Heteroscedastic Characteristics of Precipitation with Climate Changes in China
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data
2.2. Methodology
3. Results and Discussion
3.1. Annual and Seasonal Changes
3.2. Quantiles Selection
3.3. Different Trends Responses with Chosen Quantiles
3.4. Responses to Different Climate Changes Scenarios
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rana, A.; Uvo, C.B.; Bengtsson, L.; Sarthi, P. Trend analysis for rainfall in Delhi and Mumbai, India. Clim. Dyn. 2011, 38, 45–56. [Google Scholar] [CrossRef]
- Higham, J.; Cohen, S.A.; Cavaliere, C.T.; Reis, A.; Finkler, W. Climate change, tourist air travel and radical emissions reduction. J. Clean. Prod. 2016, 111, 336–347. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.Y.; Cai, J.; Gao, B.B. Detecting the causality influence of individual meteorological factors on local PM2.5 concentration in the Jing-Jin-Ji region. Sci. Rep. 2017, 7, 407352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tobin, K.J.; Bennett, M.E. Adjusting satellite precipitation data to facilitate hydrologic modeling. J. Hydrometeorol. 2010, 11, 966–978. [Google Scholar] [CrossRef]
- Chatterjee, S.; Khan, A.; Akbari, H.; Wang, Y.P. Monotonic trends in spatio-temporal distribution and concentration of monsoon precipitation (1901–2002) West Bengal, India. Atmos. Res. 2016, 182, 54–75. [Google Scholar] [CrossRef]
- Wang, Y.F.; Xu, Y.F.; Lei, C.G. Spatio-temporal characteristics of precipitation and dryness/wetness in Yangtze River Delta, eastern China, during 1960–2012. Atmos. Res. 2016, 172, 196–205. [Google Scholar] [CrossRef]
- Ronghui, H.; Rongshuo, C.; Jilong, C.; Liantong, Z. Interdecadal Variations of Drought and Flooding Disasters in China and Their Association with the East Asian Climate System. Chin. J. Atmos. Sci. 2006, 30, 730–743. [Google Scholar]
- IPCC-Intergovernmental Panel on Climate Change. Climate Change 2014: Impacts, Adaptation, and Vulnerability; Cambridage University Press: Cambridage, UK, 2014. [Google Scholar]
- Onof, C.; Arnbjerg-Nielsen, K. Quantification of anticipated future changes in high resolution design rainfall for urban areas. Atmos. Res. 2009, 92, 350–363. [Google Scholar] [CrossRef]
- Quirmbach, M.; Einfalt, T.; Langstadtler, G. Climate change analysis of precipitation data for North Rhine-Westphalia. Atmos. Res. 2012, 109–110, 1–13. [Google Scholar] [CrossRef]
- Irannezhad, M.; Marttila, H.; Klove, B. Long-term variations and trends in precipitation in Finland. Int. J. Climatol. 2014, 34, 3139–3153. [Google Scholar] [CrossRef]
- Zhao, J.; Feng, G.; Yang, J. Analysis of the distribution of the large-scale drought/flood of summer in China under different types of the western Pacific subtropical high. Acta Meteorol. Sin. 2012, 70, 1021–1031. (In Chinese) [Google Scholar]
- He, B.; Zhai, P. Changes in persistent and non-persistent extreme precipitation in China from 1961 to 2016. Adv. Clim. Chang. Res. 2018, 9, 177–184. [Google Scholar] [CrossRef]
- He, J.; Wu, Z.; Jiang, Z. “Climate effect” of the northeast cold vortex and its influences on “Meiyu”. Chin. Sci. Bull. 2006, 51, 2803–2809. (In Chinese) [Google Scholar] [CrossRef]
- Shi, N.; Huang, X.; Yang, Y. Temporal and spatial characteristics of the trend of global precipitation annual precipitation field from 1948 to 2000 Chinese. Atmos. Sci. 2003, 27, 971–982. (In Chinese) [Google Scholar]
- Zhai, P.M.; Wang, C.; Li, W. A Review on Study of Change in Precipitation Extremes. Clim. Chang. Res. 2007, 144–148. (In Chinese) [Google Scholar]
- Liu, F.; Ouyang, Y.; Wang, B.; Yang, J.; Ling, J.; Hsu, P.C. Seasonal evolution of the intraseasonal variability of China summer precipitation. Clim. Dyn. 2020, 54, 4641–4655. [Google Scholar] [CrossRef]
- Zhai, P.; Zhang, X.; Wan, H.; Pan, X. Trends in total precipitation and frequency of daily precipitation extremes over China. J. Clim. 2005, 18, 1096–1107. [Google Scholar] [CrossRef]
- Wu, Y.; Guo, J.; Lin, H.; Bai, J.; Wang, X. Spatiotemporal patterns of future temperature and precipitation over China projects by PRECIS under RCPs. Atmos. Res. 2020, 249, 105303. [Google Scholar] [CrossRef]
- Jiang, Z.; Shen, Y.; Ma, T.; Zhai, P.; Fang, S. Changes of precipitation intensity spectra in different regions of mainland China during 1961–2006. J. Meteorol. Res. 2014, 28, 1085–1098. [Google Scholar] [CrossRef]
- Ren, G.; Ren, Y. Spatial and temporal patterns of precipitation variability over mainland China: II: Recent trends. Adv. Water Sci. 2015, 26, 451–465. (In Chinese) [Google Scholar]
- Li, W.; Zuo, J.; Song, Y. Change in Spatio-Temporal Distribution of Drought/Flood Disaster in Southern China Under Global Climate Warming. Meteorol. Mon. 2015, 41, 261–271. [Google Scholar]
- Liu, B.J.; Li, Y.; Chen, J.F.; Chen, X.H. Long-term change in precipitation structure over the karst area of southwest China. Int. J. Climatol. 2015, 36, 2417–2434. [Google Scholar] [CrossRef] [Green Version]
- Koenker, R.W.; Bassett, G. Regression quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Yu, K.; Lu, Z.; Stander, J. Quantile regression: Applications and current research areas. Statistician 2003, 52, 331e350. [Google Scholar] [CrossRef]
- Chamaille-Jammes, S.; Fritz, H.; Murinadagomo, F. Detecting climate changes of concern in highly variable environments: Quantile regressions reveal that droughts worsen in Hwange national park, Zimbabwe. J. Arid Environ. 2007, 71, 321–326. [Google Scholar] [CrossRef]
- Barbosa, S.M. Quantile trends in Baltic Sea level. Geophys. Res. Lett. 2008, 35, L22704. [Google Scholar] [CrossRef]
- Luce, C.H.; Holden, Z.A. Declining annual streamflow distributions in the Pacific Northwest United States, 1948–2006. Geophys. Res. Lett. 2009, 36, L16401. [Google Scholar] [CrossRef] [Green Version]
- Timofeev, A.A.; Sterin, A.M. Using the quantile regression method to analyze changes in climate characteristics. Russ. Meteorol. Hydrol. 2010, 35, 27–41. [Google Scholar] [CrossRef]
- Liao, R.; Shen, Y.; Zhang, D.-B. Characteristics of winter rainfall in eastern China based on grid data. J. Meteorol. Environ. 2013, 29, 55–62. [Google Scholar]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the CMIP6 experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Tareghian, R.; Rasmussen, P.F. Analysis of Arctic and Antarctic Sea ice extent using quantile regression. Int. J. Climatol. 2012, 33, 1079–1086. [Google Scholar] [CrossRef]
- Fan, L.; Xiong, Z. Using quantile regression to detect relationships between large-scale predictors and local precipitation over northern China. Adv. Atmos. Sci. 2015, 32, 541–552. [Google Scholar] [CrossRef]
- Tan, X.; Shao, D. Precipitation trends and teleconnections identified using quantile regressions over Xinjiang, China. Int. J. Climatol. 2017, 37, 1510–1525. [Google Scholar] [CrossRef]
- Bondell, H.D.; Reich, B.J.; Wang, H. Noncrossing quantile regression curve estimation. Biometrika 2010, 97, 825–838. [Google Scholar] [CrossRef] [Green Version]
- Koenker, R. Quantile Regression in R: A Vignette. 2006, Volume 13. Available online: http://www.econ.uiuc.edu/~roger/research/rq/vig.pdf (accessed on 1 September 2022).
- Yan, Z.; Yang, C. Geographic Patterns of Extreme Climate Change in China during 1951–1997. Clim. Environ. Res. 2000, 5, 267–272. (In Chinese) [Google Scholar]
- Sui, Y.; Jiang, D.B.; Tian, Z.P. Latest update of the climatology and changes in the seasonal distribution of precipitation over China. Theor. Appl. Climatol. 2013, 113, 599–610. [Google Scholar] [CrossRef]
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The Changing Character of Precipitation. Bull. Am. Meteorol. Soc. 2010, 84, 1205–1217. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, B.; Sun, L.; Ma, Z.; Zhao, Y.; He, X.Q. The Change Characteristics of Precipitation and Its Temporal Distribution Homogeneity in Hexi Region of China in Recent 50 Years. Resour. Sci. 2012, 34, 811–818. [Google Scholar]
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.1 | + | + | + | + | + | + | + | + | − | − | − | − | − | − | − | − |
0.2 | + | + | + | + | − | − | − | − | + | + | + | + | − | − | − | − |
0.3 | + | + | − | − | + | + | − | − | + | + | − | − | + | + | − | − |
0.4 | + | − | + | − | + | − | + | − | + | − | + | − | + | − | + | − |
C | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
SUM | 1057 | 100 | 35 | 96 | 73 | 25 | 40 | 187 |
PCT | 27.63% | 2.61% | 0.92% | 2.51% | 1.91% | 0.65% | 1.05% | 4.89% |
C | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
SUM | 297 | 64 | 41 | 72 | 217 | 68 | 198 | 1255 |
PCT | 7.76% | 1.67% | 1.07% | 1.88% | 5.67% | 1.78% | 5.19% | 32.81% |
C | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|
SUM | 1491 | 193 | 85 | 109 | 60 | 35 | 56 | 94 |
PCT | 38.98% | 5.05% | 2.22% | 2.85% | 1.57% | 0.92% | 1.46% | 2.46% |
C | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
SUM | 197 | 55 | 24 | 68 | 180 | 86 | 218 | 874 |
PCT | 5.15% | 1.44% | 0.63% | 1.78% | 4.71% | 2.25% | 5.70% | 22.85% |
Annual | MAM | JJA | SON | DJF | |
---|---|---|---|---|---|
SSP2-4.5 | 0.96 * | 0.25 * | 0.57 * | 0.09 | 0.06 |
SSP5-8.5 | 1.75 * | 0.43 * | 0.77 * | 0.43 * | 0.12 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, Z.; Wang, L.; Chen, X.; Zhang, H.; Li, Z. Heteroscedastic Characteristics of Precipitation with Climate Changes in China. Atmosphere 2022, 13, 2116. https://doi.org/10.3390/atmos13122116
Qian Z, Wang L, Chen X, Zhang H, Li Z. Heteroscedastic Characteristics of Precipitation with Climate Changes in China. Atmosphere. 2022; 13(12):2116. https://doi.org/10.3390/atmos13122116
Chicago/Turabian StyleQian, Zhonghua, Luyao Wang, Xin Chen, Hui Zhang, and Zimeng Li. 2022. "Heteroscedastic Characteristics of Precipitation with Climate Changes in China" Atmosphere 13, no. 12: 2116. https://doi.org/10.3390/atmos13122116
APA StyleQian, Z., Wang, L., Chen, X., Zhang, H., & Li, Z. (2022). Heteroscedastic Characteristics of Precipitation with Climate Changes in China. Atmosphere, 13(12), 2116. https://doi.org/10.3390/atmos13122116