Black Carbon Emissions and Associated Health Impacts of Gas Flaring in the United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Flared Gas Volume
2.2. Black Carbon Emission Factors
- 1
- Average gas composition (weighted by flaring volume) in a neighboring county (applied to flares accounting for 1% of flaring volume);
- 2
- Average gas composition (weighted by flaring volume) in the entire basin, for counties where option 1 is inapplicable (applied to flares accounting for 1% of flaring volume);
- 3
- Simple average of gas composition in the entire basin for counties where options 1 and 2 are both inapplicable (applied to flares accounting for 2% of flaring volume).
2.3. Black Carbon Emissions
2.4. Reduced-Form Models
2.5. Health Impacts
3. Results
3.1. BC Emissions from Flaring
3.2. Air Quality
3.3. Health Impacts
3.4. Sensitivity to Emission Factors
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Region | Area | Ethane | Propane | Butane | Isobutane | Natural Gasoline (Pentane Plus) |
---|---|---|---|---|---|---|
PADD 1 | East Coast | 0% | 33% | 67% | 0% | 0% |
Appalachian | 39% | 35% | 11% | 5% | 10% | |
PADD 2 | IN, IL, & KY | 28% | 44% | 10% | 10% | 8% |
MN, WI, ND, & SD | 21% | 40% | 18% | 5% | 16% | |
OK, KS, & MO | 41% | 32% | 11% | 6% | 11% | |
PADD 3 | LA (Gulf) | 38% | 33% | 11% | 7% | 10% |
N. LA & AR | 28% | 26% | 11% | 9% | 26% | |
NM | 41% | 32% | 10% | 7% | 11% | |
TX (Inland) | 43% | 31% | 10% | 6% | 10% | |
PADD 4 | Rocky Mountain | 25% | 37% | 14% | 7% | 16% |
PADD 5 | West Coast | 0% | 17% | 16% | 21% | 46% |
EF (g/m) | Source | EASIUR | AP3 | InMAP |
---|---|---|---|---|
0.13 | Weyant et al. (2016) | 7 | 7 | 5 |
0.28 | Weyant et al. (2016) | 16 | 16 | 11 |
0.51 | McEwenand Johnson (2012) | 29 | 29 | 20 |
0.57 | Schwarz et al. (2015) | 33 | 32 | 22 |
0.85 | US Environmental Protection Agency (2009) | 49 | 48 | 33 |
0.9 | US Environmental Protection Agency (1995) | 52 | 51 | 35 |
1.6 | Stohl et al. (2013); GAINS | 92 | 91 | 62 |
1.83 | Conrad and Johnson (2016) | 105 | 104 | 71 |
2.5632 | CAPP (2007) | 147 | 145 | 100 |
4.2 | US Environmental Protection Agency (1995) | 242 | 238 | 164 |
6.4 | US Environmental Protection Agency (1995) | 368 | 363 | 249 |
0.194–4.782 | Bottcher et al. (2021) | 53 | 48 | 26 |
References
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Technical Report. 2013. Available online: https://www.ipcc.ch/report/ar5/wg1/ (accessed on 11 January 2022).
- Shindell, D.T.; Faluvegi, G.; Koch, D.M.; Schmidt, G.A.; Unger, N.; Bauer, S.E. Improved attribution of climate forcing to emissions. Science 2009, 326, 716–718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anenberg, S.C.; Schwartz, J.; Shindell, D.; Amann, M.; Faluvegi, G.; Klimont, Z.; Janssens-Maenhout, G.; Pozzoli, L.; Van Dingenen, R.; Vignati, E.; et al. Global Air Quality and Health Co-benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls. Environ. Health Perspect. 2012, 120, 831–839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- The World Bank. Global Gas Flaring Tracker Report. Technical Report. 2021. Available online: https://thedocs.worldbank.org/en/doc/1f7221545bf1b7c89b850dd85cb409b0-0400072021/original/WB-GGFR-Report-Design-05a.pdf (accessed on 11 February 2022).
- EIA. Natural Gas Annual 2019 (NGA)—Energy Information Administration—With Data for 2019. Technical Report. 2020. Available online: urlhttps://www.eia.gov/naturalgas/annual/archive/2019/ (accessed on 11 January 2022).
- EPA. EPA Proposes New Source Performance Standards Updates, Emissions Guidelines to Reduce Methane and Other Harmful Pollution from the Oil and Natural Gas Industry. 2021. Available online: https://www.epa.gov/controlling-air-pollution-oil-and-natural-gas-industry/epa-proposes-new-source-performance (accessed on 22 November 2021).
- EPA. AP-42—Compilation of Air Pollutant Emission Factors—Section 13.5, 5th ed.; Technical Report; U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 1995; Volume I. Available online: https://www.epa.gov/air-emissions-factors-andquantification/ap-42-compilation-air-emissions-factors (accessed on 22 November 2021).
- Canadian Association of Petroleum Producers (CAPP). A Recommended Approach to Completing the National Pollutant Release Inventory (NPRI) for the Upstream Oil and Gas Industry: Guide; T2P 3N9; Canadian Association of Petroleum Producers: Calgary, AB, Canada, 2005; Volume 2100. [Google Scholar]
- EPA. WebFIRE (Factor Information REtrieval System) v.6.25. Technical Report. 2009. Available online: http://epa.gov/ttn/chief/webfire/index.html (accessed on 10 November 2021).
- Amann, M.; Bertok, I.; Borken-Kleefeld, J.; Cofala, J.; Heyes, C.; Höglund-Isaksson, L.; Klimont, Z.; Nguyen, B.; Posch, M.; Rafaj, P.; et al. Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environ. Model. Softw. 2011, 26, 1489–1501. [Google Scholar] [CrossRef]
- McEwen, J.D.N.; Johnson, M.R. Black carbon particulate matter emission factors for buoyancy-driven associated gas flares. J. Air Waste Manag. Assoc. 2012, 62, 307–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stohl, A.; Klimont, Z.; Eckhardt, S.; Kupiainen, K.; Shevchenko, V.P.; Kopeikin, V.M.; Novigatsky, A.N. Black carbon in the Arctic: The underestimated role of gas flaring and residential combustion emissions. Atmos. Chem. Phys. 2013, 13, 8833–8855. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, J.P.; Holloway, J.S.; Katich, J.M.; McKeen, S.; Kort, E.A.; Smith, M.L.; Ryerson, T.B.; Sweeney, C.; Peischl, J. Black Carbon Emissions from the Bakken Oil and Gas Development Region. Environ. Sci. Technol. Lett. 2015, 2, 281–285. [Google Scholar] [CrossRef]
- Weyant, C.L.; Shepson, P.B.; Subramanian, R.; Cambaliza, M.O.L.; Heimburger, A.; McCabe, D.; Baum, E.; Stirm, B.H.; Bond, T.C. Black Carbon Emissions from Associated Natural Gas Flaring. Environ. Sci. Technol. 2016, 50, 2075–2081. [Google Scholar] [CrossRef]
- Gvakharia, A.; Kort, E.A.; Brandt, A.; Peischl, J.; Ryerson, T.B.; Schwarz, J.P.; Smith, M.L.; Sweeney, C. Methane, Black Carbon, and Ethane Emissions from Natural Gas Flares in the Bakken Shale, North Dakota. Environ. Sci. Technol. 2017, 51, 5317–5325. [Google Scholar] [CrossRef]
- Conrad, B.M.; Johnson, M.R. Field Measurements of Black Carbon Yields from Gas Flaring. Environ. Sci. Technol. 2017, 51, 1893–1900. [Google Scholar] [CrossRef]
- Böttcher, K.; Paunu, V.V.; Kupiainen, K.; Zhizhin, M.; Matveev, A.; Savolahti, M.; Klimont, Z.; Väätäinen, S.; Lamberg, H.; Karvosenoja, N. Black carbon emissions from flaring in Russia in the period 2012–2017. Atmos. Environ. 2021, 254, 118390. [Google Scholar] [CrossRef]
- Anejionu, O.C.D.; Whyatt, J.D.; Blackburn, G.A.; Price, C.S. Contributions of gas flaring to a global air pollution hotspot: Spatial and temporal variations, impacts and alleviation. Atmos. Environ. 2015, 118, 184–193. [Google Scholar] [CrossRef] [Green Version]
- Nwosisi, M.; Oguntoke, O.; Taiwo, A.; Agbozu, I.; Noragbon, E. Spatial patterns of gas flaring stations and the risk to the respiratory and dermal health of residents of the Niger Delta, Nigeria. Sci. Afr. 2021, 12, e00762. [Google Scholar] [CrossRef]
- Motte, J.; Alvarenga, R.A.F.; Thybaut, J.W.; Dewulf, J. Quantification of the global and regional impacts of gas flaring on human health via spatial differentiation. Environ. Pollut. 2021, 291, 118213. [Google Scholar] [CrossRef]
- Cushing, L.J.; Vavra, M.K.; Chau, K.; Franklin, M.; Johnston, J.E. Flaring from Unconventional Oil and Gas Development and Birth Outcomes in the Eagle Ford Shale in South Texas. Environ. Health Perspect. 2020, 128, 077003. [Google Scholar] [CrossRef] [PubMed]
- Cushing, L.J.; Chau, K.; Franklin, M.; Johnston, J.E. Up in smoke: Characterizing the population exposed to flaring from unconventional oil and gas development in the contiguous US. Environ. Res. Lett. 2021, 16, 034032. [Google Scholar] [CrossRef]
- Mirrezaei, M.A.; Orkomi, A.A. Gas flares contribution in total health risk assessment of BTEX in Asalouyeh, Iran. Process Saf. Environ. Prot. 2020, 137, 223–237. [Google Scholar] [CrossRef]
- Willis, M.; Hystad, P.; Denham, A.; Hill, E. Natural gas development, flaring practices and paediatric asthma hospitalizations in Texas. Int. J. Epidemiol. 2020, 49, 1883–1896. [Google Scholar] [CrossRef]
- IEc. Evaluating Reduced-form Tools for Estimating Air Quality Benefits. Prepared for US EPA. 2019. Available online: https://www.epa.gov/sites/default/files/2020-09/documents/iec_rft_report_9.15.19.pdf (accessed on 10 September 2021).
- Gilmore, E.A.; Heo, J.; Muller, N.Z.; Tessum, C.W.; Hill, J.D.; Marshall, J.D.; Adams, P.J. An inter-comparison of the social costs of air quality from reduced-complexity models. Environ. Res. Lett. 2019, 14, 074016. [Google Scholar] [CrossRef]
- Strasert, B.; Teh, S.C.; Cohan, D.S. Air quality and health benefits from potential coal power plant closures in Texas. J. Air Waste Manag. Assoc. 2019, 69, 333–350. [Google Scholar] [CrossRef]
- Heo, J.; Adams, P.J.; Gao, H.O. Public Health Costs of Primary PM2.5 and Inorganic PM2.5 Precursor Emissions in the United States. Environ. Sci. Technol. 2016, 50, 6061–6070. [Google Scholar] [CrossRef] [PubMed]
- Muller, N.Z. Boosting GDP growth by accounting for the environment. Science 2014, 345, 873–874. [Google Scholar] [CrossRef] [PubMed]
- Tessum, C.W.; Hill, J.D.; Marshall, J.D. InMAP: A model for air pollution interventions. PLoS ONE 2017, 12, e0176131. [Google Scholar] [CrossRef] [PubMed]
- Elvidge, C.D.; Zhizhin, M.; Baugh, K.; Hsu, F.C.; Ghosh, T. Methods for Global Survey of Natural Gas Flaring from Visible Infrared Imaging Radiometer Suite Data. Energies 2016, 9, 14. [Google Scholar] [CrossRef]
- EPA. Subpart W—Petroleum and Natural Gas Systems. 2014. Available online: https://www.epa.gov/ghgreporting/subpart-w-petroleum-and-natural-gas-systems (accessed on 22 November 2021).
- EPA. Air Pollution Control Cost Estimation Spreadsheet for Elevated Flare. 2021. Available online: https://www.regulations.gov/document/EPA-HQ-OAR-2021-0317-0039 (accessed on 12 January 2022).
- ENVIRON. User’s Guide to the Comprehensive Air Quality Model with Extensions (CAMx). 2014. Available online: http://www.camx.com (accessed on 11 December 2021).
- Krewski, D.; Jerrett, M.; Burnett, R.T.; Ma, R.; Hughes, E.; Shi, Y.; Turner, M.C.; Pope, C.A.; Thurston, G.; Calle, E.E.; et al. Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Res. Rep. (Health Eff. Institute) 2009, 5–114, discussion 115–136. [Google Scholar] [PubMed]
- Turner, D.B. Workbook of Atmospheric Dispersion Estimates: An Introduction to Dispersion Modeling, Second Edition, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Latimer, D.A.; Polkowsky, B. Particulate Matter Source-Receptor Relationships between All Point and Area Sources in the United States and PSD Class I Area Receptor; US Environmental Protection Agency, Office of Air Quality Planning and Standards: Research Triangle Park, NC, USA, 1996.
- Woodruff, T.J.; Parker, J.D.; Schoendorf, K.C. Fine Particulate Matter (PM2.5) Air Pollution and Selected Causes of Postneonatal Infant Mortality in California. Environ. Health Perspect. 2006, 114, 786–790. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Lepeule, J.; Laden, F.; Dockery, D.; Schwartz, J. Chronic Exposure to Fine Particles and Mortality: An Extended Follow-up of the Harvard Six Cities Study from 1974 to 2009. Environ. Health Perspect. 2012, 120, 965–970. [Google Scholar] [CrossRef]
- Sacks, J.D.; Lloyd, J.M.; Zhu, Y.; Anderton, J.; Jang, C.J.; Hubbell, B.; Fann, N. The Environmental Benefits Mapping and Analysis Program—Community Edition (BenMAP—CE): A tool to estimate the health and economic benefits of reducing air pollution. Environ. Model. Softw. 2018, 104, 118–129. [Google Scholar] [CrossRef]
- Zanobetti, A.; Franklin, M.; Koutrakis, P.; Schwartz, J. Fine particulate air pollution and its components in association with cause-specific emergency admissions. Environ. Health 2009, 8, 58. [Google Scholar] [CrossRef] [Green Version]
- Krall, J.R.; Mulholland, J.A.; Russell, A.G.; Balachandran, S.; Winquist, A.; Tolbert, P.E.; Waller, L.A.; Sarnat, S.E. Associations between Source-Specific Fine Particulate Matter and Emergency Department Visits for Respiratory Disease in Four U.S. Cities. Environ. Health Perspect. 2017, 125, 97–103. [Google Scholar] [CrossRef] [PubMed]
- Kioumourtzoglou, M.A.; Schwartz, J.D.; Weisskopf, M.G.; Melly, S.J.; Wang, Y.; Dominici, F.; Zanobetti, A. Long-term PM2.5 Exposure and Neurological Hospital Admissions in the Northeastern United States. Environ. Health Perspect. 2016, 124, 23–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tétreault, L.F.; Doucet, M.; Gamache, P.; Fournier, M.; Brand, A.; Kosatsky, T.; Smargiassi, A. Childhood Exposure to Ambient Air Pollutants and the Onset of Asthma: An Administrative Cohort Study in Québec. Environ. Health Perspect. 2016, 124, 1276–1282. [Google Scholar] [CrossRef] [Green Version]
- Gharibvand, L.; Shavlik, D.; Ghamsary, M.; Beeson, W.L.; Soret, S.; Knutsen, R.; Knutsen, S.F. The Association between Ambient Fine Particulate Air Pollution and Lung Cancer Incidence: Results from the AHSMOG-2 Study. Environ. Health Perspect. 2017, 125, 378–384. [Google Scholar] [CrossRef] [PubMed]
- Kloog, I.; Coull, B.A.; Zanobetti, A.; Koutrakis, P.; Schwartz, J.D. Acute and chronic effects of particles on hospital admissions in New-England. PLoS ONE 2012, 7, e34664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostro, B.D. Air pollution and morbidity revisited: A specification test. J. Environ. Econ. Manag. 1987, 14, 87–98. [Google Scholar] [CrossRef]
- Xu, H.; Ren, Y.; Zhang, W.; Meng, W.; Yun, X.; Yu, X.; Li, J.; Zhang, Y.; Shen, G.; Ma, J.; et al. Updated Global Black Carbon Emissions from 1960 to 2017: Improvements, Trends, and Drivers. Environ. Sci. Technol. 2021, 55, 7869–7879. [Google Scholar] [CrossRef]
- Clean Air Task Force (CATF). Putting Out the Fire: Reducing Flaring in Tight Oil Fields; Technical Report; Clean Air Task Force: Boston, MA, USA, 2015. [Google Scholar]
- Cutler, J.; Hamso, B.; Sucre, F.; Cutler, J.; Hamso, B.; Sucre, F. ‘Zero Routine Flaring by 2030’: A new global industry standard. APPEA J. 2018, 58, 533–537. [Google Scholar] [CrossRef]
- Krauss, C. Exxon Mobil aims for net-zero emissions from its operations in the Permian Basin by 2030. The New York Times, 6 December 2021; Pagination: 0362-4331. [Google Scholar]
- Hadley, O.L.; Kirchstetter, T.W. Black-carbon reduction of snow albedo. Nat. Clim. Chang. 2012, 2, 437–440. [Google Scholar] [CrossRef]
- Takemura, T.; Suzuki, K. Weak global warming mitigation by reducing black carbon emissions. Sci. Rep. 2019, 9, 4419. [Google Scholar] [CrossRef]
- Rao, S.T.; Galmarini, S.; Puckett, K. Air Quality Model Evaluation International Initiative (AQMEII): Advancing the State of the Science in Regional Photochemical Modeling and Its Applications. Bull. Am. Meteorol. Soc. 2011, 92, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Im, U.; Bianconi, R.; Solazzo, E.; Kioutsioukis, I.; Badia, A.; Balzarini, A.; Baró, R.; Bellasio, R.; Brunner, D.; Chemel, C.; et al. Evaluation of operational on-line-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part I: Ozone. Atmos. Environ. 2015, 115, 404–420. [Google Scholar] [CrossRef] [Green Version]
- Carmichael, G.R.; Sakurai, T.; Streets, D.; Hozumi, Y.; Ueda, H.; Park, S.U.; Fung, C.; Han, Z.; Kajino, M.; Engardt, M.; et al. MICS-Asia II: The model intercomparison study for Asia Phase II methodology and overview of findings. Atmos. Environ. 2008, 42, 3468–3490. [Google Scholar] [CrossRef]
- Tan, J.; Fu, J.S.; Carmichael, G.R.; Itahashi, S.; Tao, Z.; Huang, K.; Dong, X.; Yamaji, K.; Nagashima, T.; Wang, X.; et al. Why do models perform differently on particulate matter over East Asia? A multi-model intercomparison study for MICS-Asia III. Atmos. Chem. Phys. 2020, 20, 7393–7410. [Google Scholar] [CrossRef]
- Byun, D.; Schere, K.L. Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- Wu, R.; Tessum, C.W.; Zhang, Y.; Hong, C.; Zheng, Y.; Qin, X.; Liu, S.; Zhang, Q. Reduced-complexity air quality intervention modeling over China: The development of InMAPv1.6.1-China and a comparison with CMAQv5.2. Geosci. Model Dev. 2021, 14, 7621–7638. [Google Scholar] [CrossRef]
Emission Factor (g/m) | Source |
---|---|
0.13–0.28 | Weyant et al. (2016) [15] |
0.51 | McEwen and Johnson (2012) [12] |
0.57 | Schwarz et al. (2015) [14] |
0.85 | US Environmental Protection Agency (2009) [10] |
0.9–6.4 | US Environmental Protection Agency (1995) [8] |
1.6 | Stohl et al. (2013) [13]; GAINS [11] |
1.83 | Conrad and Johnson (2017) [17] |
2.56 | Canadian Association of Petroleum Producers (CAPP) (2007) [9] |
0.194–4.782 | Böttcher et al. (2021) (HHV dependent) [18] |
Reduced-Form Models | Resolution | Input Emissions | Outputs | Reference |
---|---|---|---|---|
Estimating Air Pollution Social Impacts Using Regression (EASIUR) | 36 km | Primary PM *, SO, NO, and NH | Marginal damage ($/ton) | Heo et al., 2016 [29] |
Air Pollution Emission Experiment and Policy Analysis Model (AP3) | US Counties | Primary PM *, SO, NO, NH, and VOC | PM (g/m), mortality per county | Muller, 2014 [30] |
Intervention Model for Air Pollution (InMAP) | 1–288 km | Primary PM *, SO, NO, NH, and VOC | PM (g/m), mortality per grid cell | Tessum, Hill, et al., 2017 [31] |
Endpoint | Source | Morbidity (AP3) (Incidents per Year) | Morbidity (InMAP) (incidents per Year) |
---|---|---|---|
Acute myocardial infarction | Zanobetti et al (2009) | 1.1 (95% CI: 0.5, 1.7) | 0.4 (95% CI: 0.2, 0.7) |
ER visits (Respiratory) | Krall et al. (2016) | 51.6 (95% CI: 8.5, 93.1) | 20.4 (95% CI: 3.4, 36.8) |
Alzheimer’s disease | Kioumourtzoglou et al. (2016) | 23.5 (95% CI: 17.6, 29.3) | 12.2 (95% CI: 9.1, 15.2) |
Asthma onset | Tetreault et al. (2016) | 178.2 (95% CI: 171.0, 185.2) | 72.0 (95% CI: 69.0, 74.8) |
Lung cancer | Gharibvand et al. (2016) | 4.2 (95% CI: 1.3, 6.9) | 1.7 (95% CI: 0.51, 2.8) |
Stroke | Kloog et al. (2012) | 3.3 (95% CI: 0.9, 5.7) | 1.4 (95% CI: 0.3, 2.3) |
Work loss days | Ostro (1987) | 8480.6 (95% CI: 7147.7, 9764.7) | 3383.2 (95% CI: 2851.4, 3895.5) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; McCabe, D.C.; Fleischman, L.E.; Cohan, D.S. Black Carbon Emissions and Associated Health Impacts of Gas Flaring in the United States. Atmosphere 2022, 13, 385. https://doi.org/10.3390/atmos13030385
Chen C, McCabe DC, Fleischman LE, Cohan DS. Black Carbon Emissions and Associated Health Impacts of Gas Flaring in the United States. Atmosphere. 2022; 13(3):385. https://doi.org/10.3390/atmos13030385
Chicago/Turabian StyleChen, Chen, David C. McCabe, Lesley E. Fleischman, and Daniel S. Cohan. 2022. "Black Carbon Emissions and Associated Health Impacts of Gas Flaring in the United States" Atmosphere 13, no. 3: 385. https://doi.org/10.3390/atmos13030385