X.; Alastuey, A.; Viana, M.; Pey, J.; Moreno, T.; Rodríguez, S.; González, Y.; Fernández-Camacho, R.; de la Rosa, J.; et al. New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities. Atmos. Chem. Phys. 2011, 11, 6207–6227. [Google Scholar] [CrossRef] [Green Version]
- Vanderstraeten, P.; Brasseur, O.; Forton, M.; Cheymol, A.; Squilbin, M. Particulate Matter and Nitrogen Dioxide in the Brussels Ambient Air. Geogr. Forum Environ. Prot. J. 2010, 9, 75–86. [Google Scholar]
- European Environment Agency (EEA). Air Quality in Europe—2019 Report. 2019. Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2019 (accessed on 20 November 2021).
- Invernizzi, G.; Ruprecht, A.; Mazza, R.; De Marco, C.; Močnik, G.; Sioutas, C.; Westerdahl, D. Measurement of black carbon concentration as an indicator of air quality benefits of traffic restriction policies within the ecopass zone in Milan, Italy. Atmos. Environ. 2011, 45, 3522–3527. [Google Scholar] [CrossRef]
- Panteliadis, P.; Strak, M.; Hoek, G.; Weijers, E. Implementation of a low emission zone and evaluation of effects on air quality by long-term monitoring. Atmos. Environ. 2014, 86, 113–119. [Google Scholar] [CrossRef]
- Qadir, R.M.; Abbaszade, G.; Schnelle-Kreis, J.; Chow, J.C.; Zimmermann, R. Concentrations and source contributions of particulate organic matter before and after implementation of a low emission zone in Munich, Germany. Environ. Pollut. 2013, 175, 158–167. [Google Scholar] [CrossRef]
- Titos, G.; Lyamani, H.; Drinovec, L.; Olmo, F.J.; Močnik, G.; Alados-Arboledas, L. Evaluation of the impact of transportation changes on air quality. Atmos. Environ. 2015, 114, 19–31. [Google Scholar] [CrossRef]
- Harrison, R.M.; Beddows, D.C. Efficacy of Recent Emissions Controls on Road Vehicles in Europe and Implications for Public Health. Sci. Rep. 2017, 7, 1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krecl, P.; Johansson, C.; Targino, C.A.; Ström, J.; Burman, L. Trends in black carbon and size-resolved particle number concentrations and vehicle emission factors under real-world conditions. Atmos. Environ. 2017, 165, 155–168. [Google Scholar] [CrossRef]
- Viana, M.; Leeuw, F.; de Bartonova, A.; Castell, N.; Ozturk, E.; González Ortiz, A. Air quality mitigation in European cities: Status and challenges ahead. Environ. Int. 2020, 143, 105907. [Google Scholar] [CrossRef] [PubMed]
- Mak, H.; Lam, Y. Comparative Assessments and Insights of Data Openness of 50 Smart Cities in Air Quality Aspects. Sustain. Cities Soc. 2021, 69, 102868. [Google Scholar] [CrossRef]
- Sanzhapov, B.; Rashevskiy, N.; Sinitsyn, A. Analysis of Availability of Data Sets Necessary for Decision Making in Air Quality Assessment. IOP Conf. Ser. Mater. Sci. Eng. 2017, 262, 012187. [Google Scholar] [CrossRef]
- Stone, B.; Mednick, A.C.; Holloway, T.; Spak, S.N. Is compact growth good for air quality? J. Am. Plan. Assoc. 2007, 73, 404–418. [Google Scholar] [CrossRef]
- Borrego, C.; Martins, H.; Tchepel, O.; Salmim, L.; Monteiro, A.; Miranda, A.I. How urban structure can affect city sustainability from an air quality perspective. Environ. Modeling Softw. 2006, 21, 461–467. [Google Scholar] [CrossRef]
- McCarty, J.; Kaza, N. Urban form and air quality in the United States. Landsc. Urban Plan. 2015, 139, 168–179. [Google Scholar] [CrossRef]
- Badach, J.; Voordeckers, D.; Nyka, L.; van Acker, M. A framework for Air Quality Management Zones—Useful GIS-based tool for urban planning: Case studies in Antwerp and Gdańsk. Build. Environ. 2020, 174, 106743. [Google Scholar] [CrossRef]
- Tella, A.; Balogun, A.L. GIS-based air quality modelling: Spatial prediction of PM10 for Selangor State, Malaysia using machine learning algorithms. Environ. Sci. Pollut. Res. 2021, 1–17. [Google Scholar] [CrossRef]
- Gurjar, B.R.; Jain, A.; Sharma, A.; Agarwal, A.; Gupta, P.; Nagpure, A.S.; Lelieveld, J. Human health risks in megacities due to air pollution. Atmos. Environ. 2010, 44, 4606–4613. [Google Scholar] [CrossRef]
- Russell, A.G.; Brunekreef, B.A. Focus on particulate matter and health. Environ. Sci. Technol. 2009, 43, 4620–4625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fann, N.; Lamson, A.D.; Anenberg, S.C.; Wesson, K.; Risley, D.; Hubbell, B.J. Estimating the national public health burden associated with exposure to ambient PM2.5 and ozone. Risk Anal. 2011, 32, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Boldo, E.; Linares, C.; Lumbreras, J.; Borge, R.; Narros, A.; García-Pérez, J.; Fernández-Navarro, F.; Pérez-Gómez, B.; Aragonés, N.; Ramis, R.; et al. Health impact assessment of a reduction in ambient PM2.5 levels in Spain. Environ. Int. 2011, 37, 342–348. [Google Scholar] [CrossRef]
- Cromar, K.R.; Gladson, L.A.; Perlmutt, L.D.; Ghazipura, M.; Ewart, G.W. American Thoracic Society and Marron Institute Report. Estimated excess morbidity and mortality caused by air pollution above American Thoracic Society-recommended standards, 2011–2013. Ann. Am. Thorac. Soc. 2016, 13, 1195–1201. [Google Scholar] [CrossRef]
- Hirabayashi, S.; Nowak, D.J. Comprehensive national database of tree effects on air quality and human health in the United States. Environ. Pollut. 2016, 215, 48–57. [Google Scholar] [CrossRef]
- Izquierdo, R.; Santos, S.G.; Dos Borge, R.; de la Paz, D.; Sarigiannis, D.; Gotti, A.; Boldo, E. Health impact assessment by the implementation of Madrid City air-quality plan in 2020. Environ. Res. 2020, 183, 109021. [Google Scholar] [CrossRef]
- Jhun, I.; Coull, B.A.; Schwartz, J.; Hubbell, B.; Koutrakis, P. The impact of weather changes on air quality and health in the United States in 1994–2012. Environ. Res. Lett. 2015, 10, 84009. [Google Scholar] [CrossRef] [Green Version]
- Keen, S.; Altieri, K. The health benefits of attaining and strengthening air quality standards in Cape Town. Clean Air J. 2016, 26, 22–27. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Hoehn, R. Modeled PM2.5 removal by trees in ten U.S. cities and associated health effects. Environ. Pollut. 2013, 178, 395–402. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Greenfield, E. Tree and forest effects on air quality and human health in the United States. Environ. Pollut. 2014, 193, 119–129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, M.; George, L.A.; Rosentiel, T.N.; Shandas, V.; Dinno, A. Assessing the relationship among urban trees, nitrogen dioxide, and respiratory health. Environ Pollut. 2014, 194, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Stewart, D.R.; Saunders, E.; Perea, R.A.; Fitzgerald, R.; Campbell, D.E.; Stockwell, W. Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin. Environ. Health Insights 2017, 11, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, T.M.; Saari, R.K.; Selin, N.E. Air quality resolution for health impact assessment: Influence of regional characteristics. Atmos. Chem. Phys. 2014, 14, 969–978. [Google Scholar] [CrossRef] [Green Version]
- Viana, M.; Fann, N.; Tobías, A.; Querol, X.; Rojas-Ruedas, D.; Plaza, A.; Aynos, F.; Conde, J.A.; Fernández, L.; Fernández, C. Environmental and Health Benefits from Designating the Marmara Sea and the Turkish Straits as an Emission Control Area (ECA). Environ. Sci. Technol. 2015, 49, 3304–3313. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, Y.; Jang, C.; Lin, C.-H.; Wang, S.; Fu, J.S.; Gao, J.; Deng, S.; Xie, J.; Ding, D.; et al. Design and demonstration of a next-generation air quality attainment assessment system for PM2.5 and O3. J. Environ. Sci. 2015, 9, 178–188. [Google Scholar] [CrossRef]
- Zhang, Y.; Smith, S.J.; Bowden, J.H.; Adelman, Z.; West, J.J. Co-benefits of global, domestic, and sectoral greenhouse gas mitigation for US air quality and human health in 2050. Environ. Res. Lett. 2017, 12, 114033. [Google Scholar] [CrossRef]
- Sonawane, N.V.; Patil, R.S.; Sethi, V. Health benefit modelling and optimization of vehicular pollution control strategies. Atmos. Environ. 2012, 60, 193–201. [Google Scholar] [CrossRef]
- Wesson, K.; Fann, N.; Morris, M.; Fox, T.; Hubbell, B. A multi-pollutant, risk-based approach to air quality management: Case study for Detroit. Atmos. Pollut. Res. 2010, 1, 296–304. [Google Scholar] [CrossRef] [Green Version]
- Malmqvist, E.; Lisberg Jensen, E.; Westerberg, K.; Stroh, E.; Rittner, R.; Gustafsson, S.; Spanne, M.; Nilsson, H.; Oudin, A. Estimated health benefits of exhaust free transport in the city of Malmö, Southern Sweden. Environ. Int. 2018, 118, 78–85. [Google Scholar] [CrossRef]
- Castro, A.; Künzli, N.; Götschi, T. Health benefits of a reduction of PM10 and NO2 exposure after implementing a clean air plan in the Agglomeration Lausanne-Morges. Int. J. Hyg. Environ. Health 2017, 220, 829–839. [Google Scholar] [CrossRef] [PubMed]
- Isley, C.F.; Nelson, P.F.; Taylor, M.P.; Stelcer, E.; Atanacio, A.J.; Cohen, D.D.; Mani, F.S.; Maata, M. Reducing mortality risk by targeting specific air pollution sources: Suva, Fiji. Sci. Total Environ. 2018, 612, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Ostro, B.; Tobias, A.; Querol, X.; Alastuey, A.; Amato, F.; Pey, J.; Perez, N.; Sunyer, J. The effects of particulate matter sources on daily mortality: A case-crossover study of Barcelona, Spain. Environ. Health Perspect. 2011, 119, 1781–1787. [Google Scholar] [CrossRef] [PubMed]
- Viana, M.; Rizza, V.; Tobías, A.; Carr, E.; Corbett, J.; Sofiev, M.; Karanasiou, A.; Buonanno, G.; Fann, N. Estimated health impacts from maritime transport in the Mediterranean region and benefits from the use of cleaner fuels. Environ. Int. 2020, 138, 105670. [Google Scholar] [CrossRef]
- Stockfelt, L.; Andersson, E.M.; Molnár, P.; Gidhagen, L.; Segersson, D.; Rosengren, A.; Barregard, L.; Sallsten, G. Long-term effects of total and source-specific particulate air pollution on indicent cardiovascular disease in Gotherburg, Sweden. Environ. Res. 2017, 158, 61–71. [Google Scholar] [CrossRef]
- Thurston, G.D.; Ito, K.; Lall, R. A Source Apportionment of U.S. Fine Particulate Matter Air Pollution. Atmos. Environ. 2011, 45, 3924–3936. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization (WHO). Database on Source Apportionment Studies for Particulate Matter in the Air (PM10 and PM2.5). Source Apportionment. 2015. Available online: http://www.who.int/quantifying_ehimpacts/global/source_apport/en/ (accessed on 10 July 2021).
- Gong, W.; Beagley, S.R.; Cousineau, S.; Sassi, M.; Munoz-Alpizar, R.; Ménard, S.; Racine, J.; Zhang, J.; Chen, J.; Morrison, H.; et al. Assessing the impact of shipping emissions on air pollution in the Canadian Arctic and northern regions: Current and future modelled scenarios. Atmos. Chem. Phys. 2018, 18, 16653–16687. [Google Scholar] [CrossRef] [Green Version]
- Johansson, C.; Lövenheim, B.; Schantz, P.; Wahlgren, L.; Almström, P.; Markstedt, A.; Strömgren, M.; Forsberg, B.; Sommar, J.N. Impacts on air pollution and health by changing commuting from car to bicycle. Sci Total Environ. 2017, 584, 55–63. [Google Scholar] [CrossRef]
- Karl, M.; Jonson, J.E.; Uppstu, A.; Aulinger, A.; Prank, M.; Sofiev, M.; Jalkanen, J.-P.; Johansson, L.; Quante, M.; Matthias, V. Effects of ship emissions on air quality in the Baltic Sea region simulated with three different chemistry transport models. Atmos. Chem. Phys. 2019, 19, 7019–7053. [Google Scholar] [CrossRef] [Green Version]
- Sundvor, I.; Balaguer, N.C.; Viana, M.; Querol, X.; Reche, C.; Amato, F.; Guerreiro, C. Road traffic’s contribution to air quality in European cities. ETC/ACM Technical Paper. 2012. Available online: https://www.eionet.europa.eu/etcs/etc-atni/products/etc-atni-reports/etcacm_tp_2012_14_traffic_contribution_city_aq/@@download/file/ETCACM_TP_2012_14_traffic_contribution_city_aq.pdf (accessed on 20 December 2021).
- European Environment Agency (EEA). The European Air Qualiy Database. 2021. Available online: https://www.eea.europa.eu/data-and-maps/data/aqereporting-8 (accessed on 20 November 2021).
- Amato, F.; Favez, O.; Pandolfi, M.; Alastuey, A.; Querol, X.; Moukhtar, S.; Bruge, B.; Verlhac, S.; Orza, J.A.G.; Bonnaire, N.; et al. Traffic induced particle resuspension in Paris: Emission factors and source contributions. Atmos. Environ. 2016, 129, 114–124. [Google Scholar] [CrossRef]
- Perrone, M.G.; Vratolis, S.; Georgieva, E.; Torok, S.; Šega, K.; Veleva, B.; Osan, J.; Bešlić, I.; Kertesz, Z.; Pernigotti, D.; et al. Sources and geographic origin of particulate matter in urban areas of the Danube macroregion: The cases of Zagreb (Croatia), Budapest (Hungary) and Sofia (Bulgaria). Sci. Total Environ. 2018, 619–620, 1515–1529. [Google Scholar]
- Samek, L.; Stegowski, Z.; Furman, L.; Styszko, K.; Szramowiat, K.; Fiedor, J. Quantitative Assessment of PM2.5 Sources and Their Seasonal Variation in Krakow. Water Air Soil Pollut. 2017, 228, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvador, P.; Artiñano, B.; Viana, M.; Querol, X.; Alastuey, A.; González-Fernández, I.; Alonso, R. Spatial and temporal variations in PM10 and PM2.5 across Madrid metropolitan area in 1999–2008. Procedia Environ. Sci. 2011, 4, 198–208. [Google Scholar] [CrossRef] [Green Version]
- AIRPARIF/LSCE. Source Apportionment of Airborne Particles in the Ile-de-France Region. Final Report by AIRPARIF and Laboratoire Des Sciences Du Climat Et De L’Environnement (LSCE); AIRPARIF/LSCE: Paris, France, 2012. [Google Scholar]
- Pio, C.; Alves, C.; Nunes, T.; Cerqueira, M.; Lucarelli, F.; Nava, S.; Calzolai, G.; Gianelle, V.; Colombi, C.; Amato, A.; et al. Source apportionment of PM2.5 and PM10 by Ionic and Mass Balance (IMB) in a traffic-influenced urban atmosphere, in Portugal. Atmos. Environ. 2020, 223, 117217. [Google Scholar]
- Saraga, D.E.; Tolis, E.I.; Maggos, T.; Vasilakos, C.; Bartzis, J.G. PM2.5 source apportionment for the port city of Thessaloniki, Greece. Sci. Total Environ. 2019, 650, 2337–2354. [Google Scholar] [CrossRef]
- Juda-Rezler, K.; Reizer, M.; Maciejewska, K.; Błaszczak, B.; Klejnowski, K. Characterization of atmospheric PM2.5 sources at a Central European urban background site. Sci. Total Environ. 2020, 713, 136729. [Google Scholar] [CrossRef]
- Richard, A.; Gianini, M.F.D.; Mohr, C.; Furger, M.; Bukowiecki, N.; Minguillón, M.C.; Lienemann, P.; Flechsig, U.; Appel, K.; DeCarlo, P.F.; et al. Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland. Atmos. Chem. Phys. 2011, 11, 8945–8963. [Google Scholar] [CrossRef] [Green Version]
- Eurostat. European Statistics. 2021. Available online: https://ec.europa.eu/eurostat/web/main/data/database (accessed on 20 November 2021).
- Rice, M.B.; Rifas-Shiman, S.L.; Oken, E.; Gillman, M.W.; Ljungman, P.L.; Litonjua, A.A.; Schwartz, J.; Coull, B.A.; Zanobetti, A.; Koutrakis, P.; et al. Exposure to traffic and early life respiratory infection: A cohort study. Pediatr. Pulmonol. 2015, 50, 252–259. [Google Scholar] [CrossRef]
- Atkinson, R.W.; Analitis, A.; Samoli, E.; Fuller, G.W.; Green, D.C.; Mudway, I.S.; Anderson, H.R.; Kelly, F.J. Short-term exposure to traffic-related air pollution and daily mortality in London, UK. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Basagaña, X.; Jacquemin, B.; Karanasiou, A.; Ostro, B.; Querol, X.; Agis, D.; Alessandrini, E.; Alguacil, J.; Artiñano, B.; Catrambone, M.; et al. Short-term effects of particulate matter constituents on daily hospitalizations and mortality in five South-European cities: Results from the MED-PARTICLES project. Environ. Int. 2015, 75, 151–158. [Google Scholar] [CrossRef]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio- respiratory mortality: A review. Environ. Health 2013, 12, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atkinson, R.W.; Butland, B.K.; Anderson, H.R.; Maynard, R.L. Long-term Concentrations of Nitrogen Dioxide and Mortality: A Meta-analysis of Cohort Studies. Epidemiology 2018, 29, 460–472. [Google Scholar] [CrossRef] [PubMed]
- Beelen, R.; Raaschou-Nielsen, O.; Stafoggia, M.; Andersen, Z.J.; Weinmayr, G.; Hoffmann, B.; Wolf, K.; Samoli, E.; Fischer, P.; Nieuwenhuijsen, M.; et al. Effects of long-term exposure to air pollution on natural-cause mortality: An analysis of 22 European cohorts within the multicentre ESCAPE project. Lancet 2014, 383, 785–795. [Google Scholar] [CrossRef]
- Cesaroni, G.; Badaloni, C.; Gariazzo, C.; Stafoggia, M.; Sozzi, R.; Davoli, M.; Forastiere, F. Long-term exposure to urban air pollution and mortality in a cohort of more than a million adults in Rome. Environ. Health Perspect. 2013, 121, 324–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heo, J.; Schauer, J.J.; Yi, O.; Paek, D.; Kim, H.; Yi, S.M. Fine particle air pollution and mortality: Importance of specific sources and chemical species. Epidemiology 2014, 25, 379–388. [Google Scholar] [CrossRef]
- Ito, K.; Christensen, W.F.; Eatough, D.J.; Henry, R.C.; Kim, E.; Laden, F.; Lall, R.; Larson, T.V.; Neas, L.; Hopke, P.K.; et al. PM source apportionment and health effects: 2. An investigation of intermethod variability in associations between source-apportioned fine particle mass and daily mortality in Washington, DC. J. Expo. Sci. Environ. Epidemiol. 2006, 16, 300–310. [Google Scholar] [CrossRef] [Green Version]
- Laden, F.; Neas, L.M.; Dockery, D.W.; Schwartz, J. Association of fine particulate matter from different sources with daily mortality in six U.S. cities. Environ. Health Perspect. 2000, 108, 941–947. [Google Scholar] [CrossRef]
- Lall, R.; Ito, K.; Thurston, G.D. Distributed lag analyses of daily hospital admissions and source-apportioned fine particle air pollution. Environ. Health Perspect. 2011, 119, 455–460. [Google Scholar] [CrossRef]
- Mar, T.F.; Ito, K.; Koenig, J.Q.; Larson, T.V.; Eatough, D.J.; Henry, R.C.; Kim, E.; Laden, F.; Lall, R.; Neas, L.; et al. PM source apportionment and health effects. 3. Investigation of inter-method variations in associations between estimated source contributions of PM2.5 and daily mortality in Phoenix, AZ. J. Expo. Sci. Environ. Epidemiol. 2006, 16, 311–320. [Google Scholar]
- Sarnat, J.A.; Marmur, A.; Klein, M.; Kim, E.; Russell, A.G.; Sarnat, S.E.; Mulholland, J.A.; Hopke, P.K.; Tolbert, P.E. Fine particle sources and cardiorespiratory morbidity: An application of chemical mass balance and factor analytical source-apportionment methods. Environ. Health Perspect. 2008, 116, 459–466. [Google Scholar] [CrossRef]
- Schwartz, J.; Laden, F.; Zanobetti, A. The concentration-response relation between PM2.5 and daily deaths. Environ. Health Perspect. 2002, 110, 1025–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, K.; Hallberg, A.; McCubbin, D.; Hubbell, B. Analysis of PM2.5 using the Environmental Benefits Mapping and Analysis Program (BenMAP). J. Toxicol. Environ. Health Part A 2007, 70, 332–346. [Google Scholar] [CrossRef] [PubMed]
- Ding, D.; Zhu, Y.; Jang, C.; Lin, C.J.; Wang, S.; Fu, J.; Gao, J.; Deng, S.; Xie, J.; Qiu, X. Evaluation of health benefit using BenMAP-CE with an integrated scheme of model and monitor data during Guangzhou Asian Games. J. Environ. Sci. 2016, 42, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Ferrero, E.; Ferrero, E.; Ferrero, E.; Alessandrini, S.; Balanzino, A. Impact of the electric vehicles on air pollution from a highway. Appl. Energy 2016, 169, 450–459. [Google Scholar] [CrossRef]
- Santos, F.M.; Gómez-Losada, A.; Pires, J.C.M. Impact of the implementation of Lisbon low emission zone on air quality. J. Hazard. Mater. 2019, 365, 632–641. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M. Urban and transport planning, environmental exposures and health-new concepts, methods and tools to improve health in cities. Environ. Health 2016, 15 (Suppl. 1), 83. [Google Scholar] [CrossRef] [Green Version]
- Shen, L.; He, B.; Jiao, L.; Song, X.; Zhang, X. Research on the development of main policy instruments for improving building energy-efficiency. J. Clean. Prod. 2016, 112, 1789–1803. [Google Scholar] [CrossRef]
- Tan, Y.; Jiao, L.; Shuai, C.; Shen, L. A system dynamics model for simulating urban sustainability performance: A China case study. J. Clean. Prod. 2018, 199, 1107–1115. [Google Scholar] [CrossRef]
- Holm, S.M.; Balmes, J.R. Systematic Review of Ozone Effects on Human Lung Function, 2013 Through 2020. Chest 2022, 161, 190–201. [Google Scholar] [CrossRef]
- Pérez, L.; Trüeb, S.; Cowie, H.; Keuken, M.P.; Mudu, P.; Ragettli, M.S.; Sarigiannis, D.A.; Tobollik, M.; Tuomisto, J.I.; Vienneau, D.; et al. Tansport-related measure to mitigate climate change in Basel, Switzerland: A health-effectiveness comparison study. Environ. Int. 2015, 85, 111–119. [Google Scholar] [CrossRef]
- Tobollik, M.; Keuken, M.; Sabel, C.; Cowie, H.; Tuomisto, J.; Sarigiannis, D.; Künzli, N.; Pérez, L.; Mudu, P. Health impact assessment of transport policies in Rotterdam: Decrease of total traffic and increase of electric car use. Environ. Res. 2016, 146, 350–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Rey, D.; Guevara, M.; Linares, M.P.; Casanovas, J.; Armengol, J.M.; Benavides, J.; Soret, A.; Jorba, O.; Tena, C.; Pérez García-Pando, C. To what extent the traffic restriction policies applied in Barcelona city can improve its air quality? Sci. Total Environ. 2021, 807 Pt 2, 150743. [Google Scholar] [CrossRef] [PubMed]
- Ziemska, M. Exhaust Emissions and Fuel Consumption Analysis on the Example of an Increasing Number of HGVs in the Port City. Sustainability 2021, 13, 7428. [Google Scholar] [CrossRef]
- Querol, X.; Massagué, J.; Alastuey, A.; Moreno, T.; Gangoiti, G.; Mantilla, E.; Duéguez, J.J.; Escudero, M.; Monfort, E.; Pérez García-Pando, C.; et al. Lessons from the COVID-19 air pollution decrease in Spain: Now what? Sci. Total Environ. 2021, 779, 146380. [Google Scholar] [CrossRef] [PubMed]
Study | Scale | Parameter | Health Outcome | Age Group | RR (95%) | IQR (µgm−3) |
---|---|---|---|---|---|---|
Ostro et al. [45] | Short-term | Traffic contribution to PM2.5 | Mortality, all-cause | 0–99 | 1.037 (1.007–1.067) | 5.2 |
Hoek et al. [68] | Long-term | PM2.5 | Mortality, all-cause | 0–99 | 1.062 (1.040–1.083) | 10 |
Atkinson et al. [69] | Long-term | NO2 | Mortality, all-cause | 0–99 | 1.020 (1.010–1.030) | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reche, C.; Tobias, A.; Viana, M. Vehicular Traffic in Urban Areas: Health Burden and Influence of Sustainable Urban Planning and Mobility. Atmosphere 2022, 13, 598. https://doi.org/10.3390/atmos13040598
Reche C, Tobias A, Viana M. Vehicular Traffic in Urban Areas: Health Burden and Influence of Sustainable Urban Planning and Mobility. Atmosphere. 2022; 13(4):598. https://doi.org/10.3390/atmos13040598
Chicago/Turabian StyleReche, Cristina, Aurelio Tobias, and Mar Viana. 2022. "Vehicular Traffic in Urban Areas: Health Burden and Influence of Sustainable Urban Planning and Mobility" Atmosphere 13, no. 4: 598. https://doi.org/10.3390/atmos13040598
APA StyleReche, C., Tobias, A., & Viana, M. (2022). Vehicular Traffic in Urban Areas: Health Burden and Influence of Sustainable Urban Planning and Mobility. Atmosphere, 13(4), 598. https://doi.org/10.3390/atmos13040598