Saharan Dust Storm Aerosol Characterization of the Event (9 to 13 May 2020) over European AERONET Sites
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. AERONET AOD Data Analysis
3.1.1. Italy–AOD Data Level 2.0
3.1.2. Austria: AOD Data Level 1.5
3.1.3. Slovakia: AOD Data Level 2.0
3.1.4. Poland: AOD Data Level 1.5
3.1.5. Ukraine: AOD Data Level 1.5
3.1.6. Romania: AOD Data Level 2.0
3.2. Rainwater Analysis after the Saharan Dust Episode in Pelinia
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- De National Research Council; Division on Earth and Life Studies; Board on Atmospheric Sciences and Climate; Committee on the Significance of International Transport of Air Pollutants. Global Sources of Local Pollution: An Assessment of Long-Range Transport of Key Air Pollutants to and from the United States; National Research Council of the National Academies: Washington, DC, USA, 2010; pp. 67–76.
- Pitta, P.; Herut, B.; Tsagaraki, T.M. Impact of Aerosols (Saharan Dust and Mixed) on the East Mediterranean Oligotrophic Ecosystem, Results from Experimental Studies. Front. Mar. Sci. 2017, 4, 3–20. [Google Scholar] [CrossRef] [Green Version]
- Guerzoni, S.; Chester, R. The Impact of Desert Dust across the Mediterranean; Springer Science and Business Media, B.V.: Dordrecht, The Netherlands, 1996; p. 360. [Google Scholar] [CrossRef]
- Warner, T.T. Desert Meteorology; Cambridge University Press: Cambridge, UK, 2004; pp. 16–32. [Google Scholar]
- Tomasi, C.; Fuzzi, S.; Kokhanovsky, A. Atmospheric Aerosols: Life Cycles and Effects on Air Quality and Climate; Wiley-VCH: Hoboken, NJ, USA, 2017; pp. 578–676. [Google Scholar]
- Weil, T.; de Filippo, C.; Albanese, D.; Donati, C.; Pindo, M.; Pavarini, L.; Carotenuto, F.; Pasqui, M.; Poto, L.; Gabrieli, J.; et al. Legal immigrants: Invasion of alien microbial communities during winter occurring desert dust storms. Microbiome 2017, 5, 32. [Google Scholar] [CrossRef] [Green Version]
- Chuvochina, M.S.; Alekhina, I.A.; Normand, P.; Petit, J.-R.; Bulat, S.A. Three events of Saharan dust deposition on the Mont Blanc glacier associated with different snow-colonizing bacterial phylotypes. Microbiology 2011, 80, 125–131. [Google Scholar] [CrossRef]
- Garrison, V.H.; Shinn, E.A.; Foreman, W.T.; Griffin, D.W.; Holmes, C.W.; Kellogg, C.A.; Majewski, M.S.; Richardson, L.L.; Ritchie, K.B.; Smith, G.W. African and Asian Dust: From Desert Soils to Coral Reefs. BioScience 2003, 53, 469. [Google Scholar] [CrossRef] [Green Version]
- Kandler, K.; Benker, N.; Bundke, U.; Cuevas, E.; Ebert, M.; Knippertz, P.; Rodríguez, S.; Schütz, L.; Weinbruch, S. Chemical composition and complex refractive index of Saharan Mineral Dust at Izaña, Tenerife (Spain) derived by electron microscopy. Atmos. Environ. 2007, 41, 8058–8074. [Google Scholar] [CrossRef]
- Plant, J.A.; Voulvoulis, N.; Ragnarsdottir, K.V. Pollutants, Human Health and the Environment: A Risk Based Approach; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; p. 278. [Google Scholar]
- Kotsyfakis, M.; Zarogiannis, S.G.; Patelarou, E. The health impact of Saharan dust exposure, Review Paper. Int. J. Occup. Med. Environ. Health 2019, 32, 749–760. [Google Scholar] [CrossRef]
- Ravelo-Pérez, L.M.; Rodríguez, S.; Galindo, L.; García, M.I.; Alastuey, A.; López-Solano, J. Soluble iron dust export in the high altitude Saharan Air Layer. Atmos. Environ. 2016, 133, 49–59. [Google Scholar] [CrossRef] [Green Version]
- Sedwick, P.N.; Sholkovitz, E.R.; Church, T.M. Impact of anthropogenic combustion emissions on the fractional solubility of aerosol iron: Evidence from the Sargasso Sea: Fractional Solubility of Aerosol Iron. Geochem. Geophys. Geosyst. 2007, 8. [Google Scholar] [CrossRef]
- Journet, E.; Desboeufs, K.V.; Caquineau, S.; Colin, J.-L. Mineralogy as a critical factor of dust iron solubility. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef] [Green Version]
- Longo, A.F.; Feng, Y.; Lai, B.; Landing, W.M.; Shelley, R.U.; Nenes, A.; Mihalopoulos, N.; Violaki, K.; Ingall, E.D. Influence of Atmospheric Processes on the Solubility and Composition of Iron in Saharan Dust. Environ. Sci. Technol. 2016, 50, 6912–6920. [Google Scholar] [CrossRef]
- Reid, E.A.; Reid, J.S.; Meier, M.M.; Dunlap, M.R.; Cliff, S.S.; Broumas, A.; Perry, K.; Maring, H. Characterization of African dust transported to Puerto Rico by individual particle and size segregated bulk analysis. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Kotz, J.C.; Treichel, P.M.; Townsend, J.R. Chemistry & Chemical Reactivity, 8th ed.; Brooks/Cole, Cengage Learning: Belmont, CA, USA, 2012; p. 120. ISBN 978-0-8400-4828. [Google Scholar]
- De Angelis, M.; Gaudichet, A. Saharan dust deposition over Mont Blanc (French Alps) during the last 30 years. Tellus B 1991, 43, 64–71. [Google Scholar] [CrossRef] [Green Version]
- Knippertz, P.; Stuut, J.W. Mineral Dust: A Key Player in the Earth System; Springer Science and Business Media, B.V.: Berlin/Heidelberg, Germany, 2014; p. 331. [Google Scholar]
- Freemeteo. Available online: https://freemeteo.ro (accessed on 8 July 2021).
- Mellouki, A.; Ravishankara, A.R. Regional Climate Variability and Its Impacts in the Mediterranean Area; Nato Science Series; Springer Nature: Berlin, Germany, 2006; pp. 28–34. [Google Scholar]
- Aeronet (AErosolROboticNETwork). Available online: https://aeronet.gsfc.nasa.gov/new_web/index.html (accessed on 11 August 2021).
- Nicolae, V.; Talianu, C.; Andrei, S.; Antonescu, B.; Ene, D.; Nicolae, D.; Dandocsi, A.; Toader, V.; Ștefan, S.; Savu, T.; et al. Multiyear Typology of Long-Range Transported Aerosols over Europe. Atmosphere 2019, 10, 482. [Google Scholar] [CrossRef] [Green Version]
- Dayou, J.; Chang, J.H.; Sentian, J. Ground-Based Aerosol Optical Depth Measurement Using Sunphotometers; Springer Science and Business Media, B.V.: Berlin/Heidelberg, Germany, 2014; p. 46. [Google Scholar]
- Cocean, I.; Cocean, A.; Iacomi, F.; Gurlui, S. City water pollution by soot-surface-active agents revealed by FTIR spectroscopy. Appl. Surf. Sci. 2020, 499, 142487. [Google Scholar] [CrossRef]
- Cocean, I.; Diaconu, M.; Cocean, A.; Postolachi, C.; Gurlui, S. Landfill Waste Fire Effects over Town Areas under Rainwaters. IOP Conf. Ser. Mater. Sci. Eng. 2020, 877, 012048. [Google Scholar] [CrossRef]
- Garofalide, S.; Diaconu, M.; Cocean, I.; Cocean, A.; Pelin, V.; Gurlui, S.; Leontie, L. Study of Physico-Chemical Characteristics of Some Major Urban Air Pollutants. IOP Conf. Ser. Mater. Sci. Eng. 2020, 877, 012049. [Google Scholar] [CrossRef]
- The Barcelona Dust Forecast Center. Available online: https://dust.aemet.es (accessed on 10 July 2021).
- Miller, F.A.; Wilkins, C.H. Infrared Spectra and Characteristic Frequencies of Inorganic Ions. Their Use in Qualitative Analysis. Anal. Chem. 1952, 24, 1253–1294. [Google Scholar] [CrossRef]
- Pretch, E.; Bülmann, P.; Badertscher, M. Structure Determination of Organic Compounds. Tables of Spectral Data, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 13, pp. 269–335. ISBN 978-3-540-93810-1. [Google Scholar]
- Wu, W.; Zhang, F.; Li, Y.; Song, L.; Jiang, D.; Zeng, R.-C.; Tjong, S.C.; Chen, D.-C. Corrosion resistance of dodecanethiol-modified magnesium hydroxide coating on AZ31 magnesium alloy. Appl. Phys. A 2019, 126, 8. [Google Scholar] [CrossRef]
- Ansari, A.; Ali, A.; Asif, M.; Shamsuzzaman, S. Microwave-assisted MgO NP catalyzed one-pot multicomponent synthesis of polysubstituted steroidal pyridines. New J. Chem. 2017, 42, 184–197. [Google Scholar] [CrossRef]
- Hospodarova, V.; Singovszka, E.; Stevulova, N. Characterization of Cellulosic Fibers by FTIR Spectroscopy for Their Further Implementation to Building Materials. Am. J. Anal. Chem. 2018, 9, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Andersen, F.A.; Brecevic, L. Infrared of amorphous and Crystalline Calcium Carbonate. Acta Chem. Scand. 1991, 45, 1018–1024. [Google Scholar] [CrossRef]
- Cai, G.-B.; Chen, S.-F.; Liu, L.; Jiang, J.; Yao, H.-B.; Xu, A.-W.; Yu, S.-H. 1,3-Diamino-2-hydroxypropane-N,N,N′,N′-tetraacetic acid stabilized amorphous calcium carbonate: Nucleation, transformation and crystal growth. CrystEngComm 2009, 12, 234–241. [Google Scholar] [CrossRef]
- Cocean, A.; Cocean, I.; Cimpoesu, N.; Cocean, G.; Cimpoesu, R.; Postolachi, C.; Popescu, V.; Gurlui, S. Laser Induced Method to Produce Curcuminoid-Silanol Thin Films for Transdermal Patches Using Irradiation of Turmeric Target. Appl. Sci. 2021, 11, 4030. [Google Scholar] [CrossRef]
- van den Boom, A.F.J.; Pujari, S.P.; Bannani, F.; Driss, H.; Zuilhof, H. Fast room-temperature functionalization of silicon nanoparticles using alkyl silanols. Faraday Discuss. 2020, 222, 82–94. [Google Scholar] [CrossRef]
- Lippert, T.; Wokaun, A.; Lenoir, D. Surface reactions of brominated arenes as a model for the formation of chlorinated dibenzodioxins and -furans in incineration: Inhibition by ethanolamine. Environ. Sci. Technol. 1991, 25, 1485–1489. [Google Scholar] [CrossRef]
- Cocean, I.; Cocean, A.; Postolachi, C.; Pohoata, V.; Cimpoesu, N.; Bulai, G.; Iacomi, F.; Gurlui, S. Alpha keratin amino acids BEHVIOR under high FLUENCE laser interaction. Medical applications. Appl. Surf. Sci. 2019, 488, 418–426. [Google Scholar] [CrossRef]
- Wozniak, A.S.; Shelley, R.U.; McElhenie, S.D.; Landing, W.M.; Hatcher, P.G. Aerosol water soluble organic matter characteristics over the North Atlantic Ocean: Implications for iron-binding ligands and iron solubility. Mar. Chem. 2015, 173, 162–172. [Google Scholar] [CrossRef]
- Wozniak, A.S.; Shelley, R.U.; Sleighter, R.L.; Abdulla, H.A.; Morton, P.L.; Landing, W.M.; Hatcher, P.G. Relationships among aerosol water soluble organic matter, iron and aluminum in European, North African, and Marine air masses from the 2010 US GEOTRACES cruise. Mar. Chem. 2013, 154, 24–33. [Google Scholar] [CrossRef]
- Molgó, J.; Marchot, P.; Araoz, R.; Benoit, E.; Iorga, B.I.; Zakarian, A.; Taylor, P.; Bourne, Y.; Servent, D. Cyclic imine toxins from dinoflagellates: A growing family of potent antagonists of the nicotinic acetylcholine receptors. J. Neurochem. 2017, 142 (Suppl. 2), 41–51. [Google Scholar] [CrossRef]
- Borchert, A.J.; Ernst, D.C.; Downs, D.M. Reactive enamines and imines in vivo: Lessons from the RidA paradigm. Trends Biochem. Sci. 2019, 44, 849–860. [Google Scholar] [CrossRef]
- Goudie, A.S.; Middleton, N.J. Desert Dust in the Global System; Springer Science and Business Media, B.V.: Berlin/Heidelberg, Germany, 2006; pp. 1–5. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garofalide, S.; Postolachi, C.; Cocean, A.; Cocean, G.; Motrescu, I.; Cocean, I.; Munteanu, B.S.; Prelipceanu, M.; Gurlui, S.; Leontie, L. Saharan Dust Storm Aerosol Characterization of the Event (9 to 13 May 2020) over European AERONET Sites. Atmosphere 2022, 13, 493. https://doi.org/10.3390/atmos13030493
Garofalide S, Postolachi C, Cocean A, Cocean G, Motrescu I, Cocean I, Munteanu BS, Prelipceanu M, Gurlui S, Leontie L. Saharan Dust Storm Aerosol Characterization of the Event (9 to 13 May 2020) over European AERONET Sites. Atmosphere. 2022; 13(3):493. https://doi.org/10.3390/atmos13030493
Chicago/Turabian StyleGarofalide, Silvia, Cristina Postolachi, Alexandru Cocean, Georgiana Cocean, Iuliana Motrescu, Iuliana Cocean, Bogdanel Silvestru Munteanu, Marius Prelipceanu, Silviu Gurlui, and Liviu Leontie. 2022. "Saharan Dust Storm Aerosol Characterization of the Event (9 to 13 May 2020) over European AERONET Sites" Atmosphere 13, no. 3: 493. https://doi.org/10.3390/atmos13030493
APA StyleGarofalide, S., Postolachi, C., Cocean, A., Cocean, G., Motrescu, I., Cocean, I., Munteanu, B. S., Prelipceanu, M., Gurlui, S., & Leontie, L. (2022). Saharan Dust Storm Aerosol Characterization of the Event (9 to 13 May 2020) over European AERONET Sites. Atmosphere, 13(3), 493. https://doi.org/10.3390/atmos13030493