Parametrization of Horizontal and Vertical Transfers for the Street-Network Model MUNICH Using the CFD Model Code_Saturne
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of MUNICH
2.1.1. Street Geometry and Main Hypothesis
2.1.2. MUNICH Existing Parametrizations for Vertical Transfers
2.1.3. MUNICH Existing Parametrizations for Horizontal Transfers
- -
- Exponential attenuation profile (noted U_exp)
- -
- SIRANE profile (noted U_sir)
2.2. Description of the CFD Simulations
2.2.1. Street Canyon Geometry
2.2.2. Set-Up of the Simulations
- -
- Turbulence closure and fluid properties
- -
- Initial and boundary conditions
2.2.3. Calculation of Vertical and Horizontal Transfers in Code_Saturne for Comparison to MUNICH
3. Adaptation of a Flow Parametrization and Comparison with Existing MUNICH Parametrizations
3.1. Flow in Dense and Sparse Vegetated Canopies
3.2. Vertical Transfers
3.2.1. Vertical Transfer Coefficient Parametrization
3.2.2. Comparison of MUNICH Vertical Transfer Coefficient Parametrizations with Code_Saturne Simulations
3.3. Horizontal Transfers
3.3.1. Horizontal Wind Speed Parametrization
3.3.2. Comparison of MUNICH Horizontal Wind Profiles to Code_Saturne Simulations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Lists of Abbreviations, Variables and Parameters
Acronym | Definition |
---|---|
WC | Wide Canyon |
IC | Intermediate Canyon |
NC | Narrow Canyon |
CTM | Chemistry-Transport Model |
CFD | Computational Fluid Dynamics |
Symbol | Definition | Value | Unit |
---|---|---|---|
Von Kàrmàn constant | 0.42 | - | |
D | Constant in the vertical transfer coefficient expression [24] | 0.45 | - |
PBLH | Boundary layer height | 1000 | m |
Code_Saturne city roughness length | 1.0 | m | |
Code_Saturne inside street walls roughness length | 0.10 | m | |
Friction velocity | 0.727 | m·s | |
Wind speed at the reference height | 5.0 | m·s | |
e | Passive tracer emission rate | 1000 | μg·s−1 |
E | Parameter in modified Wang [38] parametrization | 0.5 | - |
Group of Variables | Symbol | Definition | Unit |
---|---|---|---|
Street characteristics | H | Building height | m |
W | Street width | m | |
B | Building width | m | |
L | Street length | m | |
V | Street volume | m | |
Aspect ratio | - | ||
Reference height | m | ||
Horizontal wind speed | Average street horizontal wind speed | m·s | |
U | Norm of the horizontal wind speed | m·s | |
Horizontal wind speed in the X direction | m·s | ||
Horizontal wind speed in the Y direction | m·s | ||
Average horizontal wind speed at the roof level | m·s | ||
Wind angle | rad or | ||
A | Constant in the exp. profile attenuation coefficient | - | |
Vertical transfer | Vertical flux of pollutant | μg·s−1 | |
Vertical transfer coefficient | m·s | ||
Standard deviation of the vertical wind speed at | m·s | ||
Mixing length in the street | m | ||
Street concentration | μg·m−3 | ||
Background concentration | μg·m−3 | ||
Modified Wang [37] parametrization | Wind attenuation coefficient | - | |
Characteristic length in the street | m | ||
Characteristic length factor | - | ||
Empiric coefficient in equation | - | ||
Function of and | - |
Appendix B. Comparison of Street-Average Concentrations in Code_Saturne and MUNICH
Appendix C. Definition of the Statistical Indicators
- Normalized Mean Absolute Error (%):
- Normalized Mean Bias (%):
- Relative Deviation (%):
References
- Faiz, A. Automotive emissions in developing countries-relative implications for global warming, acidification and urban air quality. Transp. Res. Part A Policy Pract. 1993, 27, 167–186. [Google Scholar] [CrossRef]
- Akimoto, H. Global Air Quality and Pollution. Science 2003, 302, 1716–1719. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, C.; Ng, E.; Norford, L.K. Improving air quality in high-density cities by understanding the relationship between air pollutant dispersion and urban morphologies. Build. Environ. 2014, 71, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Gu, Z.; Yu, C.W. Impact Factors on Airflow and Pollutant Dispersion in Urban Street Canyons and Comprehensive Simulations: A Review. Curr. Pollut. Rep. 2020, 6, 425–439. [Google Scholar] [CrossRef]
- Angel, S.; Parent, J.; Civco, D.L.; Blei, A.; Potere, D. The dimensions of global urban expansion: Estimates and projections for all countries, 2000–2050. Prog. Plan. 2011, 75, 53–107. [Google Scholar] [CrossRef]
- Pascal, M.; Corso, M.; Chanel, O.; Declercq, C.; Badaloni, C.; Cesaroni, G.; Henschel, S.; Meister, K.; Haluza, D.; Martin-Olmedo, P.; et al. Assessing the public health impacts of urban air pollution in 25 European cities: Results of the Aphekom project. Sci. Total Environ. 2013, 449, 390–400. [Google Scholar] [CrossRef]
- West, J.J.; Cohen, A.; Dentener, F.; Brunekreef, B.; Zhu, T.; Armstrong, B.; Bell, M.L.; Brauer, M.; Carmichael, G.; Costa, D.L.; et al. What We Breathe Impacts Our Health: Improving Understanding of the Link between Air Pollution and Health. Environ. Sci. Technol. 2016, 50, 4895–4904. [Google Scholar] [CrossRef]
- Borck, R.; Schrauth, P. Population density and urban air quality. Reg. Sci. Urban Econ. 2021, 86, 103596. [Google Scholar] [CrossRef]
- Demetriou, E.; Hadjistassou, C. Lowering mortality risks in urban areas by containing atmospheric pollution. Environ. Res. 2022, 211, 113096. [Google Scholar] [CrossRef]
- Harman, I.N.; Barlow, J.F.; Belcher, S.E. Scalar fluxes from urban street canyons. Part II Model. Bound.-Lay. Meteorol. 2004, 113, 387–409. [Google Scholar] [CrossRef]
- Cai, X.M.; Barlow, J.F.; Belcher, S.E. Dispersion and transfer of passive scalars in and above street canyons—Large-eddy simulations. Atmos. Environ. 2008, 42, 5885–5895. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Fisher, B.E.; Pericleous, K.; Gonzalez-Flesca, N. Modelling air quality in street canyons: A review. Atmos. Environ. 2003, 37, 155–182. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.D.; Hou, R.W.; Liu, Z.Y.; Song, Y.; Cui, P.Y.; Kim, C.N. Effects of Wind Direction on the Airflow and Pollutant Dispersion inside a Long Street Canyon. Aerosol Air Qual. Res. 2019, 19, 1152–1171. [Google Scholar] [CrossRef]
- Zhang, K.; Chen, G.; Wang, X.; Liu, S.; Mak, C.M.; Fan, Y.; Hang, J. Numerical evaluations of urban design technique to reduce vehicular personal intake fraction in deep street canyons. Sci. Total Environ. 2019, 653, 968–994. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Chen, T.; Lin, Y.; Buccolieri, R.; Mattsson, M.; Zhang, M.; Hang, J.; Wang, Q. Integrated impacts of tree planting and street aspect ratios on CO dispersion and personal exposure in full-scale street canyons. Build. Environ. 2020, 169, 106529. [Google Scholar] [CrossRef]
- Miao, C.; Yu, S.; Zhang, Y.; Hu, Y.; He, X.; Chen, W. Assessing outdoor air quality vertically in an urban street canyon and its response to microclimatic factors. J. Environ. Sci. 2022. [Google Scholar] [CrossRef]
- Collett, R.S.; Oduyemi, K. Air quality modelling: A technical review of mathematical approaches. Meteorol. Appl. 1997, 4, 235–246. [Google Scholar] [CrossRef]
- Zhang, Y.; Sartelet, K.; Wu, S.Y.; Seigneur, C. Application of WRF/Chem-MADRID and WRF/Polyphemus in Europe, Part I: Model description, evaluation of meteorological predictions, and aerosol-meteorology interactions. Atmos. Chem. Phys. 2013, 13, 6845–6875. [Google Scholar] [CrossRef] [Green Version]
- Mailler, S.; Menut, L.; Khvorostyanov, D.; Valari, M.; Couvidat, F.; Siour, G.; Turquety, S.; Briant, R.; Tuccella, P.; Bessagnet, B.; et al. CHIMERE-2017: From urban to hemispheric chemistry-transport modeling. Geosci. Model Dev. 2017, 10, 2397–2423. [Google Scholar] [CrossRef] [Green Version]
- Appel, K.W.; Napelenok, S.L.; Foley, K.M.; Pye, H.O.T.; Hogrefe, C.; Luecken, D.J.; Bash, J.O.; Roselle, S.J.; Pleim, J.E.; Foroutan, H.; et al. Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1. Geosci. Model Dev. 2017, 10, 1703–1732. [Google Scholar] [CrossRef] [Green Version]
- Berkowicz, R. OSPM—A parameterised street pollution model. Environ. Monit. Assess. 2000, 65, 323–331. [Google Scholar] [CrossRef]
- Soulhac, L.; Salizzoni, P.; Cierco, F.X.; Perkins, R. The model SIRANE for atmospheric urban pollutant dispersion; part I, presentation of the model. Atmos. Environ. 2011, 45, 7379–7395. [Google Scholar] [CrossRef]
- Soulhac, L.; Nguyen, C.; Volta, P.; Salizzoni, P. The model SIRANE for atmospheric urban pollutant dispersion. PART III: Validation against NO2 yearly concentration measurements in a large urban agglomeration. Atmos. Environ. 2017, 167, 377–388. [Google Scholar] [CrossRef]
- Kim, Y.; Wu, Y.; Seigneur, C.; Roustan, Y. Multi-scale modeling of urban air pollution: Development and application of a Street-in-Grid model (v1.0) by coupling MUNICH (v1.0) and Polair3D (v1.8.1). Geosci. Model Dev. 2018, 11, 611–629. [Google Scholar] [CrossRef] [Green Version]
- Lugon, L.; Sartelet, K.; Kim, Y.; Vigneron, J.; Chrétien, O. Nonstationary modeling of NO2, NO and NOx in Paris using the Street-in-Grid model: Coupling local and regional scales with a two-way dynamic approach. Atmos. Chem. Phys. 2020, 20, 7717–7740. [Google Scholar] [CrossRef]
- Lugon, L.; Sartelet, K.; Kim, Y.; Vigneron, J.; Chrétien, O. Simulation of primary and secondary particles in the streets of Paris using MUNICH. Faraday Discuss. 2021, 226, 432–456. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Leung, D.; Lam, K. Recent progress in CFD modelling of wind field and pollutant transport in street canyons. Atmos. Environ. 2006, 40, 5640–5658. [Google Scholar] [CrossRef]
- Tominaga, Y.; Stathopoulos, T. CFD simulation of near-field pollutant dispersion in the urban environment: A review of current modeling techniques. Atmos. Environ. 2013, 79, 716–730. [Google Scholar] [CrossRef] [Green Version]
- Salim, S.M.; Buccolieri, R.; Chan, A.; Di Sabatino, S. Numerical simulation of atmospheric pollutant dispersion in an urban street canyon: Comparison between RANS and LES. J. Wind Eng. Ind. Aerod. 2011, 99, 103–113. [Google Scholar] [CrossRef]
- Aliabadi, A.A.; Moradi, M.; Byerlay, R.A.E. The budgets of turbulence kinetic energy and heat in the urban roughness sublayer. Environ. Fluid Mech. 2021, 21, 843–884. [Google Scholar] [CrossRef]
- Sartelet, K.; Zhu, S.; Moukhtar, S.; André, M.; André, J.M.; Gros, V.; Favez, O.; Brasseur, A.; Redaelli, M. Emission of intermediate, semi and low volatile organic compounds from traffic and their impact on secondary organic aerosol concentrations over Greater Paris. Atmos. Environ. 2018, 180, 126–137. [Google Scholar] [CrossRef]
- Archambeau, F.; Méchitoua, N.; Sakiz, M. Code Saturne: A finite volume code for the computation of turbulent incompressible flows-Industrial applications. Int. J. Finite Vol. 2004, 1, 1–62. [Google Scholar]
- Milliez, M.; Carissimo, B. Numerical simulations of pollutant dispersion in an idealized urban area, for different meteorological conditions. Bound.-Lay. Meteorol. 2007, 122, 321–342. [Google Scholar] [CrossRef]
- Milliez, M.; Carissimo, B. Computational Fluid Dynamical Modelling of Concentration Fluctuations in an Idealized Urban Area. Bound.-Lay. Meteorol. 2008, 127, 241–259. [Google Scholar] [CrossRef]
- Gao, Z.; Bresson, R.; Qu, Y.; Milliez, M.; de Munck, C.; Carissimo, B. High resolution unsteady RANS simulation of wind, thermal effects and pollution dispersion for studying urban renewal scenarios in a neighborhood of Toulouse. Urban Clim. 2018, 23, 114–130. [Google Scholar] [CrossRef]
- Zaïdi, H.; Dupont, E.; Milliez, M.; Musson-Genon, L.; Carissimo, B. Numerical Simulations of the Microscale Heterogeneities of Turbulence Observed on a Complex Site. Bound.-Lay. Meteorol. 2013, 147, 237–259. [Google Scholar] [CrossRef]
- Wang, W. An Analytical Model for Mean Wind Profiles in Sparse Canopies. Bound.-Lay. Meteorol. 2012, 142, 383–399. [Google Scholar] [CrossRef]
- Wang, W. Analytically Modelling Mean Wind and Stress Profiles in Canopies. Bound.-Lay. Meteorol. 2014, 151, 239–256. [Google Scholar] [CrossRef]
- Schulte, N.; Tan, S.; Venkatram, A. The ratio of effective building height to street width governs dispersion of local vehicle emissions. Atmos. Environ. 2015, 112, 54–63. [Google Scholar] [CrossRef]
- Salizzoni, P.; Soulhac, L.; Mejean, P. Street canyon ventilation and atmospheric turbulence. Atmos. Environ. 2009, 43, 5056–5067. [Google Scholar] [CrossRef]
- Wang, Y.; Sartelet, K.; Bocquet, M.; Chazette, P. Modelling and assimilation of lidar signals over Greater Paris during the MEGAPOLI summer campaign. Atmos. Chem. Phys. 2014, 3511–3532. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Sartelet, K.; Raut, J.C.; Chazette, P. Influence of an urban canopy model and PBL schemes on vertical mixing for air quality modeling over Greater Paris. Atmos. Environ. 2015, 107, 289–306. [Google Scholar] [CrossRef] [Green Version]
- Masson, V. A Physically-Based Scheme For The Urban Energy Budget In Atmospheric Models. Bound.-Lay. Meteorol. 2000, 94, 357–397. [Google Scholar] [CrossRef]
- Lemonsu, A.; Grimmond, C.S.B.; Masson, V. Modeling the Surface Energy Balance of the Core of an Old Mediterranean City: Marseille. J. Appl. Meteorol. 2004, 43, 312–327. [Google Scholar] [CrossRef]
- Cherin, N.; Roustan, Y.; Musson-Genon, L.; Seigneur, C. Modelling atmospheric dry deposition in urban areas using an urban canopy approach. Geosci. Model Dev. 2015, 8, 893–910. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, R.W.; Griffiths, R.F.; Hall, D.J. An improved method for the estimation of surface roughness of obstacle arrays. Atmos. Environ. 1998, 32, 1857–1864. [Google Scholar] [CrossRef]
- Grimmond, C.S.B.; Oke, T.R. Aerodynamic Properties of Urban Areas Derived from Analysis of Surface Form. J. Appl. Meteorol. 1999, 38, 1262–1292. [Google Scholar] [CrossRef]
- Soulhac, L.; Perkins, R.J.; Salizzoni, P. Flow in a Street Canyon for any External Wind Direction. Bound.-Lay. Meteorol. 2008, 126, 365–388. [Google Scholar] [CrossRef]
- Castro, I.P. Are Urban-Canopy Velocity Profiles Exponential? Bound.-Lay. Meteorol. 2017, 164, 337–351. [Google Scholar] [CrossRef]
- Katul, G.G.; Mahrt, L.; Poggi, D.; Sanz, C. ONE- and TWO-Equation Models for Canopy Turbulence. Bound.-Lay. Meteorol. 2004, 113, 81–109. [Google Scholar] [CrossRef] [Green Version]
- Guimet, V.; Laurence, D. A linearised turbulent production in the k-ε model for engineering applications. In Engineering Turbulence Modelling and Experiments 5; Rodi, W., Fueyo, N., Eds.; Elsevier Science Ltd.: Oxford, UK, 2002; pp. 157–166. [Google Scholar] [CrossRef]
- Richards, P.J.; Hoxey, R.P. Appropriate boundary conditions for computational wind engineering models using the k-ε turbulence model. J. Wind. Eng. Ind. Aerodyn. 1993, 46–47, 145–153. [Google Scholar] [CrossRef]
- Wiernga, J. Representative roughness parameters for homogeneous terrain. Bound.-Lay. Meteorol. 1993, 63, 323–364. [Google Scholar] [CrossRef]
- An, K.; Fung, J.C.H.; Yim, S.H.L. Sensitivity of inflow boundary conditions on downstream wind and turbulence profiles through building obstacles using a CFD approach. J. Wind Eng. Ind. Aerod. 2013, 115, 137–149. [Google Scholar] [CrossRef]
- Oke, T.R. Boundary Layer Climates (Chapter 8, pp. 262–303), 2nd ed.; Routledge; Methuen: New York, NY, USA, 1987; p. 435. [Google Scholar]
Canyon | Building Height H (m) | Street Width W (m) | Street Aspect Ratio (-) | Reference Height (m) | Maximum Height of the Domain (m) |
---|---|---|---|---|---|
WC | 8.5 | 27.5 | 0.3 | 25.5 | 25.5 |
IC | 14.0 | 27.5 | 0.5 | 31.0 | 42.0 |
NC | 27.5 | 27.5 | 1.0 | 44.5 | 82.5 |
Parameter | Value | Unit |
---|---|---|
Temperature | 293.15 | K |
Pressure | 101,325.0 | Pa |
Density | 1.204 | kg·m−3 |
Viscosity | 1.83 × 10−5 | Pa·s |
Specific heat | 1017.24 | J·kg·K |
Thermal conductivity | 0.02495 | W·m·K |
Canyon | U_exp | U_exp | U_sir | U_mw | ||||
---|---|---|---|---|---|---|---|---|
NMAE | NMB | NMAE | NMB | NMAE | NMB | NMAE | NMB | |
WC | 16.9 | 16.9 | 8.6 | 8.6 | 2.1 | 2.1 | 1.0 | −1.0 |
IC | 10.8 | 10.8 | 5.1 | −1.6 | 5.1 | −2.3 | 1.9 | −1.9 |
NC | 11.1 | 5.2 | 15.5 | −15.5 | 17.8 | −17.8 | 1.2 | −1.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maison, A.; Flageul, C.; Carissimo, B.; Tuzet, A.; Sartelet, K. Parametrization of Horizontal and Vertical Transfers for the Street-Network Model MUNICH Using the CFD Model Code_Saturne. Atmosphere 2022, 13, 527. https://doi.org/10.3390/atmos13040527
Maison A, Flageul C, Carissimo B, Tuzet A, Sartelet K. Parametrization of Horizontal and Vertical Transfers for the Street-Network Model MUNICH Using the CFD Model Code_Saturne. Atmosphere. 2022; 13(4):527. https://doi.org/10.3390/atmos13040527
Chicago/Turabian StyleMaison, Alice, Cédric Flageul, Bertrand Carissimo, Andrée Tuzet, and Karine Sartelet. 2022. "Parametrization of Horizontal and Vertical Transfers for the Street-Network Model MUNICH Using the CFD Model Code_Saturne" Atmosphere 13, no. 4: 527. https://doi.org/10.3390/atmos13040527
APA StyleMaison, A., Flageul, C., Carissimo, B., Tuzet, A., & Sartelet, K. (2022). Parametrization of Horizontal and Vertical Transfers for the Street-Network Model MUNICH Using the CFD Model Code_Saturne. Atmosphere, 13(4), 527. https://doi.org/10.3390/atmos13040527