Ionospheric Monitoring and Modelling for Space Weather: An Introduction to the Special Issue
Conflicts of Interest
References
- Zolesi, B.; Cander, L.R. Ionospheric Prediction and Forecasting; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Hapgood, M.A. Technological Impacts of Space Weather. In Geomagnetism, Aeronomy and Space Weather: A Journey from the Earth’s Core to the Sun; Cambridge University Press: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Ruiyuan, L.; Shunlin, L.; Bo, W.; Changfa, L. Ionospheric Effects of the March 13, 1989 Magnetic Storm at Sub-Auroral Region. Geomag. Geoelectr. 1996, 48, 85–90. [Google Scholar]
- Weaver, M.W.; Murtagh, W.; Balch, C.; Biesecker, D.; Combs, L.; Crown, M.; Doggett, K.; Kunches, J.; Singer, H.; Zezula, D. Halloween Space Weather Storms of 2003; Rep.NOAA Technical Memorandum OAR SEC-88; NOAA: Boulder, CO, USA, 2004.
- Cander, L.R. Ionospheric Space Weather; Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Hapgood, M. Ionospheric Science: An Example of the Importance of Diversity in Approaches to Scientific Research. Atmosphere 2022, 13, 394. [Google Scholar] [CrossRef]
- Galkin, I.; Froń, A.; Reinisch, B.; Hernández-Pajares, M.; Krankowski, A.; Nava, B.; Bilitza, D.; Kotulak, K.; Flisek, P.; Li, Z.; et al. sGlobal Monitoring of Ionospheric Weather by GIRO and GNSS Data Fusion. Atmosphere 2022, 13, 371. [Google Scholar] [CrossRef]
- Pignalberi, A.; Pietrella, M.; Pezzopane, M. Towards a Real-Time Description of the Ionosphere: A Comparison between International Reference Ionosphere (IRI) and IRI Real-Time Assimilative Mapping (IRTAM) Models. Atmosphere 2021, 12, 1003. [Google Scholar] [CrossRef]
- Merriman, D.K.; Nava, O.A.; Dao, E.V.; Emmons, D.J. Comparison of Seasonal foEs and fbEs Occurrence Rates Derived from Global Digisonde Measurements. Atmosphere 2021, 12, 1558. [Google Scholar] [CrossRef]
- Yin, L.; Wang, L.; Zheng, W.; Ge, L.; Tian, J.; Liu, Y.; Yang, B.; Liu, S. Evaluation of Empirical Atmospheric Models Using Swarm-C Satellite Data. Atmosphere 2022, 13, 294. [Google Scholar] [CrossRef]
- Essien, P.; Oliveira Barros Figueiredo, C.A.; Takahashi, H.; Wrasse, C.M.; Barros, D.; Browne Klutse, N.A.; Otoo Lomotey, S.; Ayorinde, T.T.; Gobbi, D.; Bilibio, A.V. Long-Term Study on Medium-Scale Traveling Ionospheric Disturbances Observed over the South American Equatorial Region. Atmosphere 2021, 12, 1409. [Google Scholar] [CrossRef]
- Haralambous, H.; Leontiou, T.; Petrou, V.; Singh, A.K.; Charalambides, M.; Lithoxopoulos, N.; Agisilaou, A. Adjusting CCIR Maps to Improve Local Behaviour of Ionospheric Models. Atmosphere 2021, 12, 691. [Google Scholar] [CrossRef]
- Fu, W.; Ma, G.; Lu, W.; Maruyama, T.; Li, J.; Wan, Q.; Fan, J.; Wang, X. Improvement of Global Ionospheric TEC Derivation with Multi-Source Data in Modip Latitude. Atmosphere 2021, 12, 434. [Google Scholar] [CrossRef]
- Schmölter, E.; Berdermann, J. Predicting the Effects of Solar Storms on the Ionosphere Based on a Comparison of Real-Time Solar Wind Data with the Best-Fitting Historical Storm Event. Atmosphere 2021, 12, 1684. [Google Scholar] [CrossRef]
- Fu, T.; Wu, Z.; Hu, P.; Zhang, X. Fluctuation of Lower Ionosphere Associated with Energetic Electron Precipitations during a Substorm. Atmosphere 2021, 12, 573. [Google Scholar] [CrossRef]
- Machado da Silva Benoit, A.G.; Petry, A. Evaluation of F10.7, Sunspot Number and Photon Flux Data for Ionosphere TEC Modeling and Prediction Using Machine Learning Techniques. Atmosphere 2021, 12, 1202. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, X.; Guo, J.; Shi, K.; Zhou, M.; Wang, F. Co-Seismic Ionospheric Disturbance with Alaska Strike-Slip Mw7.9 Earthquake on 23 January 2018 Monitored by GPS. Atmosphere 2021, 12, 83. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cander, L.R.; Zolesi, B. Ionospheric Monitoring and Modelling for Space Weather: An Introduction to the Special Issue. Atmosphere 2022, 13, 477. https://doi.org/10.3390/atmos13030477
Cander LR, Zolesi B. Ionospheric Monitoring and Modelling for Space Weather: An Introduction to the Special Issue. Atmosphere. 2022; 13(3):477. https://doi.org/10.3390/atmos13030477
Chicago/Turabian StyleCander, Ljiljana R., and Bruno Zolesi. 2022. "Ionospheric Monitoring and Modelling for Space Weather: An Introduction to the Special Issue" Atmosphere 13, no. 3: 477. https://doi.org/10.3390/atmos13030477
APA StyleCander, L. R., & Zolesi, B. (2022). Ionospheric Monitoring and Modelling for Space Weather: An Introduction to the Special Issue. Atmosphere, 13(3), 477. https://doi.org/10.3390/atmos13030477