Land-Use Regression Modeling to Estimate NO2 and VOC Concentrations in Pohang City, South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Selection of Sampling Locations
2.3. Air Sampling and Analysis
2.4. Temporal Trends and Adjustments
2.5. GIS Data
2.6. Land-Use Regression Model Development
2.7. Evaluation of the Developed Models
3. Results
3.1. Descriptive Statistics
3.2. LUR Models
3.3. Estimation of VOC Concentrations at Locations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hoek, G.; Beelen, R.; de Hoogh, K.; Vienneau, D.; Gulliver, J.; Fischer, P.; Briggs, D. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos. Environ. 2008, 42, 7561–7578. [Google Scholar] [CrossRef]
- Jerrett, M.; Arain, A.; Kanaroglou, P.; Beckerman, B.; Potoglou, D.; Sahsuvaroglu, T.; Morrison, J.; Giovis, C. A review and evaluation of intraurban air pollution exposure models. J. Expo. Sci. Environ. Epidemiol. 2004, 15, 185–204. [Google Scholar] [CrossRef] [PubMed]
- Sahsuvaroglu, T.; Arain, A.; Kanaroglou, P.; Finkelstein, N.; Newbold, B.; Jerrett, M.; Beckerman, B.; Brook, J.; Finkelstein, M.; Gilbert, N.L. A land use regression model for predicting ambient concentrations of nitrogen dioxide in Hamilton, Ontario, Canada. J. Air Waste Manag. Assoc. 2006, 56, 1059–1069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henderson, S.B.; Beckerman, B.; Jerrett, M.; Brauer, M. Application of land use regression to estimate long-term concentrations of traffic-related nitrogen oxides and fine particulate matter. Environ. Sci. Technol. 2007, 41, 2422–2428. [Google Scholar] [CrossRef] [PubMed]
- Burrough, P.A.; McDonnell, R.; Lloyd, C.D. Principles of Geographical Information Systems; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Brauer, M.; Hoek, G.; van Vliet, P.; Meliefste, K.; Fischer, P.; Gehring, U.; Heinrich, J.; Cyrys, J.; Bellander, T.; Lewne, M. Estimating long-term average particulate air pollution concentrations: Application of traffic indicators and geographic information systems. Epidemiology 2003, 14, 228. [Google Scholar] [CrossRef] [PubMed]
- Briggs, D.J.; de Hoogh, C.; Gulliver, J.; Wills, J.; Elliott, P.; Kingham, S.; Smallbone, K. A regression-based method for mapping traffic-related air pollution: Application and testing in four contrasting urban environments. Sci. Total Environ. 2000, 253, 151–167. [Google Scholar] [CrossRef]
- Gilbert, N.L.; Goldberg, M.S.; Beckerman, B.; Brook, J.R.; Jerrett, M. Assessing spatial variability of ambient nitrogen dioxide in montreal, canada, with a land-use regression model. J. Air Waste Manag. Assoc. 2005, 55, 1059–1063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilliland, F.; Avol, P.K.; Jerrett, M.; Dvonch, T.; Lurmann, F.; Buckley, T.; Breysse, P.; Keeler, G.; de Villiers, T.; McConnell, R. Air pollution exposure assessment for epidemiologic studies of pregnant women and children: Lessons learned from the centers for Children’s environmental health and disease prevention research. Environ. Health Perspect. 2005, 113, 1447. [Google Scholar] [CrossRef] [Green Version]
- Morgenstern, V.; Zutavern, A.; Cyrys, J.; Brockow, I.; Gehring, U.; Koletzko, S.; Bauer, C.P.; Reinhardt, D.; Wichmann, H.E.; Heinrich, J. Respiratory health and individual estimated exposure to traffic-related air pollutants in a cohort of young children. Occup. Environ. Med. 2007, 64, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poplawski, K.; Gould, T.; Setton, E.; Allen, R.; Su, J.; Larson, T.; Henderson, S.; Brauer, M.; Hystad, P.; Lightowlers, C. Intercity transferability of land use regression models for estimating ambient concentrations of nitrogen dioxide. J. Expo. Sci. Environ. Epidemiol. 2008, 19, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Bai, Z.; Kong, S.; Han, B.; You, Y.; Ding, X.; Du, S.; Liu, A. A land use regression for predicting NO2 and PM10 concentrations in different seasons in Tianjin region, China. J. Environ. Sci. 2010, 22, 1364–1373. [Google Scholar] [CrossRef]
- Carr, D.; von Ehrenstein, O.; Weiland, S.; Wagner, C.; Wellie, O.; Nicolai, T.; von Mutius, E. Modeling annual benzene, toluene, NO2, and soot concentrations on the basis of road traffic characteristics. Environ. Res. 2002, 90, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.; Mukerjee, S.; Gonzales, M.; Stallings, C.; Neas, L.; Norris, G.; Ozkaynak, H. Use of GIS and ancillary variables to predict volatile organic compound and nitrogen dioxide levels at unmonitored locations. Atmos. Environ. 2006, 40, 3773–3787. [Google Scholar] [CrossRef]
- Wheeler, A.J.; Smith-Doiron, M.; Xu, X.; Gilbert, N.L.; Brook, J.R. Intra-urban variability of air pollution in windsor, ontario—measurement and modeling for human exposure assessment. Environ. Res. 2008, 106, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, I.; Sunyer, J.; Fernandez-Patier, R.; Hoek, G.; Aguirre-Alfaro, A.; Meliefste, K.; Bomboi-Mingarro, M.T.; Nieuwenhuijsen, M.J.; Herce-Garraleta, D.; Brunekreef, B. NOx, NO2 and BTEX exposure in a cohort of pregnant women using land use regression modeling. Environ. Sci. Technol. 2008, 42, 815–821. [Google Scholar] [CrossRef] [PubMed]
- Su, J.G.; Brauer, M.; Ainslie, B.; Steyn, D.; Larson, T.; Buzzelli, M. An innovative land use regression model incorporating meteorology for exposure analysis. Sci. Total Environ. 2008, 390, 520–529. [Google Scholar] [CrossRef] [PubMed]
- Smith, L.A.; Mukerjee, S.; Chung, K.C.; Afghani, J. Spatial analysis and land use regression of VOCs and NO2 in Dallas, Texas during two seasons. J. Environ. Monit. 2011, 13, 999–1007. [Google Scholar] [CrossRef] [PubMed]
- Kashima, S.; Yorifuji, T.; Tsuda, T.; Doi, H. Application of land use regression to regulatory air quality data in Japan. Sci. Total Environ. 2009, 407, 3055–3062. [Google Scholar] [CrossRef] [PubMed]
- Allen, R.W.; Gombojav, E.; Barkhasragchaa, B.; Byambaa, T.; Lkhasuren, O.; Amram, O.; Takaro, T.K.; Janes, C.R. An assessment of air pollution and its attributable mortality in Ulaanbaatar, Mongolia. Air Qual. Atmos. Health 2011, 6, 137–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanaroglou, P.S.; Jerrett, M.; Morrison, J.; Beckerman, B.; Arain, M.A.; Gilbert, N.L.; Brook, J.R. Establishing an air pollution monitoring network for intra-urban population exposure assessment: A location-allocation approach. Atmos. Environ. 2005, 39, 2399–2409. [Google Scholar] [CrossRef]
- Yanagisawa, Y.; Nishimura, H. A badge-type personal sampler for measurements of personal exposure to NO2 and NO in ambient air. Environ. Int. 1982, 18, 235–242. [Google Scholar] [CrossRef]
- Lee, K.; Yanagisawa, Y.; Spengler, J.D.; Özkaynak, H.; Billick, I.H. Sampling rate evaluation of NO2 badge:(I) in indoor environments. Indoor Air 1993, 3, 124–130. [Google Scholar] [CrossRef]
- Yamada, E.; Kimura, M.; Tomozawa, K.; Fuse, Y. Simple analysis of atmospheric NO2, SO2, and O3 in mountains by using passive samplers. Environ. Sci. Technol. 1999, 33, 4141–4145. [Google Scholar] [CrossRef]
- Mukerjee, S.; Smith, L.A.; Norris, G.A.; Morandi, M.T.; Gonzales, M.; Noble, C.A.; Neas, L.M.; Ozkaynak, A.H. Field method comparison between passive air samplers and continuous monitors for VOCs and NO2 in El Paso, Texas. J. Air Waste Manag. Assoc. 2004, 54, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Sather, M.E.; Slonecker, E.T.; Mathew, J.; Daughtrey, H.; Williams, D.D. Evaluation of ogawa passive sampling devices as an alternative measurement method for the nitrogen dioxide annual standard in El Paso, Texas. Environ. Monit. Assess. 2007, 124, 211–221. [Google Scholar] [CrossRef]
- Mukerjee, S.; Smith, L.A.; Johnson, M.M.; Neas, L.M.; Stallings, C.A. Spatial analysis and land use regression of VOCs and NO2 from school-based urban air monitoring in Detroit/Dearborn, USA. Sci. Total Environ. 2009, 407, 4642–4651. [Google Scholar] [CrossRef]
- Succop, P.A.; Clark, S.; Chen, M.; Galke, W. Imputation of data values that are less than a detection limit. J. Occup. Environ. Hyg. 2004, 1, 436–441. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Wylie, B.; Yang, L.; Homer, C.; Zylstra, G. Derivation of a tasselled cap transformation based on landsat 7 at-satellite reflectance. Int. J. Remote Sens. 2002, 23, 1741–1748. [Google Scholar] [CrossRef]
- Adgate, J.L.; Eberly, L.E.; Stroebel, C.; Pellizzari, E.D.; Sexton, K. Personal, indoor, and outdoor VOC exposures in a probability sample of children. J. Expo. Sci. Environ. Epidemiol. 2004, 14, S4–S13. [Google Scholar] [CrossRef] [Green Version]
- Rappaport, S.M.; Kupper, L.L. Variability of environmental exposures to volatile organic compounds. J. Expo. Sci. Environ. Epidemiol. 2004, 14, 92–107. [Google Scholar] [CrossRef] [Green Version]
- Weisel, C.P.; Zhang, J.J.; Turpin, B.J.; Morandi, M.T.; Colome, S.; Stock, T.H.; Spektor, D.M.; Korn, L.; Winer, A.; Alimokhtari, S. Relationship of indoor, outdoor and personal air (RIOPA) study: Study design, methods and quality assurance/control results. J. Expo. Sci. Environ. Epidemiol. 2004, 15, 123–137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sexton, K.; Mongin, S.; Adgate, J.; Pratt, G.; Ramachandran, G.; Stock, T.; Morandi, M. Estimating volatile organic compound concentrations in selected microenvironments using time-activity and personal exposure data. J. Toxicol. Environ. Health Sci. Part A 2007, 70, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.O.; Kim, S.H.; Kim, M.H. Characterization of atmospheric concentration of volatile organic compounds in industrial areas of Pohang and Gumi cities. J. Environ. Toxicol. 2005, 20, 167–178. [Google Scholar]
- Beckerman, B.; Jerrett, M.; Brook, J.R.; Verma, D.K.; Arain, M.A.; Finkelstein, M.M. Correlation of nitrogen dioxide with other traffic pollutants near a major expressway. Atmos. Environ. 2008, 42, 275–290. [Google Scholar] [CrossRef]
- Pankow, J.F.; Luo, W.; Bender, D.A.; Isabelle, L.M.; Hollingsworth, J.S.; Chen, C.; Asher, W.E.; Zogorski, J.S. Concentrations and co-occurrence correlations of 88 volatile organic compounds (VOCs) in the ambient air of 13 semi-rural to urban locations in the United States. Atmos. Environ. 2003, 37, 5023–5046. [Google Scholar] [CrossRef]
- Ross, Z.; English, P.B.; Scalf, R.; Gunier, R.; Smorodinsky, S.; Wall, S.; Jerrett, M. Nitrogen dioxide prediction in southern california using land use regression modeling: Potential for environmental health analyses. J. Expo. Sci. Environ. Epidemiol. 2005, 16, 106–114. [Google Scholar] [CrossRef] [PubMed]
- Su, J.G.; Jerrett, M.; Beckerman, B.; Verma, D.; Arain, M.A.; Kanaroglou, P.; Stieb, D.; Finkelstein, M.; Brook, J. A land use regression model for predicting ambient volatile organic compound concentrations in Toronto, Canada. Atmos. Environ. 2010, 44, 3529–3537. [Google Scholar] [CrossRef]
- Briggs, D.J.; Collins, S.; Elliott, P.; Fischer, P.; Kingham, S.; Lebret, E.; Pryl, K.; Van Reeuwijk, H.; Smallbone, K.; Van Der Veen, A. Mapping urban air pollution using GIS: A regression-based approach. Int. J. Geogr. Inf. Sci. 1997, 11, 699–718. [Google Scholar] [CrossRef] [Green Version]
- Hoek, G.; Meliefste, K.; Brauer, M.; van Vliet, P.; Brunekreef, B.; Fischer, P.; Lebret, E.; Cyrys, J.; Gehring, U.; Heinrich, A. Risk Assessment of Exposure to Traffic-Related Air Pollution for the Development of Inhalant Allergy, Asthma and Other Chronic Respiratory Conditions in Children (TRAPCA). Final Report; IRAS University: Utrecht, the Netherlands, 2001. [Google Scholar]
- Su, J.G.; Brauer, M.; Buzzelli, M. Estimating urban morphometry at the neighborhood scale for improvement in modeling long-term average air pollution concentrations. Atmos. Environ. 2008, 42, 7884–7893. [Google Scholar] [CrossRef]
- Gao, L.N.; Tao, F.; Ma, P.L.; Wang, C.Y.; Kong, W.; Chen, W.K.; Zhou, T. A short-distance healthy route planning approach. J. Transp. Health 2022, 24, 101–114. [Google Scholar] [CrossRef]
- Ma, P.; Tao, F.; Gao, L.; Leng, S.; Yang, K.; Zhou, T. Retrieval of Fine-Grained PM2.5 Spationtemporal Resoultion Based on Multiple Machine Learning Models. Remote Sens. 2022, 14, 599. [Google Scholar] [CrossRef]
Pollutant | Sampling Session | Number of Observations | Number (%) of Observations above the MDL a |
---|---|---|---|
NO2 | Fall, 2010 | 50 | 50 (100%) |
Spring, 2011 | 50 | 50 (100%) | |
Benzene | Fall, 2010 | 50 | 49 (98%) |
Spring, 2011 | 50 | 49 (98%) | |
Toluene | Fall, 2010 | 50 | 50 (100%) |
Spring, 2011 | 50 | 50 (100%) | |
m-p-Xylene | Fall, 2010 | 50 | 47 (94%) |
Spring, 2011 | 50 | 47 (94%) |
Category | Units | Buffer Radii (m) | Subcategory | Abbreviation | Number of Variables |
---|---|---|---|---|---|
Land use | Square kilometers in a circular buffer | 200, 300, 500, 750 1000, 1500, 2000 | Water | WTR | 42 |
Commercial | COM | ||||
Residential | RES | ||||
Government | GOV | ||||
Industrial | IND | ||||
Open | OPN | ||||
Road length | Kilometers in a circular buffer | 50, 100, 200, 300, 500, 750, 1000, 1500, 2000 | All roads | ALLRD | 36 |
Major roads a | MJR | ||||
General roads b | GEN | ||||
Minor roads c | MNR | ||||
Point source and emission | Total tons/year (2008) emitted in circular buffer | 1000, 1500, 2000, 2500 | Benzene point source | BPS | 24 |
Benzene emission | BPEM | ||||
Toluene point source | TPS | ||||
Toluene emission | TPEM | ||||
Xylene point source | XPS | ||||
Xylene emission | XPEM | ||||
Satellite remote sensing | Square kilometers in circular buffer | 200, 300, 500, 750 1000, 1500, 2000 | Brightness | BRI | 21 |
Greenness | GRE | ||||
Wetness | WET | ||||
Population density | Persons per square meters | 750, 1000, 1250, 1500, 2000, 2500 | DENS | 6 | |
Location | Kilometers (UTM) | N/A | Y | Y | 2 |
X | X | ||||
Proximity to city center | Kilometers | N/A | DCC | 1 | |
Elevation | Meters | N/A | ELEV | 1 | |
Distance from | Kilometers | N/A | Ocean | DOC | 7 |
Major road | DMJR | ||||
General road | DGEN | ||||
Minor road | DMNR | ||||
Benzene point source | DBP | ||||
Toluene point source | DTP | ||||
Xylene point source | DXP |
Pollutant (Unit) | Session | n | Mean | SD e | CV(%) f | Min | Max |
---|---|---|---|---|---|---|---|
NO2 | Mean d | 100 | 28.4 | 7.8 | 27.4 | 11.3 | 41.4 |
Fall | 50 | 30.8 | 9.4 | 32.8 | 11.3 | 47.0 | |
Spring | 50 | 26.3 | 7.5 | 26.9 | 9.4 | 41.4 | |
Adjusted NO2 a | Mean | 100 | 28.3 | 8.0 | 28.2 | 10.8 | 42.0 |
Fall | 50 | 35.7 | 11.3 | 32.8 | 13.2 | 54.5 | |
Spring | 50 | 20.7 | 5.6 | 26.9 | 7.5 | 33.8 | |
Annual NO2 b | Mean | 4 | 41.0 | 6.2 | 15.4 | 28.8 | 50.1 |
Benzene c | Mean | 100 | 2.40 | 1.13 | 47.1 | 0.41 | 6.08 |
Fall | 50 | 3.42 | 2.18 | 63.8 | 0.007 | 9.78 | |
Spring | 50 | 1.41 | 0.83 | 58.6 | 0.14 | 4.02 | |
Toluene | Mean | 100 | 15.36 | 5.20 | 33.8 | 7.36 | 30.67 |
Fall | 50 | 18.64 | 9.24 | 49.6 | 5.35 | 38.20 | |
Spring | 50 | 12.07 | 4.66 | 38.6 | 1.04 | 23.13 | |
m-p-Xylene c | Mean | 100 | 0.21 | 0.13 | 62.6 | 0.007 | 0.70 |
Fall | 50 | 0.07 | 0.04 | 58.8 | 0.007 | 0.18 | |
Spring | 50 | 0.35 | 0.26 | 73.5 | 0.007 | 1.33 |
Pollutant | NO2 | Benzene | Toluene | m-p-Xylene |
---|---|---|---|---|
NO2 | 1.00 | |||
Benzene | 0.39 a | 1.00 | ||
Toluene | 0.21 | 0.31 a | 1.00 | |
m-p-Xylene | 0.18 | 0.46 a | 0.20 | 1.00 |
Pollutant | Model a,b | β | SE | p-Value | VIF c | Partial R2 | Model R2 | LOO R2 d | LOO RMSE e |
---|---|---|---|---|---|---|---|---|---|
NO2 | Intercept | 1.07 | 0.30 | 0.000 | 0.65 | 0.56 | 4.3 | ||
(µg/m3) | Latitude | −2.66 × 10−7 | 7.54 × 10−8 | 0.001 | 1.15 | 0.05 | |||
IND.2000 | 0.00081 | 0.00024 | 0.001 | 1.08 | 0.14 | ||||
MJR.2000 | 0.00025 | 0.000049 | <0.001 | 1.06 | 0.33 | ||||
ALLRD.50 | 0.0090 | 0.0023 | <0.001 | 1.05 | 0.06 | ||||
Ln benzene | Intercept | 0.86 | 0.06 | <0.001 | 0.43 | 0.34 | 0.24 | ||
(µg/m3) | IND.500 | 1.51 | 0.35 | <0.001 | 1.03 | 0.18 | |||
MJR.50 | 1.51 | 0.60 | 0.015 | 1.00 | 0.08 | ||||
DMNR | −0.90 | 0.26 | 0.001 | 1.02 | 0.16 | ||||
Ln toluene | Intercept | 2.43 | 0.07 | <0.001 | 0.35 | 0.28 | 0.17 | ||
(µg/m3) | IND.2000 | 0.08 | 0.02 | 0.002 | 1.00 | 0.16 | |||
MR.500 | 0.09 | 0.03 | 0.011 | 1.10 | 0.16 | ||||
ALLRD.100 | 0.14 | 0.08 | 0.009 | 1.10 | 0.03 | ||||
Ln xylene | Intercept | −0.88 | 0.23 | <0.001 | 0.43 | 0.33 | 0.54 | ||
(µg/m3) | MJR.300 | 0.31 | 0.09 | <0.001 | 1.06 | 0.12 | |||
GEN.50 | 1.90 | 0.91 | 0.045 | 1.05 | 0.06 | ||||
DOC | −0.11 | 0.05 | 0.037 | 1.18 | 0.07 | ||||
DMNR | −1.30 | 0.64 | 0.048 | 1.20 | 0.18 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, H.-J.; Roh, Y.-M.; Lim, Y.-W.; Lee, Y.-J.; Kim, K.-Y. Land-Use Regression Modeling to Estimate NO2 and VOC Concentrations in Pohang City, South Korea. Atmosphere 2022, 13, 577. https://doi.org/10.3390/atmos13040577
Choi H-J, Roh Y-M, Lim Y-W, Lee Y-J, Kim K-Y. Land-Use Regression Modeling to Estimate NO2 and VOC Concentrations in Pohang City, South Korea. Atmosphere. 2022; 13(4):577. https://doi.org/10.3390/atmos13040577
Chicago/Turabian StyleChoi, Hee-Jin, Young-Man Roh, Young-Wook Lim, Yong-Jin Lee, and Ki-Youn Kim. 2022. "Land-Use Regression Modeling to Estimate NO2 and VOC Concentrations in Pohang City, South Korea" Atmosphere 13, no. 4: 577. https://doi.org/10.3390/atmos13040577
APA StyleChoi, H. -J., Roh, Y. -M., Lim, Y. -W., Lee, Y. -J., & Kim, K. -Y. (2022). Land-Use Regression Modeling to Estimate NO2 and VOC Concentrations in Pohang City, South Korea. Atmosphere, 13(4), 577. https://doi.org/10.3390/atmos13040577