Neutron Activation Analysis of PM10 for Air Quality of an Industrial Region in the Czech Republic: A Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Features of the Studied Area
2.2. Sampling Strategy
2.3. Sample Preparation for NAA
2.4. Statistical Data Analysis
3. Results
3.1. Meteorological Conditions
3.2. Elemental Abundances
3.3. Correlation Analyses
3.4. Exploratory Factor Analyses
3.5. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seibert, R.; Nikolova, I.; Volná, V.; Krejčí, B.; Hladký, D. Air Pollution Sources’ Contribution to PM2.5 Concentration in the Northeastern Part of the Czech Republic. Atmosphere 2020, 11, 522. [Google Scholar] [CrossRef]
- Hůnová, I. Ambient air quality in the Czech Republic: Past and present. Atmosphere 2020, 11, 214. [Google Scholar] [CrossRef] [Green Version]
- Czech Hydrometeorological Institute—Air Pollution Limit Values. Available online: https://www.chmi.cz/files/portal/docs/uoco/isko/info/limity_GB.html (accessed on 16 February 2022).
- Ministry of the Environment of the Czech Republic. Program Zlepšování Kvality Ovzduší; Aglomerace Ostrava/Karviná/Frýdek-Místek; Ministry of the Environment of the Czech Republic: Prague, Czech Republic, 2020; pp. 205–253. Available online: https://www.mzp.cz/cz/aktualizace_programu_zlepsovani_kvality_ovzdusi_2020 (accessed on 16 February 2022).
- European Environmental Agency. Air Quality Statistics. 2021. Available online: https://www.eea.europa.eu/data-and-maps/dashboards/air-quality-statistics (accessed on 5 October 2021).
- Degórska, A.; Juda-Rezler, K.; Toczko, B. Pyły Drobne w Atmosferze: Kompendium Wiedzy o Zanieczyszczeniu Powietrza Pyłem Zawieszonym w Polsce: Praca Zespołowa; Główny Inspektorat Ochrony Środowiska: Warszawa, Poland, 2016.
- Pinheiro, T.; Almeida, S.M.; Félix, P.M.; Franco, C.; Garcia, S.M.; Lopes, C.; Bugalho de Almeida, A. Air Quality in Metal Industries: Exhaled Breath Condensate, a Tool for Noninvasive Evaluation of Air Pollution Exposure. In Comprehensive Analytical Chemistry; Elsevier: Amsterdam, The Netherlands, 2016; pp. 731–764. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air—Determination of Metals in Ambient Particulate Matter Using Neutron Activation Analysis (NAA) Gamma Spectrometry, Method IO-3.7 Acknowledgments. 1999. Available online: https://www.epa.gov/amtic/compendium-methods-determination-inorganic-compounds-ambient-air (accessed on 15 February 2022).
- European Environmental Agency. Suspended Particulates (TSP/SPM). 2008. Available online: https://www.eea.europa.eu/publications/2-9167-057-X/page021.html (accessed on 15 February 2022).
- Černikovský, L.; Krejčí, B.; Blažek, Z.; Volná, V. Transboundary air-pollution transport in the Czech-Polish border region between the cities of Ostrava and Katowice. Cent. Eur. J. Public Health 2016, 24, S45–S50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jutze, G.A.; Foster, K.E. Recommended standard method for atmospheric sampling of fine particulate matter by filter media—High-volume sampler. J. Air Pollut. Control. Assoc. 1967, 17, 17–25. [Google Scholar] [CrossRef]
- Pavlíková, I.; Hladký, D.; Motyka, O.; Vergel, K.N.; Strelkova, L.P.; Shvetsova, M.S. Characterization of PM10 sampled on the top of a former mining tower by the high-volume wind direction-dependent sampler using INNA. Atmosphere 2021, 12, 29. [Google Scholar] [CrossRef]
- Environmental Protection Agency. Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air—Selection, Preparation, and Extraction of Filter Material, Method IO-3.1 Acknowledgments. 1999. Available online: https://www.epa.gov/sites/default/files/2015-07/documents/epa-io-3.1.pdf (accessed on 15 February 2022).
- European Standard CSN EN 12341; Ambient Air—Standard Gravimetric Measurement Method for the Determination of the PM10 or PM2.5 Mass Concentration of Suspended Particulate Matter. European Standard: Pilsen, Czech Republic, 2014.
- Greenberg, R.R.; Bode, P.; Fernandes, A.D. Neutron activation analysis: A primary method of measurement. Spectrochem. Acta Part B 2011, 66, 193–241. [Google Scholar] [CrossRef]
- Dmitriev, A.Y.; Pavlov, S.S. Automation of the quantitative determination of elemental content in samples using neutron activation analysis on the IBR-2 reactor at the frank laboratory for neutron physics, joint institute for nuclear research. Phys. Part. Nucl. Lett. 2013, 10, 33–36. [Google Scholar] [CrossRef]
- U.S. Environmetal Protection Agency. Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air—Samplimg of Ambient Air for Total Suspended Particulate Matter (SPM) and PM10 Using high Volume (HV) Sampler, Method IO-2.1 Acknowledgments. 1999. Available online: https://www.epa.gov/sites/default/files/2019-11/documents/mthd-2-1.pdf (accessed on 5 February 2022).
- International Atomic Energy Agency. Training Course Series No. 4; Sampling and Analytical Methodologies for Instrumental Neutron Activation Analysis of Airborne Particulate Matter; IAEA: Vienna, Austria, 1992; Available online: https://inis.iaea.org/collection/NCLCollectionStore/_Public/32/042/32042418.pdf (accessed on 15 February 2022).
- Costello, A.B.; Osborne, J.W. Best Practices in Exploratory Factor Analysis: Four Recommendations for Getting the Most from Your Analysis. Pract. Assess. Res. Eval. 2005, 10, 9. Available online: https://scholarworks.umass.edu/cgi/viewcontent.cgi?article=1156&context=pare (accessed on 1 February 2022).
- Revelle, W.; Procedures for Psychological, Psychometric, and Personality Research. 2021, p. 412. Available online: https://personality-project.org/r/psych-manual.pdf (accessed on 14 December 2021).
- Juda-Rezler, K.; Reizer, M.; Maciejewska, K.; Błaszczak, B.; Klejnowski, K. Characterization of atmospheric PM2.5 sources at a Central European urban background site. Sci. Total Environ. 2020, 713, 136729. Available online: https://www.sciencedirect.com/science/article/pii/S0048969720302394 (accessed on 15 February 2022). [CrossRef] [PubMed]
- Bozlaker, A.; Chellam, S. Measurement of the Trace Element Composition of Airborne Particulate Matter and its Use in Source Apportionment: Case studies of Lanthanoids and Platinum Group Metals from Houston, Texas. In Trace Materials in Air, Soil, and Water; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2015; pp. 1–34. [Google Scholar]
- Leoni, C.; Pokorná, P.; Hovorka, J.; Masiol, M.; Topinka, J.; Zhao, Y.; Cliff, S.; Ska, P.; Hopke, P.; Krumal, K. Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition. Environ. Pollut. 2018, 234, 145–154. [Google Scholar] [CrossRef] [PubMed]
- Air Border—Společná Česko-Polská Měření Přeshraničního Přenosu Znečišťujících látek v Ovzduší. Available online: http://airborder.vsb.cz/cs/ (accessed on 10 December 2021).
- Pešek, J.; Bencko, V.; Sýkorová, I.; Vašíček, M.; Michna, O.; Martínek, K. Some trace elements in coal of the Czech Republic, environment and health protection implications. Cent. Eur. J. Public Health 2005, 13, 153–158. Available online: https://cejph.szu.cz/pdfs/cjp/2005/03/13.pdf (accessed on 20 December 2021). [PubMed]
- Colombi, C.; Gianelle, V.; Belis, C.; Larsen, B. Determination of Local Source Profile for Soil Dust, Brake Dust and Biomass Burning Sources. Chem. Eng. Trans. 2010, 22, 133–238. Available online: https://www.researchgate.net/publication/236952884_Determination_of_Local_Source_Profile_for_Soil_Dust_Brake_Dust_and_Biomass_Burning_Sources (accessed on 31 January 2022).
- Svozilík, V.; Svozilíková Krakovská, A.; Bitta, J.; Lacková, E.; Jančík, P. Characterization of Air Pollution in Moravia-Silesia Region. In Proceedings of the 16th International Multidisciplinary Scientific GeoConference, SGEM, Vienna, Austria, 2–5 November 2016. [Google Scholar]
- Krejčí, B.; Černikovský, L.; Blažek, Z.; Krajny, E.; Ośródka, L. Meteorological conditions and air pollution in the border area of Moravia and Silesia. In Proceedings of the IX Miedzynarodowa Konferencja Naukowa “Ochrona Powietrza w Teorii I Praktyce”, Zakopane, Poland, 22–25 October 2014. [Google Scholar]
- Volná, V.; Hladký, D. Detailed Assessment of the Effects of Meteorological Conditions on PM10 Concentrations in the Northeastern Part of the Czech Republic. Atmosphere 2020, 11, 497. [Google Scholar] [CrossRef]
Variables | WS | T |
---|---|---|
Min | 0.1 | −4.3 |
1st Qu. | 2.5 | 5.6 |
Median | 4.1 | 12.1 |
Mean | 4.4 | 12.38 |
3rd Qu. | 5.9 | 19.2 |
Max | 18 | 32.2 |
Element | Mean ± SD * | Median ± Mad | Skew | Kurtosis | W | p-Value |
---|---|---|---|---|---|---|
Sc | 0.028 ± 0.03 | 0.018 ± 0.01 | 1.67 | 2.62 | 0.8088 | 0.0000 |
Cr | 929.67 ± 6522.88 | 0.70 ± 3.47 | 6.58 | 42.12 | 0.1278 | 0.0000 |
Fe | 313.3 ± 311.74 | 251.20 ± 221.65 | 1.71 | 4.10 | 0.8583 | 0.00003 |
Co | 0.094 ± 0.15 | 0.084 ± 0.15 | 0.82 | 0.62 | 0.9457 | 0.02496 |
Zn | 1843.06 ± 8855.57 | 30.80 ± 22.39 | 4.50 | 18.63 | 0.2032 | 0.00000 |
Se | 0.557 ± 0.46 | 0.442 ± 0.40 | 1.33 | 2.08 | 0.8800 | 0.00013 |
As | 0.932 ± 1.20 | 0.553 ± 0.82 | 1.49 | 2.23 | 0.8142 | 0.000002 |
Br | 2.98 ± 2.72 | 2.018 ± 1.69 | 1.68 | 3.46 | 0.8453 | 0.00001 |
Rb | 932.29 ± 6522.50 | 0.49 ± 0.73 | 6.58 | 42.12 | 0.1273 | 0.0000 |
Sb | 1.869 ± 6.65 | 0.832 ± 0.58 | 6.42 | 40.74 | 0.2027 | 0.0000 |
Cs | 0.045 ± 0.06 | 0.000 ± 0.00 | 1.55 | 2.29 | 0.7594 | 0.0000 |
La | 0.042 ± 0.15 | 0.068 ± 0.17 | −0.57 | 0.43 | 0.9631 | 0.1275 |
Ce | 0.145 ± 0.42 | 0.082 ± 0.28 | 0.28 | 0.13 | 0.9689 | 0.2196 |
Sm | 0.015 ± 0.02 | 0.015 ± 0.01 | −0.08 | −0.53 | 0.9785 | 0.5058 |
Eu | 0.0023 ± 0.02 | 0.000 ± 0.00 | 1.57 | 5.14 | 0.7545 | 0.0000 |
Hf | 0.025 ± 0.03 | 0.021 ± 0.04 | 0.40 | −0.59 | 0.9708 | 0.2624 |
Au | 0.0001 ± 0.00 | 0.000 ± 0.00 | 1.78 | 2.46 | 0.7117 | 0.0000 |
Th | 0.018 ± 0.03 | 0.018 ± 0.02 | 1.24 | 3.42 | 0.9208 | 0.00284 |
Element | Factor 1 | Factor 2 | Factor 3 |
---|---|---|---|
Sc | 0.96 | 0.11 | 0.02 |
Cr | 0.18 | 0.17 | 0.02 |
Fe | 0.91 | 0.01 | 0.10 |
Ni | −0.16 | −0.13 | −0.16 |
Co | 0.67 | −0.21 | −0.04 |
Zn | −0.13 | −0.08 | 0.11 |
Se | 0.92 | −0.06 | −0.18 |
As | 0.53 | −0.19 | −0.56 |
Br | 0.54 | −0.41 | −0.52 |
Rb | 0.21 | −0.04 | 0.25 |
Mo | −0.13 | 0.25 | −0.10 |
Sb | −0.12 | 0.30 | −0.15 |
Ba | 0.06 | −0.16 | −0.11 |
Cs | 0.50 | 0.03 | 0.25 |
La | 0.73 | −0.16 | 0.17 |
Ce | 0.73 | 0.02 | 0.34 |
Sm | 0.46 | −0.09 | −0.06 |
Eu | 0.08 | 0.33 | 0.51 |
Tb | −0.07 | 0.38 | −0.18 |
Yb | 0.25 | −0.31 | 0.82 |
Hf | 0.16 | 0.80 | −0.29 |
Au | 0.06 | −0.08 | 0.33 |
Th | 0.75 | 0.51 | 0.00 |
U | −0.08 | 0.83 | 0.12 |
Elements | Quartz Filters | Fiberglass Filters | Field Blanks (Fiberglass Filters) |
---|---|---|---|
Na | 501.7 | 115,066.7 | 77,550.0 |
K | 28.6 | 25,866.7 | 26,450.0 |
Sc | 0.01 | 0.15 | 0.31 |
Cr | 11.3 | 12.1 | 14.9 |
Fe | 51.2 | - | - |
Ni | 3.9 | - | - |
Co | 0.07 | 0.77 | 0.60 |
Zn | 7.2 | 24,900.0 | 34,850.0 |
As | 0.05 | 4.92 | 4.94 |
Br | 0.07 | - | - |
Rb | 0.1 | 15.0 | 22.2 |
Sr | - | 622.0 | 913.0 |
Zr | 9.5 | 154.7 | 272.0 |
Mo | 27.6 | - | - |
Sb | 0.06 | 0.87 | 0.60 |
Ba | 17.8 | 36,866.7 | 52,600.0 |
Cs | - | 0.2 | 0.2 |
La | 0.2 | 1.3 | 1.3 |
Ce | 0.6 | 2.8 | 2.2 |
Nd | 0.2 | - | 72.5 |
Sm | 0.14 | 0.45 | 0.14 |
Eu | 0.01 | 0.13 | 0.29 |
Tb | 0.04 | 0.08 | 0.09 |
Yb | 0.07 | 0.40 | 0.55 |
Hf | 0.29 | 3.31 | 5.98 |
W | 0.1 | 2.7 | 6.1 |
Au | 0.0002 | - | - |
Th | 0.26 | 0.23 | 0.40 |
U | 0.46 | - | 1.72 |
Hg | - | - | 12.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niedobová, B.; Badawy, W.M.; Dmitriev, A.Y.; Jančík, P.; Chepurchenko, O.E.; Bulavin, M.V.; Belova, M.O. Neutron Activation Analysis of PM10 for Air Quality of an Industrial Region in the Czech Republic: A Case Study. Atmosphere 2022, 13, 479. https://doi.org/10.3390/atmos13030479
Niedobová B, Badawy WM, Dmitriev AY, Jančík P, Chepurchenko OE, Bulavin MV, Belova MO. Neutron Activation Analysis of PM10 for Air Quality of an Industrial Region in the Czech Republic: A Case Study. Atmosphere. 2022; 13(3):479. https://doi.org/10.3390/atmos13030479
Chicago/Turabian StyleNiedobová, Barbora, Wael M. Badawy, Andrey Yu. Dmitriev, Petr Jančík, Olica E. Chepurchenko, Maksim V. Bulavin, and Maria O. Belova. 2022. "Neutron Activation Analysis of PM10 for Air Quality of an Industrial Region in the Czech Republic: A Case Study" Atmosphere 13, no. 3: 479. https://doi.org/10.3390/atmos13030479
APA StyleNiedobová, B., Badawy, W. M., Dmitriev, A. Y., Jančík, P., Chepurchenko, O. E., Bulavin, M. V., & Belova, M. O. (2022). Neutron Activation Analysis of PM10 for Air Quality of an Industrial Region in the Czech Republic: A Case Study. Atmosphere, 13(3), 479. https://doi.org/10.3390/atmos13030479