An Environmentally Friendly Technology of Metal Fiber Bag Filter to Purify Dust-Laden Airflow
Abstract
:1. Introduction
2. Environmentally Friendly Metal Bag Filter System
2.1. Evolution of Filter Medium
2.2. Evolution of Dust Collector
2.3. Environmentally Friendly Metal Bag Filter System for High-Filtration Velocity Dust-Laden Airflow
2.4. Environmentally Friendly Metal Bag Filter System for High-Temperature Dust-Laden Airflow
3. Environmentally Friendly Metal Bag Filter System for Filtration
3.1. An Idea for Environmentally Friendly Metal Bag Filter System
3.1.1. Experimental Setup and Experimental Design
3.1.2. Experimental Results and Discussions
4. Future Points of Environmentally Friendly Metal Bag Filter System
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, S.; Joe, Y.H.; Shim, J.; Park, H.; Shin, W.G. Non-uniform filtration velocity of process gas passing through a long bag filter. J. Hazard. Mater. 2019, 365, 440–447. [Google Scholar] [CrossRef]
- Mo, J.; Tian, E.; Pan, J. New electrostatic precipitator with dielectric coatings to efficiently and safely remove sub-micro particles in the building environment. Sustain. Cities Soc. 2020, 55, 102063. [Google Scholar] [CrossRef]
- Johnson, R.; Rieuwerts, J.; Comber, S.D.W. How does a country’s developmental status affect ambient air quality with respect to particulate matter? Int. J. Environ. Sci. Technol. 2021, 18, 3395–3406. [Google Scholar] [CrossRef]
- Wang, Y.; Tapia-Brito, E.; Riffat, J.; Chen, Z.; Jiang, F.; Riffat, S. Investigation on the Efficient Removal of Particulate Matter (PM) with Biomass-Based Aerogel. Future Cities Environ. 2021, 7, 12. [Google Scholar] [CrossRef]
- Gong, G.; Yao, L.; Ren, L. Study on air pollution control under the influence of energy policy in Shanxi Province. In IOP Conference Series: Earth and Environmental Science, Proceedings of the 3rd International Conference on Environmental Prevention and Pollution Control Technologies, Zhuhai, China, 15–17 January 2021; IOP Publishing: Bristol, UK, 2021; Volume 687, p. 012127. [Google Scholar]
- Cui, L.; Li, Y.; Tang, Y.; Shi, Y.; Wang, Q.; Yuan, X.; Kellett, J. Integrated assessment of the environmental and economic effects of an ultra-clean flue gas treatment process in coal-fired power plant. J. Clean. Prod. 2018, 199, 359–368. [Google Scholar] [CrossRef]
- Conibear, L.; Reddington, C.L.; Silver, B.J.; Knote, C.; Arnold, S.R.; Spracklen, D.V. Regional policies targeting residential solid fuel and agricultural emissions can improve air quality and public health in the Greater Bay Area and across China. GeoHealth 2021, 5, e2020GH000341. [Google Scholar] [CrossRef]
- Andenana, N.; Rashida, M.; Hajara, S.; Jamian, N.R.; Pa’ad, K.M.; Rashid, A.M. Effect of Filter Aids on Two Different Filter Media Under High Filtering Velocities. Chem. Eng. Trans. 2019, 72, 37–42. [Google Scholar]
- Boudhan, R.; Joubert, A.; Durecu, S.; Gueraoui, K.; LE Coq, L. Influence of air humidity on particle filtration performance of a pulse-jet bag filter. J. Aerosol Sci. 2019, 130, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.B.; Lee, W.J.; Choi, S.C.; Lee, K.B.; Lee, M.-H. Dependence of the fiber diameter on quality factor of filters fabricated with meta-aramid nanofibers. Sep. Purif. Technol. 2019, 222, 332–341. [Google Scholar] [CrossRef]
- Cuiping, Y.; Mingxing, Z.; Longyuan, L.; Haiyan, C. An analysis of a reverse pulse cleaning process using high-flow pleated fabric filter cartridges. Process Saf. Environ. Prot. 2018, 113, 264–274. [Google Scholar] [CrossRef]
- Tao, R.; Yang, M.; Li, S. Effect of adhesion on clogging of microparticles in fiber filtration by DEM-CFD simulation. Powder Technol. 2020, 360, 289–300. [Google Scholar] [CrossRef]
- Li, R.; Wang, B.; Owete, O.; Dertien, J.; Lin, C.; Ahmad, H.; Chen, G. Landfill Leachate Treatment by Electrocoagulation and Fiber Filtration. Water Environ. Res. 2017, 89, 2015–2020. [Google Scholar] [CrossRef]
- Musa, S.; Sidik, N.A.C.; Yusof, S.N.A.; Erdiwansyah, E. Analysis of Internal Flow in Bag Filter by Different Inlet Angle. J. Adv. Res. Numer. Heat Transf. 2020, 3, 12–24. [Google Scholar]
- Heo, K.J.; Oh, H.J.; Eom, H.; Kim, Y.; Jung, J.H. High-performance bag filter with a super-hydrophobic microporous polytetrafluoroethylene layer fabricated by air-assisted electrospraying. Sci. Total Environ. 2021, 783, 147043. [Google Scholar] [CrossRef]
- Boudhan, R.; Joubert, A.; Gueraoui, K.; Durécu, S.; Venditti, D.; Tran, D.T.; LE Coq, L. Pulse-jet bag filter performances for treatment of submicronic and nanosized particles from waste incineration. Waste Biomass Valorization 2018, 9, 731–737. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.S.; Bao, L.; Okuyama, K.; Shimada, M.; Niinuma, H. Filtration efficiency of a fibrous filter for nanoparticles. J. Nanopart. Res. 2006, 8, 215–221. [Google Scholar] [CrossRef]
- Lv, Y.R.; He, H.W.; Chen, F.X.; Yu, J.; Ning, X.; Zhou, R. Polyphenylene sulfide (PPS) fibrous felt coated with conductive polyaniline via in situ polymerization for smart high temperature bag-filter. Mater. Res. Express 2019, 6, 075706. [Google Scholar] [CrossRef]
- Fukui, K.; Ichiba, G.; Rozy, M.I.F.; Ito, K.; Fukasawa, T.; Ishigami, T. Effects of NO2 gas concentration on the degradation of polyphenylene sulfide non-woven bag filter at high temperature. Adv. Powder Technol. 2021, 32, 3278–3287. [Google Scholar] [CrossRef]
- Choudhary, A.K.; Mukhopadhyay, A. Particulates: Selection of cleaning pulse pressure for pulse jet fabric filtration. Filtr. Sep. 2013, 50, 28–30. [Google Scholar] [CrossRef]
- Bo, W. Simple explanation on disposal of scrap filter bag of bag-hose precipitator. China Environ. Prot. Ind. 2011, 6, 63–66. [Google Scholar]
- Zhou, Y.; Ning, X.; Liao, X.; Lin, M.; Liu, J.; Wang, J. Characterization and environmental risk assessment of heavy metals found in fly ashes from waste filter bags obtained from a Chinese steel plant. Ecotoxicol. Environ. Saf. 2013, 95, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Zhou, R.; Shen, H.; Zhao, M. Simulation Studies on Protector of Pulse-jet Cleaning Filter Bag. Energy Procedia 2012, 16, 426–431. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wang, F.; Xin, J.; Xie, B.; Hu, S.; Jin, H.; Zhou, F. Study on effects of particle size and maximum pressure drop on the filtration and pulse-jet cleaning performance of pleated cartridge filter. Process Saf. Environ. Prot. 2019, 123, 99–104. [Google Scholar] [CrossRef]
- Hasolli, N.; Park, Y.O.; Rhee, Y.W. Filtration performance evaluation of depth filter media cartridges as function of layer structure and pleat count. Powder Technol. 2013, 237, 24–31. [Google Scholar] [CrossRef]
- Ma, D.; Zheng, Q.; Lin, W.; Guo, M. Improvements to dust filtration through acoustic agglomeration and atomization. Aerosol Sci. Technol. 2017, 51, 824–832. [Google Scholar] [CrossRef] [Green Version]
- Humphries, W.; Maddencoal-fi, J.J. Fabric filtration for red boilers: Dust dislodgement in pulse jet filters. Filtr Sep. 1983, 20, 40–44. [Google Scholar]
- Woo, S.K.; Lee, K.S.; Han, I.S.; Seo, D.W.; Park, Y.O. Role of porosity in dust cleaning of silicon carbide ceramic filters. J. Ceram. Soc. Jpn. 2001, 109, 742–747. [Google Scholar] [CrossRef] [Green Version]
- Binnig, J.; Meyer, J.; Kasper, G. Origin and mechanisms of dust emission from pulse-jet cleaned filter media. Powder Technol. 2009, 189, 108–114. [Google Scholar] [CrossRef]
- Cuiping, Y.; Guijian, L.; Haiyan, C. Variety Behaviors of Depth and Surface Filter Media with the Ages for Pleated Filter Cartridges. Environ. Eng. Manag. J. 2018, 17, 2577–2586. [Google Scholar] [CrossRef]
- Rodrigues, K.B.; Tieni, E.F.; Gonçalves, J.A.S. Filter media and powder materials influence in the performance of filtration cycles. In Proceedings of the Filtech Europa, Wiesbaden, Germany, 11–13 October 2005. [Google Scholar]
- Mauschitz, G.; Koschutnig, W.; Hoeflinger, W. Analysis of the clogging behaviour of thermally finished nonwoven dust filter media by optically detected porosity parameters. In Proceedings of the Filtech Europa, Wiesbaden, Germany, 11–13 October 2005; pp. II20–II28. [Google Scholar]
- Panov, S.Y.; Belykh, O.M.; Zinkovskii, A.V.; Momotov, V.S. Features of the regeneration process of the filter. Vestn. VGUIT Proc. Voronezh State Univ. Eng. Technol. 2015, 175–179. [Google Scholar]
- Tanabe, E.H.; Barros, P.M.; Rodrigues, K.B.; Aguiar, M. Experimental investigation of deposition and removal of particles during gas filtration with various fabric filters. Sep. Purif. Technol. 2011, 80, 187–195. [Google Scholar] [CrossRef]
- Su, N.; Yang, Y.; Zuo, C. Advantage of metal fiber felt filter bag in high temperature flue gas dust removal. China Environ. Prot. Ind. 2016, 2, 35–36. (In Chinese) [Google Scholar]
- Choi, J.H.; Ahn, I.S.; Bak, Y.C.; Bae, S.-Y.; Ha, S.-J.; Jang, H.-J. Preparation of high porous metal filter element for the fail-safety function. Powder Technol. 2004, 140, 98–105. [Google Scholar] [CrossRef]
- Sun, P.; Meng, W.; Bai, W. Study on the Filtration Performance of Metal Fiber Sintered Felt for Dust Removal. Filtr. Sep. 2015, 25, 30–32. (In Chinese) [Google Scholar]
- Yang, Q.; Hou, L.; Lu, X.; Zhang, X.; Su, N.; Li, M.; Wang, L. Application analysis for metal fiber filter material in cement dust extraction domanial. J. Cem. 2018, 12, 39–41. (In Chinese) [Google Scholar]
- European Environment Agency. Final Energy Consumption by Sector. 2013. Available online: http://www.eea.europa.eu/data-and-maps/indicators/finalenergy-consumption-by-sector-5/assessment (accessed on 15 February 2017).
- Eurostat. 2017. Available online: http://ec.europa.eu/eurostat/ (accessed on 15 February 2017).
- Miró, L.; Brückner, S.; Cabeza, L.F. Mapping and discussing Industrial Waste Heat (IWH) potentials for different countries. Renew. Sustain. Energy Rev. 2015, 51, 847–855. [Google Scholar] [CrossRef] [Green Version]
- Blesl, M.; Ohl, M.; Fahl, U. Ganzheitliche Bewertung Innovativer Mobiler Thermischer Energiespeicherkonzepte für Baden-Württemberg auf Basis Branchen-Und Betriebsspezifischer Wärmebedarfsstrukturen: Endbericht. 2011. Available online: http://dx.doi.org/10.18419/opus-1988 (accessed on 24 February 2022).
- Berthou, M.; Bory, D. Overview of waste heat in the industry in France. In Proceedings of the ECEEE 2012 Summer Study on Energy Efficiency in Industry, Arnhem, The Netherlands, 11–14 September 2012; pp. 453–459. [Google Scholar]
- McKenna, R.C.; Norman, J.B. Spatial modelling of industrial heat loads and recovery potentials in the UK. Energy Policy 2010, 38, 5878–5891. [Google Scholar] [CrossRef]
- Hammond, G.P.; Norman, J.B. Heat recovery opportunities in UK manufacturing. In Proceedings of the International Conference on Applied Energy (ICAE2012), Suzhou, China, 5–8 July 2012. [Google Scholar]
- Werschy, M. Technologierecherche Abwärmenutzung; DBI Gasund Umwelt-Technik GmbH für die Sächsische Energieagentur–SAENA GmbH: Freiburg, Germany, 2012. [Google Scholar]
- Chung, M.; Im, Y.H.; Park, B.S. Distribution of industrial waste heat and characteristics of heat trading among district heating companies in Korea. In Proceedings of the International Conference on Applied Energy (ICAE), Pretoria, South Africa, 1–4 July 2013. [Google Scholar]
- Qin, W.; Zhang, M.; Kang, Y.; Fu, H.; Hou, L.; Zhang, X.; Chen, H. Analysis of factors affecting pressure distribution of pulse jet metal filter bag. Chin. J. Environ. Eng. 2020, 14, 465–472. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Qin, W.; Ma, X.; Liu, A.; Yan, C.; Li, P.; Huang, M.; He, C. An Environmentally Friendly Technology of Metal Fiber Bag Filter to Purify Dust-Laden Airflow. Atmosphere 2022, 13, 485. https://doi.org/10.3390/atmos13030485
Zhang M, Qin W, Ma X, Liu A, Yan C, Li P, Huang M, He C. An Environmentally Friendly Technology of Metal Fiber Bag Filter to Purify Dust-Laden Airflow. Atmosphere. 2022; 13(3):485. https://doi.org/10.3390/atmos13030485
Chicago/Turabian StyleZhang, Mingxing, Wenqian Qin, Xiaohui Ma, Anxiong Liu, Cuiping Yan, Peng Li, Mei Huang, and Chunhong He. 2022. "An Environmentally Friendly Technology of Metal Fiber Bag Filter to Purify Dust-Laden Airflow" Atmosphere 13, no. 3: 485. https://doi.org/10.3390/atmos13030485
APA StyleZhang, M., Qin, W., Ma, X., Liu, A., Yan, C., Li, P., Huang, M., & He, C. (2022). An Environmentally Friendly Technology of Metal Fiber Bag Filter to Purify Dust-Laden Airflow. Atmosphere, 13(3), 485. https://doi.org/10.3390/atmos13030485