Estimation of Atmospheric Fossil Fuel CO2 Traced by Δ14C: Current Status and Outlook
Abstract
:1. Introduction
2. The Basis of Tracing Fossil Fuel CO2 Using 14C
2.1. The Theory of Quantifying Fossil Fuel CO2 Using 14C
2.2. Air Sampling and Measurement
3. Atmospheric Δ14CO2 Trend in Background Sites
4. Spatial and Temporal Variations of Δ14CO2 and FFCO2
Location | Sampling Period | 14CO2 (‰) | FFCO2 (ppm by Defult) | Site Type/Name | Note (Air Samples with No Notes) | References | |
---|---|---|---|---|---|---|---|
Hungary | September 2008–April 2009 | −4.5~39.1 | city | [65,66] | |||
23.1~48.1 | rural (10 m) | ||||||
31.4~47.3 | rural (115 m) | ||||||
Netherlands | 2010–2012 | 35.2, 27.2, 22.6 | corn leaves | [42] | |||
Germany | 2012 | 17.2 | |||||
France | 2012 | 31.7 | |||||
Poland | July 2011–May 2013 | −178.2~4.7 | 66.6~72.7% | [43] | |||
Romania | August 2012–January 2018 | –57~61 | industrial area | [67] | |||
Switzerland | June 2013–December 2015 | 4.3 | tall tower | [7] | |||
England | June 2014–August 2015 | −35.26~59.61 | −1.09~2.27 | tall tower | [68] | ||
North America | 2004, summer | 66.3 ± 1.7 |
mountain regions,
western North America | corn leaves | [35] | ||
58.5 ± 3.9 | 2.7 ± 1.5 | eastern North America | |||||
55.2 ± 2.3 | 4.3 ± 1.0 | Ohio-Maryland region | |||||
California, USA | 2004–2005 | 59.5 ± 2.5 | 0.3 ± 0.08 | North Coast | annual C3 grasses | [37] | |
44 ± 10.9 | 6.1 ± 1.1 | San Francisco | |||||
48.7 ± 1.9 | 4.8 ± 0.9 | Central Valley | |||||
27.7 ± 20 | 13.7 ± 0.4 | Los Angeles | |||||
Los Angeles, USA | 2006–2013 | −59.4~29.3 | inland Pasadena | [69] | |||
2009–2013 | −18.8~40.4 | coastal Palos Verdes | |||||
high latitudes, | 2008 | spring | 46.6 ± 4.4 | flight | [70] | ||
North America | summer | 51.5 ± 5 | |||||
central California, USA | 2009–2012 | winter | 7.2 | Walnut Grove | [71] | ||
spring | 3.1 | ||||||
summer | 3.7 | ||||||
fall | 5.0 | ||||||
southern California,
USA | 2013–2014 | winter | 25 | California Institute of Technology in Pasadena | |||
spring | 21.6 | ||||||
summer | 25.9 | ||||||
fall | 21.5 | ||||||
winter | 8.2 | San Bernardino | |||||
spring | 5.1 | ||||||
summer | 11 | ||||||
fall | 10.2 | ||||||
Mexico City | March 2006 | 20~132 | [72] | ||||
South Korea | 2009 | −112.3~−12.4 | 4.2~13.9 | Seoul, metropolitan area | gingko leaves | [73] | |
−79.5~43.8 | −1.3~10.7 | Busan, metropolitan area | |||||
–69.3~28.1 | 0.2~9.7 | Daegu, metropolitan area | |||||
−53.4~−2 | 3.2~8.2 | Daejeon, metropolitan area | |||||
−41.7~19.2 | 1.1~7 | Gwangju, metropolitan area | |||||
South Korea | 2009 | 34.8 | clean air sites | gingko leaves | [38] | ||
2010 | 24.9 | ||||||
2011 | 23.1 | ||||||
2012 | 14 | ||||||
2013 | 8.3 | ||||||
Anmyeondo, South Korea | May 2014–August 2016 | −59.5~23.1 | 9.7 ± 7.8 | [9] | |||
Tae-Ahn Peninsula, | 2004–2010 | all year | 4.4, 60% | [58] | |||
South Korea | winter | 4.4, 90% | |||||
Beijing | March 2009–September 2009 | 3.4 ± 11.8 | 16.4 ± 4.9 | [74] | |||
12.8 ± 3.1 | suburban sites | ||||||
−8.4 ± 18.1 | road sites | ||||||
2009 | −28.2~29.6 | corn leaves | [75] | ||||
2014 | −53.5 ± 54.8 | 39.7 ± 36.1, 75.2 ± 14.6% | urban site | [76] | |||
Guangzhou | 2010–2011 | –16.4 ± 3.0 | 24 (1–58) | [77] | |||
Xiamen | 2014 | −8.7 ± 25.3 | 13.6 ± 12.3, 59.1 ± 26.8% | urban site | [76] | ||
Xi’an | March 2012–March 2013 | −41.3 ± 27.4 | [30] | ||||
April 2012 | −9.7 ± 23.8 | ||||||
January 2013 | −90.4 ± 32.4 | ||||||
March 2012.03–March 2013 | 34.2 ± 9.5 | ||||||
March 2012–March 2013 | winter | 46.5 ± 8.7 | |||||
March 2012–March 2013 | summer | 26.6 ± 3.4 | |||||
Xi’an | 2013 | summer | 20.5 | annual plants | [78] | ||
2014 | summer | 23.5 | |||||
Xi’an | 2014 | winter | 92.7 ± 9.7 | [79] | |||
2016 | winter | 61.8 ± 10.6 | urban | [80] | |||
2016 | winter | 57.4 ± 9.7 | suburban | ||||
2016 | summer | 82.5 ± 23.8 | urban | ||||
2016 | summer | 90 ± 24.8 | suburban | ||||
Bali, Indonesia | September 2018 | 2.2 ± 19 | 6.4 ± 7.5 | evergreen leaves | [81] |
4.1. Spatial Patterns of Δ14CO2 and FFCO2
4.2. Temporal Variations of Δ14CO2 and FFCO2
5. Estimation of FFCO2 and Its Emissions Combining Numerical Models
6. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Climate Change 2021: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Diffenbaugh, N.S.; Singh, D.; Mankin, J.S.; Horton, D.E.; Swain, D.L.; Touma, D.; Charland, A.; Liu, Y.; Haugen, M.; Tsiang, M.; et al. Quantifying the influence of global warming on unprecedented extreme climate events. Proc. Natl. Acad. Sci. USA 2017, 114, 4881–4886. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frolicher, T.L.; Fischer, E.M.; Gruber, N. Marine heatwaves under global warming. Nature 2018, 560, 360–364. [Google Scholar] [CrossRef] [PubMed]
- Kraaijenbrink, P.D.A.; Bierkens, M.F.P.; Lutz, A.F.; Immerzeel, W.W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 2017, 549, 257–260. [Google Scholar] [CrossRef] [PubMed]
- Papalexiou, S.M.; Montanari, A. Global and Regional Increase of Precipitation Extremes under Global Warming. Water Resour. Res. 2019. [Google Scholar] [CrossRef]
- Shindell, D.; Smith, C.J. Climate and air-quality benefits of a realistic phase-out of fossil fuels. Nature 2019, 573, 408–411. [Google Scholar] [CrossRef] [Green Version]
- Berhanu, T.A.; Szidat, S.; Brunner, D.; Satar, E.; Schanda, R.; Nyfeler, P.; Battaglia, M.; Steinbacher, M.; Hammer, S.; Leuenberger, M. Estimation of the fossil fuel component in atmospheric CO2 based on radiocarbon measurements at the Beromünster tall tower, Switzerland. Atmos. Chem. Phys. 2017, 17, 10753–10766. [Google Scholar] [CrossRef] [Green Version]
- Konovalov, I.B.; Berezin, E.V.; Ciais, P.; Broquet, G.; Zhuravlev, R.V.; Janssens-Maenhout, G. Estimation of fossil-fuel CO2 emissions using satellite measurements of “proxy” species. Atmos. Chem. Phys. 2016, 16, 13509–13540. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Dlugokencky, E.J.; Turnbull, J.C.; Lee, S.; Lehman, S.J.; Miller, J.B.; Petron, G.; Lim, J.-S.; Lee, G.-W.; Lee, S.-S.; et al. Observations of atmospheric (CO2)-C-14 at Anmyeondo GAW station, South Korea: Implications for fossil fuel CO2 and emission ratios. Atmos. Chem. Phys. 2020, 20, 12033–12045. [Google Scholar] [CrossRef]
- Lopez, M.; Schmidt, M.; Delmotte, M.; Colomb, A.; Gros, V.; Janssen, C.; Lehman, S.J.; Mondelain, D.; Perrussel, O.; Ramonet, M.; et al. CO, NOx and 13CO2 as tracers for fossil fuel CO2: Results from a pilot study in Paris during winter 2010. Atmos. Chem. Phys. 2013, 13, 7343–7358. [Google Scholar] [CrossRef] [Green Version]
- Niu, Z.; Zhou, W.; Feng, X.; Feng, T.; Wu, S.; Cheng, P.; Lu, X.; Du, H.; Xiong, X.; Fu, Y. Atmospheric fossil fuel CO2 traced by (CO2)-C-14 and air quality index pollutant observations in Beijing and Xiamen, China. Environ. Sci. Pollut. R 2018, 25, 17109–17117. [Google Scholar] [CrossRef]
- Rivier, L.; Ciais, P.; Hauglustaine, D.A.; Bakwin, P.; Bousquet, P.; Peylin, P.; Klonecki, A. Evaluation of SF6, C2Cl4, and CO to approximate fossil fuel CO2 in the Northern Hemisphere using a chemistry transport model. J. Geophys. Res. 2006, 111. [Google Scholar] [CrossRef]
- Turnbull, J.C.; Miller, J.B.; Lehman, S.J.; Tans, P.P.; Sparks, R.J.; Southon, J. Comparison of 14CO2, CO, and SF6as tracers for recently added fossil fuel CO2 in the atmosphere and implications for biological CO2 exchange. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Vogel, F.; Hamme, S.; Steinhof, A.; Kromer, B.; Levin, I. Implication of weekly and diurnal 14C calibration on hourly estimates of CO-based fossil fuel CO2 ata moderately polluted site in southwestern Germany. Tellus B Chem. Phys. Meteorol. 2010, 62, 512–520. [Google Scholar] [CrossRef]
- Gamnitzer, U.; Karstens, U.; Kromer, B.; Neubert, R.E.M.; Meijer, H.A.J.; Schroeder, H.; Levin, I. Carbon monoxide: A quantitative tracer for fossil fuel CO2? J. Geophys. Res. 2006, 111, D22. [Google Scholar] [CrossRef] [Green Version]
- Libby, W.F.; Anderson, E.C.; Arnold, J.R. Age Determination by Radiocarbon Content: World-Wide Assay of Natural Radiocarbon. Science 1949, 109, 227–228. [Google Scholar] [CrossRef]
- Schuur, E.A.G.; Druffel, E.; Trumbore, S.E. Radiocarbon and Climate Change: Mechanisms, Applications and Laboratory Techniques; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Reimer, P.J.; Brown, T.A.; Reimer, R.W. Discussion: Reporting and Calibration of Post-Bomb 14C Data. Radiocarbon 2004, 46, 1299–1304. [Google Scholar] [CrossRef] [Green Version]
- Donahue, D.J.; Linick, T.W.; Jull, A.J.T. Isotope-Ratio and Background Corrections for Accelerator Mass Spectrometry Radiocarbon Measurements. Radiocarbon 2016, 32, 135–142. [Google Scholar] [CrossRef] [Green Version]
- Godwin, H. Half-life of Radiocarbon. Nature 1962, 195, 984. [Google Scholar] [CrossRef]
- Suess, H.E. Radiocarbon Concentration in Modern Wood. Science 1955, 122, 415–417. [Google Scholar] [CrossRef]
- Stuiver, M.; Quay, P.D. Atmospheric14C changes resulting from fossil fuel CO2 release and cosmic ray flux variability. Earth Planet Sci. Lett. 1981, 53, 349–362. [Google Scholar] [CrossRef]
- Dutta, K. Sun, Ocean, Nuclear Bombs, and Fossil Fuels: Radiocarbon Variations and Implications for High-Resolution Dating. In Annual Review of Earth and Planetary Sciences; Jeanloz, R., Freeman, K.H., Eds.; Northwestern Univ, Dept Earth & Planetary Sci: Evanston, IL, USA, 2016; Volume 44, p. 239. [Google Scholar]
- Levin, I.; Naegler, T.; Kromer, B.; Diehl, M.; Francey, R.; Gomez-Pelaez, A.; Steele, P.; Wagenbach, D.; Weller, R.; Worthy, D. Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus B Chem. Phys. Meteorol. 2010, 62, 26–46. [Google Scholar] [CrossRef] [Green Version]
- Levin, I.; Schuchard, J.; Kromer, B.; Münnich, K.O. The Continental European Suess Effect. Radiocarbon 1989, 31, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Levin, I.; Kromer, B.; Schmidt, M.; Sartorius, H. A novel approach for independent budgeting of fossil fuel CO2 over Europe by 14CO2 observations. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Turnbull, J.; Rayner, P.; Miller, J.; Naegler, T.; Ciais, P.; Cozic, A. On the use of (CO2)-C-14 as a tracer for fossil fuel CO2: Quantifying uncertainties using an atmospheric transport model. J. Geophys. Res.-Atmos. 2009, 114, D22302. [Google Scholar] [CrossRef]
- Graven, H.D.; Guilderson, T.P.; Keeling, R.F. Observations of radiocarbon in CO2 at seven global sampling sites in the Scripps flask network: Analysis of spatial gradients and seasonal cycles. J. Geophys. Res.-Atmos. 2012, 117, D02302. [Google Scholar] [CrossRef]
- Manning, M.R.; Lowe, D.C.; Melhuish, W.H.; Sparks, R.J.; Gavin, W.; Brenninkmeijer, C.; Mcgill, R.C. The Use of Radiocarbon Measurements in Atmospheric Studies. Radiocarbon 1990, 32, 37–58. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Wu, S.; Huo, W.; Xiong, X.; Cheng, P.; Lu, X.; Niu, Z. Tracing fossil fuel CO2 using Delta C-14 in Xi’an City, China. Atmos. Environ. 2014, 94, 538–545. [Google Scholar] [CrossRef]
- LaFranchi, B.W.; McFarlane, K.J.; Miller, J.B.; Lehman, S.J.; Phillips, C.L.; Andrews, A.E.; Tans, P.P.; Chen, H.; Liu, Z.; Turnbull, J.C.; et al. Strong regional atmospheric C-14 signature of respired CO2 observed from a tall tower over the midwestern United States. J. Geophys. Res.-Biogeo. 2016, 121, 2275–2295. [Google Scholar] [CrossRef]
- Turnbull, J.C.; Keller, E.D.; Baisden, T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A. Atmospheric measurement of point source fossil CO2 emissions. Atmos. Chem. Phys. 2014, 14, 5001–5014. [Google Scholar] [CrossRef] [Green Version]
- Karion, A.; Sweeney, C.; Tans, P.; Newberger, T. AirCore: An Innovative Atmospheric Sampling System. J. Atmos. Ocean. Technol. 2010, 27, 1839–1853. [Google Scholar] [CrossRef]
- Paul, D.; Chen, H.; Been, H.A.; Kivi, R.; Meijer, H.A.J. Radiocarbon analysis of stratospheric CO2 retrieved from AirCore sampling. Atmos. Meas. Technol. 2016, 9, 4997–5006. [Google Scholar] [CrossRef] [Green Version]
- Hsueh, D.Y.; Krakauer, N.Y.; Randerson, J.T.; Xu, X.M.; Trumbore, S.E.; Southon, J.R. Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophys. Res. Lett. 2007, 34, L02815. [Google Scholar] [CrossRef] [Green Version]
- Palstra, S.W.L.; Karstens, U.; Streurman, H.-J.; Meijer, H.A.J. Wine ethanol C-14 as a tracer for fossil fuel CO2 emissions in Europe: Measurements and model comparison. J. Geophys. Res.-Atmos. 2008, 113, D21. [Google Scholar] [CrossRef] [Green Version]
- Riley, W.J.; Hsueh, D.Y.; Randerson, J.T.; Fischer, M.L.; Hatch, J.G.; Pataki, D.E.; Wang, W.; Goulden, M.L. Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model. J Geophys. Res.-Biogeo. 2008, 113, G04002. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Hong, W.; Xu, X.; Park, G.; Sung, K.S.; Sung, K.; Lee, J.-G.; Nakanishi, T.; Park, H.-S. The distribution of Delta C-14 in Korea from 2010 to 2013. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 2015, 361, 609–613. [Google Scholar] [CrossRef]
- Djuricin, S.; Xu, X.; Pataki, D.E. The radiocarbon composition of tree rings as a tracer of local fossil fuel emissions in the Los Angeles basin: 1980–2008. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef]
- Hou, Y.; Zhou, W.; Cheng, P.; Xiong, X.; Du, H.; Niu, Z.; Yu, X.; Fu, Y.; Lu, X. (14)C-AMS measurements in modern tree rings to trace local fossil fuel-derived CO2 in the greater Xi’an area, China. Sci. Total Environ. 2020, 715, 136669. [Google Scholar] [CrossRef]
- Bozhinova, D.; van der Molen, M.K.; van der Velde, I.R.; Krol, M.C.; van der Laan, S.; Meijer, H.A.J.; Peters, W. Simulating the integrated summertime Delta(CO2)-C-14 signature from anthropogenic emissions over Western Europe. Atmos. Chem. Phys. 2014, 14, 7273–7290. [Google Scholar] [CrossRef] [Green Version]
- Bozhinova, D.; Palstra, S.W.L.; van der Molen, M.K.; Krol, M.C.; Meijer, H.A.J.; Peters, W. Three years of delta(CO2)-C-14 observations from maize leaves in the netherlands and western europe. Radiocarbon 2016, 58, 459–478. [Google Scholar] [CrossRef]
- Piotrowska, N.; Pazdur, A.; Pawelczyk, S.; Rakowski, A.Z.; Sensula, B.; Tudyka, K. Human activity recorded in carbon isotopic composition of atmospheric CO2 in gliwice urban area and surroundings (southern poland) in the years 2011–2013. Radiocarbon 2019, 62, 141–156. [Google Scholar] [CrossRef]
- Xiong, X.; Zhou, W.; Cheng, P.; Wu, S.; Niu, Z.; Du, H.; Lu, X.; Fu, Y.; Burr, G.S. Delta(CO2)-C-14 from dark respiration in plants and its impact on the estimation of atmospheric fossil fuel CO2. J. Environ. Radioact. 2017, 169, 79–84. [Google Scholar] [CrossRef]
- Zhao, C.L.; Tans, P.P.; Thoning, K.W. A high precision manometric system for absolute calibrations of CO2 in dry air. J. Geophys. Res. Atmos. 1997, 102, 5885–5894. [Google Scholar] [CrossRef]
- Slota, P.J.; Jull, A.J.T.; Linick, T.W.; Toolin, L.J. Preparation of Small Samples for 14C Accelerator Targets by Catalytic Reduction of CO. Radiocarbon 1987, 29, 303–306. [Google Scholar] [CrossRef] [Green Version]
- McNichol, A.P.; Gagnon, A.R.; Jones, G.A.; Osborne, E.A. Illumination of a Black Box: Analysis of Gas Composition During Graphite Target Preparation. Radiocarbon 2016, 34, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Anderson, E.C.; Arnold, J.R.; Libby, W.F. Measurement of Low Level Radiocarbon. Rev. Sci. Instrum. 1951, 22, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Litherland, A.E. Ultrasensitive Mass Spectrometry with Accelerators. Annu. Rev. Nucl. Part Sci. 1980, 30, 437–473. [Google Scholar] [CrossRef]
- Ziolkowski, L.A.; Druffel, E.R. Quantification of extraneous carbon during compound specific radiocarbon analysis of black carbon. Anal. Chem. 2009, 81, 10156–10161. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.M.; Hua, Q.; Williams, A.; Levchenko, V.; Yang, B. Developments in micro-sample 14C AMS at the ANTARES AMS facility. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 919–923. [Google Scholar] [CrossRef]
- Turnbull, J.; Mikaloff Fletcher, S.E.; Ansell, I.; Brailsford, G.; Moss, R.; Norris, M.; Steinkamp, K. Sixty years of radiocarbon dioxide measurements at Wellington, New Zealand: 1954–2014. Atmos. Chem. Phys. 2017, 17, 14771–14784. [Google Scholar] [CrossRef] [Green Version]
- Levin, I.; Kromer, B.; Hammer, S. Atmospheric Δ14CO2 trend in Western European background air from 2000 to 2012. Tellus B Chem. Phys. Meteorol. 2013, 65, 20092. [Google Scholar] [CrossRef]
- Graven, H.D.; Guilderson, T.P.; Keeling, R.F. Observations of radiocarbon in CO2 at La Jolla, California, USA 1992-2007: Analysis of the long-term trend. J. Geophys. Res.-Atmos. 2012, 117, D02302. [Google Scholar] [CrossRef] [Green Version]
- Lehman, S.J.; Miller, J.B.; Wolak, C.; Southon, J.; Tans, P.P.; Montzka, S.A.; Sweeney, C.; Andrews, A.; LaFranchi, B.; Guilderson, T.P.; et al. Allocation of terrestrial carbon sources using (CO2)-C-14: Methods, measurement, and modeling. Radiocarbon 2013, 55, 1484–1495. [Google Scholar] [CrossRef]
- Turnbull, J.; Lehman, S.J.; Miller, J.B.; Sparks, R.J.; Southon, J.R.; Tans, P.P. A new high precision14CO2 time series for North American continental air. J. Geophys. Res. 2007, 112, D11310. [Google Scholar] [CrossRef]
- Niu, Z.; Zhou, W.; Cheng, P.; Wu, S.; Lu, X.; Xiong, X.; Du, H.; Fu, Y. Observations of Atmospheric Delta(CO2)-C-14 at the Global and Regional Background Sites in China: Implication for Fossil Fuel CO2 Inputs. Environ. Sci. Technol. 2016, 50, 12122–12128. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, J.; Tans, P.P.; Lehman, S.J.; Baker, D.; Conway, T.J.; Chung, Y.S.; Gregg, J.; Miller, J.B.; Southon, J.R.; Zhou, L.-X. Atmospheric observations of carbon monoxide and fossil fuel CO2 emissions from East Asia. J. Geophys. Res.-Atmos. 2011, 116, D24306. [Google Scholar] [CrossRef]
- Levin, I.; Hammer, S.; Kromer, B.; Meinhardt, F. Radiocarbon observations in atmospheric CO2: Determining fossil fuel CO2 over Europe using Jungfraujoch observations as background. Sci. Total Environ. 2008, 391, 211–216. [Google Scholar] [CrossRef]
- Schmidt, M.; Graul, R.; Sartorius, H.; Levin, I. The Schauinsland CO2 record: 30 years of continental observations and their implications for the variability of the European CO2 budget. J. Geophys. Res. 2003, 108. [Google Scholar] [CrossRef]
- Currie, K.I.; Brailsford, G.; Nichol, S.; Gomez, A.; Sparks, R.; Lassey, K.R.; Riedel, K. Tropospheric 14CO2 at Wellington, New Zealand: The world’s longest record. Biogeochemistry 2011, 104, 5–22. [Google Scholar] [CrossRef]
- Patra, P.K.; Houweling, S.; Krol, M.; Bousquet, P.; Belikov, D.; Bergmann, D.; Bian, H.; Cameron-Smith, P.; Chipperfield, M.P.; Corbin, K.; et al. TransCom model simulations of CH4 and related species: Linking transport, surface flux and chemical loss with CH4 variability in the troposphere and lower stratosphere. Atmos. Chem. Phys. 2011, 11, 12813–12837. [Google Scholar] [CrossRef] [Green Version]
- Graven, H.D. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century. Proc. Natl. Acad. Sci. USA 2015, 112, 9542–9545. [Google Scholar] [CrossRef]
- Wang, R.; Tao, S.; Ciais, P.; Shen, H.Z.; Huang, Y.; Chen, H.; Shen, G.F.; Wang, B.; Li, W.; Zhang, Y.Y.; et al. High-resolution mapping of combustion processes and implications for CO2 emissions. Atmos. Chem. Phys. 2013, 13, 5189–5203. [Google Scholar] [CrossRef] [Green Version]
- Molnar, M.; Haszpra, L.; Svingor, E.; Major, I.; Svetlik, I. Atmospheric fossil fuel CO2 measurement using a field unit in a central european city during the winter of 2008/09. Radiocarbon 2010, 52, 835–845. [Google Scholar] [CrossRef] [Green Version]
- Molnar, M.; Major, I.; Haszpra, L.; Svetlik, I.; Svingor, E.; Veres, M. Fossil fuel CO2 estimation by atmospheric C-14 measurement and CO2 mixing ratios in the city of Debrecen, Hungary. J. Radioanal. Nucl. Chem. 2010, 286, 471–476. [Google Scholar] [CrossRef]
- Faurescu, I.; Varlam, C.; Vagner, I.; Faurescu, D.; Bogdan, D.; Costinel, D. Radiocarbon level in the atmosphere of ramnicu valcea, romania. Radiocarbon 2019, 61, 1625–1632. [Google Scholar] [CrossRef]
- Wenger, A.; Pugsley, K.; O’Doherty, S.; Rigby, M.; Manning, A.J.; Lunt, M.F.; White, E.D. Atmospheric radiocarbon measurements to quantify CO2 emissions in the UK from 2014 to 2015. Atmos. Chem. Phys. 2019, 19, 14057–14070. [Google Scholar] [CrossRef] [Green Version]
- Newman, S.; Xu, X.; Gurney, K.R.; Hsu, Y.K.; Li, K.F.; Jiang, X.; Keeling, R.; Feng, S.; O’Keefe, D.; Patarasuk, R.; et al. Toward consistency between trends in bottom-up CO2 emissions and top-down atmospheric measurements in the Los Angeles megacity. Atmos. Chem. Phys. 2016, 16, 3843–3863. [Google Scholar] [CrossRef] [Green Version]
- Vay, S.A.; Choi, Y.; Vadrevu, K.P.; Blake, D.R.; Tyler, S.C.; Wisthaler, A.; Hecobian, A.; Kondo, Y.; Diskin, G.S.; Sachse, G.W.; et al. Patterns of CO2 and radiocarbon across high northern latitudes during International Polar Year 2008. J. Geophys. Res.-Atmos. 2011, 116, D14301. [Google Scholar] [CrossRef] [Green Version]
- Cui, X.; Newman, S.; Xu, X.; Andrews, A.E.; Miller, J.; Lehman, S.; Jeong, S.; Zhang, J.; Priest, C.; Campos-Pineda, M.; et al. Atmospheric observation-based estimation of fossil fuel CO2 emissions from regions of central and southern California. Sci. Total Environ. 2019, 664, 381–391. [Google Scholar] [CrossRef] [Green Version]
- 7Vay, S.A.; Tyler, S.C.; Choi, Y.; Blake, D.R.; Blake, N.J.; Sachse, G.W.; Diskin, G.S.; Singh, H.B. Sources and transport of delta C-14 in CO2 within the Mexico City Basin and vicinity. Atmos. Chem. Phys. 2009, 9, 4973–4985. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Hong, W.; Park, G.; Sung, K.S.; Lee, K.H.; Kim, Y.E.; Kim, J.K.; Choi, H.W.; Kim, G.D.; Woo, H.J. Distributions of fossil fuel originated CO2 in five metropolitan areas of Korea (Seoul, Busan, Daegu, Daejeon, and Gwangju) according to the Delta C-14 in ginkgo leaves. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 2013, 294, 508–514. [Google Scholar] [CrossRef]
- Niu, Z.; Zhou, W.; Zhang, X.; Wang, S.; Zhang, D.; Lu, X.; Cheng, P.; Wu, S.; Xiong, X.; Du, H.; et al. The spatial distribution of fossil fuel CO2 traced by Delta C-14 in the leaves of gingko (Ginkgo biloba L.) in Beijing City, China. Environ. Sci. Pollut. R 2016, 23, 556–562. [Google Scholar] [CrossRef]
- Xi, X.T.; Ding, X.F.; Fu, D.P.; Zhou, L.P.; Liu, K.X. Regional Delta C-14 patterns and fossil fuel derived CO2 distribution in the Beijing area using annual plants. Chin. Sci. Bull. 2011, 56, 1721–1726. [Google Scholar] [CrossRef] [Green Version]
- Niu, Z.; Zhou, W.; Wu, S.; Cheng, P.; Lu, X.; Xiong, X.; Du, H.; Fu, Y.; Wang, G. Atmospheric Fossil Fuel CO2 Traced by Delta C-14 in Beijing and Xiamen, China: Temporal Variations, Inland/Coastal Differences and Influencing Factors. Environ. Sci. Technol. 2016, 50, 5474–5480. [Google Scholar] [CrossRef] [PubMed]
- Ding, P.; Shen, C.D.; Yi, W.X.; Wang, N.; Ding, X.F.; Fu, D.P.; Liu, K.X. Fossil-fuel-derived CO2 contribution to the urban atmosphere in guangzhou, south china, estimated by (CO2)-C-14 observation, 2010–2011. Radiocarbon 2013, 55, 791–803. [Google Scholar] [CrossRef]
- Xiong, X.H.; Zhou, W.J.; Wu, S.G.; Cheng, P.; Du, H.; Hou, Y.Y.; Niu, Z.C.; Wang, P.; Lu, X.F.; Fu, Y.C. Two-Year Observation of Fossil Fuel Carbon Dioxide Spatial Distribution in Xi’an City. Adv. Atmos. Sci. 2020, 37, 569–575. [Google Scholar] [CrossRef]
- Zhou, W.; Niu, Z.; Wu, S.; Xiong, X.; Hou, Y.; Wang, P.; Feng, T.; Cheng, P.; Du, H.; Lu, X.; et al. Fossil fuel CO2 traced by radiocarbon in fifteen Chinese cities. Sci. Total Environ. 2020, 729. [Google Scholar] [CrossRef]
- Wang, P.; Zhou, W.; Niu, Z.; Cheng, P.; Wu, S.; Xiong, X.; Lu, X.; Du, H. Emission characteristics of atmospheric carbon dioxide in Xi’an, China based on the measurements of CO2 concentration, big up tri, open(14)C and delta(13)C. Sci. Total Environ. 2018, 619–620, 1163–1169. [Google Scholar] [CrossRef]
- Varga, T.; Jull, A.J.T.; Lisztes-Szabó, Z.; Molnár, M. Spatial Distribution of 14C in Tree Leaves from Bali, Indonesia. Radiocarbon 2019, 62, 235–242. [Google Scholar] [CrossRef]
- Park, J.H.; Hong, W.; Park, G.; Sung, K.S.; Lee, K.H.; Kim, Y.E.; Kim, J.K.; Choi, H.W.; Kim, G.D.; Woo, H.J.; et al. A comparison of distribution maps of Delta C-14 in 2010 and 2011 in korea. Radiocarbon 2013, 55, 841–847. [Google Scholar] [CrossRef]
- Xi, X.T.; Ding, X.F.; Fu, D.P.; Zhou, L.P.; Liu, K.X. Delta C-14 level of annual plants and fossil fuel derived CO2 distribution across different regions of China. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. At. 2013, 294, 515–519. [Google Scholar] [CrossRef]
- Feng, T.; Zhou, W.; Wu, S.; Niu, Z.; Cheng, P.; Xiong, X.; Li, G. Simulations of summertime fossil fuel CO2 in the Guanzhong basin, China. Sci. Total Environ. 2018, 624, 1163–1170. [Google Scholar] [CrossRef]
- Wu, S.G.; Zhou, W.J.; Cheng, P.; Xiong, X.H.; Zhou, J.; Feng, T.; Hou, Y.Y.; Chen, N.; Wang, P.; Du, H.; et al. Tracing fossil fuel CO2 by C-14 in maize leaves in Guanzhong Basin of China. J Environ. Manag. 2022, 323, 116286. [Google Scholar] [CrossRef] [PubMed]
- Turnbull, J.; Miller, J.B.; Lehman, S.J.; Hurst, D.; Peters, W.; Tans, P.P.; Southon, J.; Montzka, S.A.; Elkins, J.W.; Mondeel, D.J.; et al. Spatial distribution of Delta(CO2)-C-14 across Eurasia: Measurements from the TROICA-8 expedition. Atmos. Chem. Phys. 2009, 9, 175–187. [Google Scholar] [CrossRef] [Green Version]
- Levin, I.; Hammer, S.; Eichelmann, E.; Vogel, F.R. Verification of greenhouse gas emission reductions: The prospect of atmospheric monitoring in polluted areas. Philos Trans. R. Soc. A 2011, 369, 1906–1924. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Zhou, W.; Feng, X.; Hou, Y.; Chen, N.; Du, H.; Wu, S.; Fu, Y.; Lu, X.; Cheng, P.; et al. Determining diurnal fossil fuel CO2 and biological CO2 by Delta(CO2)-C-14 observation on certain summer and winter days at Chinese background sites. Sci. Total Environ. 2020, 718. [Google Scholar] [CrossRef]
- Wang, P.; Zhou, W.J.; Niu, Z.C.; Xiong, X.H.; Wu, S.G.; Cheng, P.; Hou, Y.Y.; Lu, X.F.; Du, H. Spatio-temporal variability of atmospheric CO2 and its main causes: A case study in Xi’an city, China. Atmos. Res. 2021, 249. [Google Scholar] [CrossRef]
- Zimnoch, M.; Jelen, D.; Galkowski, M.; Kuc, T.; Necki, J.; Chmura, L.; Gorczyca, Z.; Jasek, A.; Rozanski, K. Partitioning of atmospheric carbon dioxide over Central Europe: Insights from combined measurements of CO2 mixing ratios and their carbon isotope composition. Isot. Environ. Health Stud. 2012, 48, 421–433. [Google Scholar] [CrossRef]
- Bozhinova, D.; Combe, M.; Palstra, S.W.L.; Meijer, H.A.J.; Krol, M.C.; Peters, W. The importance of crop growth modeling to interpret the Delta(CO2)-C-14 signature of annual plants. Glob. Biogeochem. Cycles 2013, 27, 792–803. [Google Scholar] [CrossRef] [Green Version]
- Andres, R.J.; Boden, T.A.; Higdon, D. A new evaluation of the uncertainty associated with CDIAC estimates of fossil fuel carbon dioxide emission. Tellus B Chem. Phys. Meteorol. 2014, 66, 23616. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Guan, D.; Wei, W.; Davis, S.J.; Ciais, P.; Bai, J.; Peng, S.; Zhang, Q.; Hubacek, K.; Marland, G.; et al. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 2015, 524, 335–338. [Google Scholar] [CrossRef]
- Han, P.; Zeng, N.; Oda, T.; Lin, X.; Crippa, M.; Guan, D.; Janssens-Maenhout, G.; Ma, X.; Liu, Z.; Shan, Y.; et al. Evaluating China’s fossil-fuel CO2 emissions from a comprehensive dataset of nine inventories. Atmos. Chem. Phys. 2020, 20, 11371–11385. [Google Scholar] [CrossRef]
- Göckede, M.; Michalak, A.M.; Vickers, D.; Turner, D.P.; Law, B.E. Atmospheric inverse modeling to constrain regional-scale CO2 budgets at high spatial and temporal resolution. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Lauvaux, T.; Miles, N.L.; Deng, A.; Richardson, S.J.; Cambaliza, M.O.; Davis, K.J.; Gaudet, B.; Gurney, K.R.; Huang, J.; O’Keefe, D.; et al. High-resolution atmospheric inversion of urban CO2 emissions during the dormant season of the Indianapolis Flux Experiment (INFLUX). J. Geophys. Res. Atmos. 2016, 121, 5213–5236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evangeliou, N.; Thompson, R.L.; Eckhardt, S.; Stohl, A. Top-down estimates of black carbon emissions at high latitudes using an atmospheric transport model and a Bayesian inversion framework. Atmos. Chem. Phys. 2018, 18, 15307–15327. [Google Scholar] [CrossRef] [Green Version]
- Hedelius, J.K.; Liu, J.J.; Oda, T.; Maksyutov, S.; Roehl, C.M.; Iraci, L.T.; Podolske, J.R.; Hillyard, P.W.; Liang, J.M.; Gurney, K.R.; et al. Southern California megacity CO2, CH4, and CO flux estimates using ground- and space-based remote sensing and a Lagrangian model. Atmos. Chem. Phys. 2018, 18, 16271–16291. [Google Scholar] [CrossRef] [Green Version]
- Turnbull, J.C.; Keller, E.D.; Norris, M.W.; Wiltshire, R.M. Independent evaluation of point source fossil fuel CO2 emissions to better than 10%. Proc. Natl. Acad. Sci. USA 2016, 113, 10287–10291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, S.; Miller, J.B.; Lehman, S. Separation of biospheric and fossil fuel fluxes of CO2 by atmospheric inversion of CO2 and (CO2)-C-14 measurements: Observation System Simulations. Atmos. Chem. Phys. 2016, 16, 5665–5683. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Broquet, G.; Ciais, P.; Chevallier, F.; Vogel, F.; Kadygrov, N.; Wu, L.; Yin, Y.; Wang, R.; Tao, S. Estimation of observation errors for large-scale atmospheric inversion of CO2 emissions from fossil fuel combustion. Tellus Ser. B-Chem. Phys. Meteorol. 2017, 69. [Google Scholar] [CrossRef] [Green Version]
- Potier, E.; Broquet, G.; Wang, Y.L.; Santaren, D.; Berchet, A.; Pison, I.; Marshall, J.; Ciais, P.; Breon, F.M.; Chevallier, F. Complementing XCO2 imagery with ground-based CO2 and (CO2)-C-14 measurements to monitor CO2 emissions from fossil fuels on a regional to local scale. Atmos. Meas. Technol. 2022, 15, 5261–5288. [Google Scholar] [CrossRef]
- Levin, I.; Worthy, D.E.J. Implications for Deriving Regional Fossil Fuel CO2 Estimates from Atmospheric Observations in a Hot Spot of Nuclear Power Plant 14CO2 Emissions. Radiocarbon 2016, 55, 1556–1572. [Google Scholar] [CrossRef]
- Graven, H.D.; Gruber, N. Continental-scale enrichment of atmospheric (CO2)-C-14 from the nuclear power industry: Potential impact on the estimation of fossil fuel-derived CO2. Atmos. Chem. Phys. 2011, 11, 12339–12349. [Google Scholar] [CrossRef] [Green Version]
- Kuderer, M.; Hammer, S.; Levin, I. The influence of (CO2)-C-14 releases from regional nuclear facilities at the Heidelberg (CO2)-C-14 sampling site (1986–2014). Atmos. Chem. Phys. 2018, 18, 7951–7959. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Zhou, W.J.; Xiong, X.H.; Wu, S.G.; Niu, Z.C.; Yu, Y.L.; Liu, J.Z.; Feng, T.; Cheng, P.; Du, H.; et al. Source Attribution of Atmospheric CO2 Using C-14 and C-13 as Tracers in Two Chinese Megacities During Winter. J. Geophys. Res.-Atmos. 2022, 127, 1–12. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, M.-Y.; Lin, Y.-C.; Zhang, Y.-L. Estimation of Atmospheric Fossil Fuel CO2 Traced by Δ14C: Current Status and Outlook. Atmosphere 2022, 13, 2131. https://doi.org/10.3390/atmos13122131
Yu M-Y, Lin Y-C, Zhang Y-L. Estimation of Atmospheric Fossil Fuel CO2 Traced by Δ14C: Current Status and Outlook. Atmosphere. 2022; 13(12):2131. https://doi.org/10.3390/atmos13122131
Chicago/Turabian StyleYu, Ming-Yuan, Yu-Chi Lin, and Yan-Lin Zhang. 2022. "Estimation of Atmospheric Fossil Fuel CO2 Traced by Δ14C: Current Status and Outlook" Atmosphere 13, no. 12: 2131. https://doi.org/10.3390/atmos13122131
APA StyleYu, M. -Y., Lin, Y. -C., & Zhang, Y. -L. (2022). Estimation of Atmospheric Fossil Fuel CO2 Traced by Δ14C: Current Status and Outlook. Atmosphere, 13(12), 2131. https://doi.org/10.3390/atmos13122131