Comparison between Air Temperature and Land Surface Temperature for the City of São Paulo, Brazil
Abstract
:1. Introduction
2. Characteristics of the Area of Study: São Paulo/SP
3. Materials and Methods
3.1. Land Surface Temperature Estimation
3.2. Correlative Analysis between Land Surface Temperature and Air Temperature
3.3. Land Use/Land Cover (LULC) Classification
4. Results and Discussion
4.1. Correlation in between Land Surface Temperature and Air Temperature
4.2. Correlation in between Land Surface Temperature and LULC
4.3. Land Use/Land Cover and Seasonality Impact
5. Conclusions
- The correlation in between LST and air temperature indicates a similar spatial distribution pattern as regions classified as Medium and High Vegetation, Low Vegetation, and Water Surfaces hold low or mild temperatures, in contrast to the higher temperatures observed in Medium and High-Density Urban Zones. The formation of cold islands, probably caused by the projection of the shadows of buildings in areas with a higher pattern of vertical occupation, is predominantly found in the Low-Density Urban Zone. These cold islands are also observed in the areas of the so-called garden neighborhoods due to the predominance of horizontal residential occupation and intense urban afforestation. Furthermore, it is possible to relate the influence of the materials found on the surfaces registered by the thermal sensor, that is, the emissivity of the materials and the respectively revealed apparent temperatures.
- The North–East–South heat island has temperatures varying from 28.4 to 32.9 °C during spring–summer and from 21.6 to 25.8 °C during autumn–winter; the further-South heat island presents LSTs varying from 27.1 to 29.4 °C during spring–summer and from 21.6 to 25.8 °C in autumn–winter. The downtown-West freshness island shows LST ranges in spring–summer of mainly 25.6 to 27.0 °C, with small areas ranging from 23.8 to 25.5 °C and from 27.1 to 28.3 °C, while in autumn–winter, it ranges from 19.4 to 23.6 °C. The rural area (vegetation and water bodies) ranges from 21.5 to 25.5 °C during spring–summer and from 17.3 to 21.5 °C during autumn–winter. The autumn–winter LST is well and sparsely distributed over the whole territory, with the presence of notorious overlapping LST ranges in big areas in between rural areas and the freshness island and in between the freshness island and heat islands. In both rural and freshness islands, it is possible to visualize vast extensions of land with LSTs from 19.4 to 21.5 °C; notorious regions, either in the freshness island or heat island, with temperatures ranging from 21.6 to 23.6 °C, are also visible. However, during the spring-summer period, the thermal amplitude is stronger and presents considerable differences in temperature in between rural areas, freshness island areas, and heat island areas. The thermal amplitude can range from 4.4 to 8.5 °C for the autumn–winter season and from 5.8 up to 11.5 °C in the spring–summer season.
- The CGE weather stations aim to monitor the weather in order to minimize the extreme weather hazards as they do not meet the criteria established by the WMO: a flat location to avoid the accumulation of water and far from electrical installations; broad horizons, without barriers that prevent solar radiation or change the characteristics of the wind; distance from watercourses, grassy or undergrowth soil, and so forth. They are placed throughout the city in the most diverse types of terrains: above liquid surfaces, on concrete, on asphalt, under dense vegetation, and so forth. However, the stations present a temperature related to the emissivity of the materials along the city’s surface; in other words, they are particularly suitable for the comparison with LSTs estimated by satellites.
- The Landsat 8′s TIRS sensor spatial resolution of 100 m compromises the quality of the land surface temperature estimation, especially considering the chaotic land use distribution in the megacity of São Paulo, where different surface materials are mixed and layered with each other: e.g., bridges over channelized rivers, urban gardens in between avenues. Thus, the emitted radiance of the materials read by the satellite is not trustworthy to the position of the weather stations, considering the pixel size. However, the 30 m spatial resolution OLI red and infrared bands were used to obtain surface emissivity, smoothing the pixel error of the thermal bands.
- The LST results were satisfactory, especially in the January measurements, with 72.0% of the results being less than 3 °C higher or lower than the weather-station-collected data. Considering that the LST presents values below the air temperature, applying the standard deviation of ±2.2 °C and the accuracy of ±0.2 °C of the HMP45C-L temperature and humidity probe from the CGE weather stations, the differences between the measurements and estimations have up to 99.3% accuracy. It also shows a mean difference of −2.8 °C, a mean MAE of −1.4 °C, a mean RMSE of 2.0 °C, and a coefficient of determination R² = 0.83. Those values are in accordance and are satisfactory, considering the other works published.
- The measurements in August presents, initially, only 58.6% of results of less than 3.0 °C higher or lower temperatures than the observed data of CGE. However, considering that the LST values are mainly above the air temperature, when applying its standard deviation of ±1.5 °C and the HMP45C-L accuracy error of ±0.2 °C, the difference estimation of air temperature by LST is highly accurate, within 93.1%. It also shows a mean difference of 2.6 °C, a mean MAE of 1.2 °C, a mean RMSE of 1.8 °C, and a coefficient of determination R² = 0.63. The coefficient of determination is slightly under the overall results of the literature compared; however, it still presents better results compared to some of Vancutsem et al. (2010) analyses.
- Providing a time-series seasonal analysis with a single satellite is a difficult quest to achieve as the source may be unable to provide enough useful satellite images due to the temporal resolution and the cloud coverage on the intertropical region, especially during the rainy season. However, it does not discredit all the research trying to achieve good remote sensing parameters and analysis methodology for Earth observations, as with this one, as the collaboration for the elaboration of a constellation of satellites and methodologies to acquire and manipulate reliable spatial data is the ultimate goal. Thus, the Landsat 8 satellite should not be the only one used for the time-series analysis of LST; it should be a part of a constellation of satellites.
- Acquiring meteorological data for a historical LST comparison analysis of the city of São Paulo during the pandemic scenario in Brazil is a difficult barrier to break. The data from CGE during the months of January and August of 2019 were acquired in the same year as it is stored and freely available for a short period of time. Requiring past data is a bureaucratic and long process even in normal conditions: we need a letter of request for the CGE data from the university; we need to apply the request data to the CGE platform, send all the necessary documentation as a preview of the research, wait for the approval, and then wait for the data to be sent. Those processes during the pandemic could have taken months as many governmental units were closed or paused from a lack of employees. However, it is an interesting approach for future research.
- The correlation of the land urban heat and freshness/cold islands with LULC and seasonality was initially done in this current work through the LST analysis as it was possible to visualize the distribution of land surface heat on the city. Further, starting from this current work, new measurements in the intensity of the surface urban heat island (UHI) effect can be done, applying the temperature difference index, the UHI effect classification index, and the urban thermal field variance index (UFTVI) of SUHI.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kandya, A.; Mohan, M. Mitigating the Urban Heat Island effect through building envelope modifications. Energy Build. 2018, 164, 266–277. [Google Scholar] [CrossRef]
- Gobo, J.P.A.; Faria, M.R.; Galvani, E.; Goncalves, F.L.T.; Monteiro, L.M. Empirical Model of Human Thermal Comfort in Subtropical Climates: A First Approach to the Brazilian Subtropical Index (BSI). Atmosphere 2018, 9, 391. [Google Scholar] [CrossRef] [Green Version]
- Gobo, J.P.A.; Faria, M.R.; Galvani, E.; Amorim, M.C.C.T.; Celuppi, M.C.; Wollmann, C.A. Empirical Model of Thermal Comfort for Medium-Sized Cities in Subtropical Climate. Atmosphere 2019, 10, 576. [Google Scholar] [CrossRef] [Green Version]
- Gobo, J.P.A.; Wollmann, C.A.; Celuppi, M.C.; Galvani, E.; Faria, M.R.; Mendes, D.; Oliveira-Júnior, J.F.; Malheiros, T.F.; Riffel, E.S.; Gonçalves, F.L.T. The bioclimate present and future in the state of São Paulo/Brazil: Space-time analysis of human thermal comfort. Sustain. Cities Soc. 2021, 78, 103611. [Google Scholar] [CrossRef]
- Wollmann, C.A.; Hoppe, I.L.; Gobo, J.P.A.; Simioni, J.P.D.; Costa, I.T.; Baratto, J.; Shooshtarian, S. Thermo-Hygrometric Variability on Waterfronts in Negative Radiation Balance: A Case Study of Balneário Camboriú/SC, Brazil. Atmosphere 2021, 12, 1453. [Google Scholar] [CrossRef]
- Litardo, J.; Palme, M.; Borbor-Cordova, M.; Caiza, R.; Macias, J.; Hidalgo-Leon, R.; Soriano, G. Urban Heat Island intensity and buildings’ energy needs in Duran, Ecuador: Simulation studies and proposal of mitigation strategies. Sustain. Cities Soc. 2020, 62, 102387. [Google Scholar] [CrossRef]
- Tian, L.; Li, Y.; Lu, J.; Wang, J. Review on Urban Heat Island in China: Methods, Its Impact on Buildings Energy Demand and Mitigation Strategies. Sustainability 2021, 13, 762. [Google Scholar] [CrossRef]
- Yang, X.; Jin, T.; Yao, L.; Zhu, C.; Peng, L.L. Assessing the Impact of Urban Heat Island Effect on Building Cooling Load based on the Local Climate Zone Scheme. Procedia Eng. 2017, 205, 2839–2846. [Google Scholar] [CrossRef]
- Yang, X.; Peng, L.L.H.; Jiang, Z.; Chen, Y.; Yao, L.; He, Y.; Xu, T. Impact of urban heat island on energy demand in buildings: Local climate zones in Nanjing. Appl. Energy 2020, 260, 114279. [Google Scholar] [CrossRef]
- Yang, X.; Yao, L.; Jin, T.; Peng, L.L.; Jiang, Z.; Hu, Z.; Ye, Y. Assessing the thermal behavior of different local climate zones in the Nanjing metropolis, China. Build. Environ. 2018, 137, 171–184. [Google Scholar] [CrossRef]
- Asaeda, T.; Ca, V.T.; Wake, A. Heat storage of pavement and its effect on the lower atmosphere. Atmospheric Environ. 1996, 30, 413–427. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Vollaro, R.D.L.; Vollaro, A.D.L. Outdoor thermal comfort in the Mediterranean area. A transversal study in Rome, Italy. Build. Environ. 2016, 96, 46–61. [Google Scholar] [CrossRef]
- Thom, J.K.; Coutts, A.M.; Broadbent, A.M.; Tapper, N. The influence of increasing tree cover on mean radiant temperature across a mixed development suburb in Adelaide, Australia. Urban For. Urban Green. 2016, 20, 233–242. [Google Scholar] [CrossRef]
- Richards, D.R.; Fung, T.K.; Belcher, R.N.; Edwards, P.J. Differential air temperature cooling performance of urban vegetation types in the tropics. Urban For. Urban Green. 2020, 50, 126651. [Google Scholar] [CrossRef]
- Agopyan, V.; Jhon, V.M. O Desafio da Sustentabilidade na Construção Civil; Editora Blucher: São Paulo, Brazil, 2011; p. 144. [Google Scholar]
- Amorim, M.C.D.C.T. Ilhas de Calor Urbanas: Métodos e Técnicas de Análise. Rev. Bras. Clim. 2019, 22–46. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyeer, L.A., Eds.; United Nations: Geneva, Switzerland, 2014. [Google Scholar]
- SOARES, F.S.; Almeida, R.K.; Rubim, I.B.; Barros, R.S.; Cruz, C.B.M.; Mello, G.V.; Neto, J.A.B. Análise comparativa da correção atmosférica de imagem do Landsat 8: O uso do 6S e do ATCOR2. In Proceedings of the Simpósio Brasileiro de Sensoriamento Remoto, 17, (SBSR), João Pessoa, Brazil, 25–29 April 2015; Instituto Nacional de Pesquisas Espaciais (INPE): João Pessoa, Brazil, 2015; pp. 1821–1828. Available online: http://www.dsr.inpe.br/sbsr2015/files/p0358.pdf (accessed on 29 December 2021).
- Gusso, A.; Fontana, D.C.; Gonçalves, G.A. Mapeamento da temperatura da superfície terrestre com uso do sensor AVHRR/NOAA. Pesqui. Agropecuária Bras. 2007, 42, 231–237. [Google Scholar] [CrossRef]
- Wang, M.; He, G.; Zhang, Z.; Wang, G.; Wang, Z.; Yin, R.; Cui, S.; Wu, Z.; Cao, X. A radiance-based split-window algorithm for land surface temperature retrieval: Theory and application to MODIS data. Int. J. Appl. Earth Obs. Geoinf. 2019, 76, 204–217. [Google Scholar] [CrossRef]
- Valor, E.; Caselles, V. Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote Sens. Environ. 1996, 57, 167–184. [Google Scholar] [CrossRef]
- Shafri, H.Z.M.; Suhaili, A.; Mansor, S. The Performance of Maximum Likelihood, Spectral Angle Mapper, Neural Network and Decision Tree Classifiers in Hyperspectral Image Analysis. J. Comput. Sci. 2007, 3, 419–423. [Google Scholar] [CrossRef] [Green Version]
- Maia, M.A.; Rodrigues, N.B.; Richter, M.; Rubim, I.B. Modelos de correção atmosférica aplicados em imagens OLI/Landsat 8 a partir do uso de programas gratuitos: Uma análise comparativa. In Proceedings of the Simpósio Brasileiro de Sensoriamento Remoto, 18, (SBSR), Santos, Brazil, 28–31 May 2017; Instituto Nacional de Pesquisas Espaciais (INPE): Santos, Brazil, 2017; pp. 4888–4895. [Google Scholar]
- Barsi, J.A.; Barker, J.L.; Schott, J.R. An atmospheric correction parameter calculator for a single thermal band earth-sensing instrument. In Proceedings of the International Geoscience and Remote Sensing Symposium, 23, (IGARSS), Toulouse, France, 21–25 July 2003; Institute of Electrical and Electronics Engineers (IEEE): Toulouse, France, 2003. [Google Scholar]
- Martins, A.P.; Alves, W.S.; Damasceno, C.E. Avaliação de métodos de interpolação para espacialização de dados de temperatura do ar na bacia do Rio Paranaíba–Brasil. Rev. Bras. Climatol. 2019, 25, 444–463. [Google Scholar] [CrossRef] [Green Version]
- Tarifa, J.R.; Armani, G. Unidades climáticas urbanas da cidade de São Paulo (primeira aproximação). In Atlas Ambiental do Município de São Paulo-FASE I; Secretaria do Verde e do meio ambiente e Secretaria de Planejamento, Prefeitura Municipal de São Paulo: São Paulo, Brazil, 2000. [Google Scholar]
- Oliveira, H.T. Climatologia das Temperaturas Mínimas e Probabilidade de Ocorrência de Geada no Estado do Rio Grande do Sul. Master’s Thesis, Universidade do Rio Grande do Sul, Porto Alegre, Brazil, 1997; p. 81. [Google Scholar]
- Amorim, M.C.D.C.T.; Dubreuil, V.; Amorim, A.T. Day and night surface and atmospheric heat islands in a continental and temperate tropical environment. Urban Clim. 2021, 38, 100918. [Google Scholar] [CrossRef]
- Lombardo, M.A. Ilha de Calor nas Metrópoles: O Exemplo de São Paulo; Hucitec Editora: São Paulo, Brazil, 1985. [Google Scholar]
- Dias, M.B.G.; Nascimento, D.T.F. Clima urbano e ilhas de calor: Aspectos teórico-metodológicos e estudo de caso. Fórum Ambient. Da Alta Paul. 2014, 10, 27–41. [Google Scholar] [CrossRef] [Green Version]
- Christofoletti, A. Modelagem de Sistemas Ambientais; Edgard Blücher: São Paulo, Brazil, 2000. [Google Scholar]
- Schneider, A. Understanding urban growth in the context of global changes, Germany. IHDP Newsl. 2006, 2. Available online: https://ugec.org/viewpoints/ (accessed on 29 December 2021).
- Dacanal, C.; Labaki, L.C.; Da Silva, T.M.L. Vamos passear na floresta! O conforto térmico em fragmentos florestais urbanos. Ambiente Construído 2010, 10, 115–132. [Google Scholar] [CrossRef]
- Shinzato, P.; Duarte, D.H.S. Impacto da vegetação nos microclimas urbanos e no conforto térmico em espaços abertos em função das interações solo-vegetação-atmosfera. Ambiente Construído 2018, 18, 197–215. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Wang, Z.-H. Interfacing the Urban Land–Atmosphere System Through Coupled Urban Canopy and Atmospheric Models. Bound.-Layer Meteorol. 2015, 154, 427–448. [Google Scholar] [CrossRef]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Cidades e Estados: São Paulo. Available online: https://www.ibge.gov.br/cidades-e-estados/sp/sao-paulo.html (accessed on 4 May 2021).
- Sepe, P.M.; Takiya, H. Atlas Ambiental do Município de São Paulo-O Verde, O Território, O Ser Humano; Secretaria Municipal do Verde e do Meio Ambiente (SVMA); Secretaria Municipal de Planejamento (SEMPLA): São Paulo, Brazil, 2004; p. 266.
- Prefeitura Municipal de São Paulo (PMSP). Características Gerais do Município. Available online: https://www.prefeitura.sp.gov.br/cidade/secretarias/upload/arquivos/secretarias/meio_ambiente/projetos_acoes/0004/capitulo2.pdf (accessed on 15 May 2021).
- França, A. Estudo Sobre o Clima da Bacia de São Paulo. Boletim da Faculdade de Filosofia; Ciências e Letras. n. 70; USP: São Paulo, Brazil, 1946. [Google Scholar]
- A Barsi, J.; Schott, J.R.; Palluconi, F.D.; Helder, D.L.; Hook, S.J.; Markham, B.L.; Chander, G.; O’Donnell, E.M. Landsat TM and ETM+ thermal band calibration. Can. J. Remote Sens. 2003, 29, 141–153. [Google Scholar] [CrossRef]
- Laraby, K. Landsat Surface Temperature Product: Global Validation and Uncertainty Estimation. Ph.D. Thesis, Rochester Institute of Technology, Rochester, NY, USA, 14 May 2017. Available online: https://scholarworks.rit.edu/theses/9439 (accessed on 4 May 2021).
- Bernatzky, A. The effects of trees on the urban climate. In Trees in the 21st Century; Academic Publishers: Cambridge, MA, USA, 1983; pp. 59–76. [Google Scholar]
- Sahana, M.; Ahmed, R.; Sajjad, H. Analyzing land surface temperature distribution in response to land use/land cover change using split window algorithm and spectral radiance model in Sundarban Biosphere Reserve, India. Model. Earth Syst. Environ. 2016, 2, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Burnett, M.; Chen, D. The Impact of Seasonality and Land Cover on the Consistency of Relationship between Air Temperature and LST Derived from Landsat 7 and MODIS at a Local Scale: A Case Study in Southern Ontario. Land 2021, 10, 672. [Google Scholar] [CrossRef]
Abbreviation | Name | Abbreviation | Name | Abbreviation | Name |
---|---|---|---|---|---|
AAL | Artur Alvim | IGU | Iguatemi | PRS | Perus |
ANH | Anhanguera | IPA | Itaim Paulista | REP | República |
API | Alto de Pinheiros | IPI | Ipiranga | RPE | Rio Pequeno |
ARA | Água Rasa | ITQ | Itaquera | RTA | Raposo Tavares |
ARI | Aricanduva | JAB | Jabaquara | SAC | Sacomã |
BEL | Belém | JAC | Jaçanã | SAM | Santo Amaro |
BFU | Barra Funda | JAG | Jaguara | SAP | Sapopemba |
BRE | Bom Retiro | JAR | Jaraguá | SAU | Saúde |
BRL | Brasilândia | JARDIMA | Jardim Ângela | SCE | Santa Cecília |
BRS | Brás | JARDIMH | Jardim Helena | SDO | São Domingos |
BUT | Butantã | JARDIMP | Jardim Paulista | SEE | Sé |
BVI | Bela Vista | JARDIMS | Jardim São Luís | SLU | São Lucas |
CAC | Cachoeirinha | JBO | José Bonifácio | SMI | São Miguel Paulista |
CAD | Cidade Ademar | JRE | Jaguaré | SMT | São Mateus |
CAR | Carrão | LAJ | Lajeado | SOC | Socorro |
CBE | Campo Belo | LAP | Lapa | SRA | São Rafael |
CDU | Cidade Dutra | LIB | Liberdade | STN | Santana |
CGR | Campo Grande | LIM | Limão | TAT | Tatuapé |
CLD | Cidade Líder | MAN | Mandaqui | TER | Tremembé |
CLM | Campo Limpo | MAR | Marsilac | TUC | Tucuruvi |
CMB | Cambuci | MOE | Moema | VAN | Vila Andrade |
CNG | Cangaíba | MOO | Mooca | VCR | Vila Curuçá |
COM | Consolação | MOR | Morumbi | VFO | Vila Formosa |
CRE | Capão Redondo | PDR | Pedreira | VGL | Vila Guilherme |
CTI | Cidade Tiradentes | PDR | Perdizes | VJA | Vila Jacuí |
CUR | Cursino | PEN | Penha | VLE | Vila Leopoldina |
CVE | Casa Verde | PIN | Pinheiros | VMD | Vila Medeiros |
ERM | Ermelino Matarazzo | PIR | Pirituba | VMN | Vila Mariana |
FRE | Freguesia do Ó | PLH | Parelheiros | VMR | Vila Maria |
GRA | Grajaú | PQC | Parque do Carmo | VMT | Vila Matilde |
GUA | Guaianases | PRA | Ponte Rasa | VPR | Vila Prudente |
IBI | Itaim Bibi | PRI | Pari | VSO | Vila Sônia |
Climatological Data of São Paulo (Mirante de Santana Weather Station) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Month | January | February | March | April | May | June | July | August | September | October | November | December | Year |
Maximum temperature record (°C) | 37.0 | 36.4 | 34.3 | 33.4 | 31.7 | 28.8 | 30.2 | 33.0 | 37.1 | 37.8 | 36.1 | 34.8 | 37.8 |
Mean maximum temperature (°C) | 28.2 | 28.8 | 28.0 | 26.2 | 23.3 | 22.6 | 22.4 | 24.1 | 24.4 | 25.9 | 26.9 | 27.6 | 25.7 |
Annual mean temperature (°C) | 22.9 | 23.2 | 22.4 | 21.0 | 18.2 | 17.1 | 16.7 | 17.7 | 18.5 | 20.0 | 21.2 | 22.1 | 20.1 |
Mean minimum temperature (°C) | 19.3 | 19.5 | 18.8 | 17.4 | 14.5 | 13.0 | 12.3 | 13.1 | 14.4 | 16.0 | 17.3 | 18.3 | 16.2 |
Minimum temperature record (°C) | 10.2 | 11.1 | 11.0 | 6.0 | 3.7 | 1.0 | 0.4 | −2.1 | 2.2 | 4.3 | 7.0 | 9.4 | −2.1 |
Preciptation (mm) | 288.2 | 246.2 | 214.5 | 82.1 | 78.1 | 50.3 | 47.8 | 36.0 | 84.8 | 126.6 | 137.0 | 224.4 | 1616.0 |
Days of preciptation (≥ 1 mm) | 16 | 14 | 13 | 7 | 7 | 4 | 4 | 4 | 7 | 10 | 10 | 14 | 110 |
Annual mean humidity (%) | 77.2 | 76.0 | 77.1 | 75.3 | 75.6 | 73.2 | 71.6 | 69.4 | 72.5 | 74.3 | 73.6 | 75.5 | 74.3 |
Hours of sunlight | 139.1 | 153.5 | 161.6 | 169.3 | 167.6 | 160.0 | 169.0 | 173.1 | 144.5 | 157.9 | 151.8 | 145.1 | 1893.5 |
Name of the Districts | Spring–Summer Period | ||
---|---|---|---|
Mean Absolute Error | Root Mean Square Deviation | Difference (°C) | |
Marsilac | −0.8 | 1.1 | −1.5 |
M’Boi Mirim | −0.8 | 1.2 | −1.6 |
Jabaquara | −0.1 | 0.1 | −0.1 |
Anhembi | 0.0 | 0.0 | 0.0 |
Santo Amaro | 0.0 | 0.1 | 0.1 |
Sé | −2.3 | 3.2 | −4.5 |
Capela do Socorro | −0.9 | 1.3 | −1.9 |
Vila Prudente | −0.9 | 1.3 | −1.8 |
Vila Formosa | −1.0 | 1.3 | −1.9 |
Itaquera | −2.5 | 3.5 | −4.9 |
São Miguel Paulista | −2.2 | 3.1 | −4.4 |
Perus | −1.4 | 2.0 | −2.9 |
Lapa | −0.5 | 0.7 | −1.0 |
São Mateus | −0.6 | 0.8 | −1.2 |
Parelheiros | −0.6 | 0.9 | −1.2 |
Itaim Paulista | −0.7 | 1.1 | −1.5 |
Butantã | −2.6 | 3.6 | −5.1 |
Freguesia do Ó | −1.3 | 1.9 | −2.7 |
Penha | −1.0 | 1.4 | −2.0 |
Vila Maria | −1.9 | 2.6 | −3.7 |
Pirituba | −1.4 | 1.9 | −2.7 |
Campo Limpo | −1.2 | 1.7 | −2.4 |
Pinheiros | −1.5 | 2.1 | −3.0 |
Vila Mariana | −1.7 | 2.4 | −3.5 |
Tremembé | −0.6 | 0.8 | −1.2 |
Cidade Ademar | −3.0 | 4.2 | −6.0 |
Santana | −1.6 | 2.2 | −3.2 |
Mooca | −2.9 | 4.1 | −5.9 |
Ipiranga | −5.0 | 7.1 | −10.1 |
Variation | Mean | Standard Deviation | |
4.7 | −2.8 | 2.2 |
Name of the Districts | Autumn–Winter Period | ||
---|---|---|---|
Mean Absolute Error | Root Mean Square Deviation | Difference (°C) | |
Marsilac | −0.8 | 1.1 | 1.5 |
M’Boi Mirim | 0.6 | 0.8 | 1.2 |
Jabaquara | 1.9 | 2.7 | 3.8 |
Anhembi | 1.7 | 2.5 | 3.5 |
Santo Amaro | 1.0 | 1.3 | 1.9 |
Sé | 0.1 | 0.2 | 0.2 |
Capela do Socorro | 0.2 | 0.3 | 0.4 |
Vila Prudente | 2.0 | 2.9 | 4.1 |
Vila Formosa | 2.1 | 2.9 | 4.1 |
Itaquera | 1.9 | 2.6 | 3.4 |
São Miguel Paulista | 1.9 | 2.7 | 3.8 |
Perus | 0.9 | 1.3 | 1.9 |
Lapa | 1.1 | 1.6 | 2.3 |
São Mateus | 0.8 | 1.1 | 1.5 |
Parelheiros Barragem | 0.0 | 0.1 | 0.1 |
Itaim Paulista | 2.5 | 2.5 | 4.9 |
Butantã | 0.9 | 1.3 | 1.9 |
Freguesia do Ó | 1.4 | 2.0 | 2.8 |
Penha | 2.4 | 3.4 | 4.7 |
Vila Maria | 0.8 | 1.2 | 1.7 |
Pirituba | 1.1 | 1.5 | 2.1 |
Campo Limpo | 2.0 | 2.8 | 4.0 |
Pinheiros | 0.2 | 0.3 | 0.5 |
Vila Mariana | 1.8 | 2.5 | 3.5 |
Tremembé | 0.7 | 1.0 | 1.4 |
Cidade Ademar | 1.5 | 2.1 | 2.9 |
Santana | 2.8 | 3.9 | 5.5 |
Mooca | 1.1 | 1.5 | 2.2 |
Ipiranga | 1.9 | 2.7 | 3.8 |
Variation | Mean | Standard Deviation | |
2.2 | 2.6 | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
do Nascimento, A.C.L.; Galvani, E.; Gobo, J.P.A.; Wollmann, C.A. Comparison between Air Temperature and Land Surface Temperature for the City of São Paulo, Brazil. Atmosphere 2022, 13, 491. https://doi.org/10.3390/atmos13030491
do Nascimento ACL, Galvani E, Gobo JPA, Wollmann CA. Comparison between Air Temperature and Land Surface Temperature for the City of São Paulo, Brazil. Atmosphere. 2022; 13(3):491. https://doi.org/10.3390/atmos13030491
Chicago/Turabian Styledo Nascimento, Augusto Cezar Lima, Emerson Galvani, João Paulo Assis Gobo, and Cássio Arthur Wollmann. 2022. "Comparison between Air Temperature and Land Surface Temperature for the City of São Paulo, Brazil" Atmosphere 13, no. 3: 491. https://doi.org/10.3390/atmos13030491
APA Styledo Nascimento, A. C. L., Galvani, E., Gobo, J. P. A., & Wollmann, C. A. (2022). Comparison between Air Temperature and Land Surface Temperature for the City of São Paulo, Brazil. Atmosphere, 13(3), 491. https://doi.org/10.3390/atmos13030491