Improving the Wind Power Density Forecast in the Middle- and High-Latitude Regions of China by Selecting the Relatively Optimal Planetary Boundary Layer Schemes
Abstract
:1. Introduction
2. Data, Model Configuration and Methods
2.1. Data
2.2. Model Configuration
2.3. Evaluation Methods
3. Evaluation on the Forecasts of Wind Power Density-Related Factors
3.1. Evaluation on the 100 m Wind Speed Forecast
3.2. Evaluation on the Sea Level Pressure and 2 m Temperature Forecasts
3.3. Evaluation on 10 m Wind Forecast
4. Evaluation on the Forecasts of the Background Conditions
4.1. Evaluation on 500 hPa Geopotential Height Forecast
4.2. Evaluation on the 24-h Accumulated Precipitation Forecast
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, S.M.; Yu, F.; Wang, D.H.; Xia, R.D. A comparison of two kinds of eastward-moving mesoscale vortices during the mei-yu period of 2010. Sci. China Earth Sci. 2013, 56, 282–300. [Google Scholar] [CrossRef]
- Fu, S.M.; Liu, R.X.; Sun, J.H. On the scale interactions that dominate the maintenance of a persistent heavy rainfall event: A piecewise energy analysis. J. Atmos. Sci. 2018, 75, 907–925. [Google Scholar] [CrossRef]
- Li, R.S. Distributed Power Resources: Operation and Control of Connecting to the Grid; Academic Press: New York, NY, USA, 2019; 248p. [Google Scholar] [CrossRef]
- Schlömer, S.; Bruckner, T.; Fulton, L.; Hertwich, E.; McKinnon, A.; Perczyk, D.; Roy, J.; Schaeffer, R.; Sims, R.; Smith, P.; et al. Annex III: Technology-specific cost and performance parameters. In Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; Volume 133. [Google Scholar]
- Fu, S.M.; Mai, Z.; Sun, J.H.; Li, W.L.; Zhong, Q.; Sun, J.R.; Zhang, Y.C. A semi-idealized modeling study on the long-lived eastward propagating mesoscale convective system over the Tibetan Plateau. Sci. China Earth Sci. 2021, 64, 1996–2014. [Google Scholar] [CrossRef]
- Calif, R.; Schmitt, F.G.; Huang, Y. Multifractal description of wind power fluctuations using arbitrary order Hilbert spectral analysis. Phys. A Stat. Mech. Its Appl. 2013, 392, 4106–4120. [Google Scholar] [CrossRef]
- Fu, S.M.; Jin, S.L.; Shen, W.; Li, D.Y.; Liu, B.; Sun, J.H. A kinetic energy budget on the severe wind production that cause a serious state grid failure in Southern Xinjiang China. Atmos. Sci. Lett. 2020, 2020, e977. [Google Scholar] [CrossRef]
- Jin, S.L.; Feng, S.L.; Shen, W.; Fu, S.M.; Jiang, L.Z.; Sun, J.H. Energetics characteristics accounting for the low-level wind’s rapid enhancement associated with an extreme explosive extratropical cyclone over the western North Pacific Ocean. Atmos. Ocean. Sci. Lett. 2020, 13, 426–435. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, D. A data-driven deep sequence-to-sequence long-short memory method along with a gated recurrent neural network for wind power forecasting. Energy 2022, 239, 122109. [Google Scholar] [CrossRef]
- Wu, C.; Luo, K.; Wang, Q.; Fan, J. Simulated potential wind power sensitivity to the planetary boundary layer parameterizations combined with various topography datasets in the weather research and forecasting model. Energy 2022, 239, 122047. [Google Scholar] [CrossRef]
- Howard, T.; Clark, P. Correction and downscaling of NWP wind speed forecasts. Meteorol. Appl. 2007, 14, 105–116. [Google Scholar] [CrossRef]
- Ma, H.; Ma, X.; Mei, S.; Wang, F.; Jing, Y. Improving the Near-Surface Wind Forecast around the Turpan Basin of the Northwest China by Using the WRF_TopoWind Model. Atmosphere 2021, 12, 1624. [Google Scholar] [CrossRef]
- Jin, S.L.; Feng, S.L.; Wang, B.; Liu, X.L.; Hu, J.; Song, Z.P. Applicability of Planetary Boundary Layer Parameterization Schemes for Wind Field Numerical Prediction in China Northwest Power Grid. High Volt. Eng. 2022, 48, 435–447. [Google Scholar]
- Liu, H.; Mi, X.W.; Li, Y.F. Smart wind speed deep learning based multi-step forecasting model using singular spectrum analysis, convolutional gated recurrent unit network and support vector regression. Renew. Energy 2019, 143, 842–854. [Google Scholar] [CrossRef]
- Harbola, S.; Coors, V. One dimensional convolutional neural network architectures for wind prediction. Energy Convers. Manag. 2019, 195, 70–75. [Google Scholar] [CrossRef]
- Moreno, S.R.; Silva, R.G.D.; Mariani, V.C. Multi-step wind speed forecasting based on hybrid multi-stage decomposition model and long short-term memory neural network. Energy Convers. Manag. 2020, 213, 112869. [Google Scholar] [CrossRef]
- Wang, T.; Ma, S.; Gao, Y.; Gong, Y.; An, Z. The hybrid of wavelet packet decomposition and machine learning models in wind speed forecasting. J. Desert Res. 2021, 41, 38–50. [Google Scholar]
- Bai, Y.; Fang, D.; Hou, Y. Regional wind power forecasting system for Inner Mongolia power grid. Power Syst. Technol. 2010, 34, 157–162. [Google Scholar]
- Zhang, H.; Sun, K.; Tian, L.; Yan, G. Wind speed simulation of wind farm using WRF model. J. Tianjin Univ. 2012, 45, 1116–1120. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3. NCAR Tech. Note CAR/TN-475+STR, 113. 2008. Available online: https://opensky.ucar.edu/islandora/object/technotes:500 (accessed on 1 May 2022).
- Han, C.; Nan, M. Application and analysis of the wind resource assessment with WAsP software. Energy Eng. 2009, 4, 26–30. [Google Scholar]
- Frank, H.P.; Rathmann, O.; Mortensen, N.G.; Landberg, L. The Numerical Wind Atlas—The KAMM/WAsP Method; Risoe-R No. 1252; Forskningscenter Risoe: Roskilde, Denmark, 2001. [Google Scholar]
- Shikhovtsev, A.; Kovadlo, P.; Lukin, V.; Nosov, V.; Kiselev, A.; Kolobov, D.; Kopylov, E.; Shikhovtsev, M.; Avdeev, F. Statistics of the Optical Turbulence from the Micrometeorological Measurements at the Baykal Astrophysical Observatory Site. Atmosphere 2019, 10, 661. [Google Scholar] [CrossRef] [Green Version]
- Shikhovtsev, A.; Kovadlo, P.; Kiselev, A. Astroclimatic statistics at the Sayan Solar Observatory. Solar-Terr. Phys. 2020, 6, 102–107. [Google Scholar] [CrossRef]
- Holton, J.R. An Introduction to Dynamic Meteorology; Academic Press: San Diego, CA, USA, 2004. [Google Scholar]
- Yang, M.; Patiño-Echeverri, D.; Yang, F. Wind power generation in China: Understanding the mismatch between capacity and generation. Renew. Energy 2012, 41, 145–151. [Google Scholar] [CrossRef]
- Li, M.; Shen, Y.; Yao, J.; Ye, D.; Fan, J.; Simmonds, I. An assessment of observed wind speed and wind power density over China for 1980–2021. Wind Energy 2022, 1–25. [Google Scholar] [CrossRef]
- Yang, P.; Wang, X.; Wang, L.; Zhu, Y. A study on the applicability of WRF_TopoWind model to simulate the mountain wind speed of the low latitude plateau in China. J. Yunnan Univ. Nat. Sci. Ed. 2016, 38, 766–772. [Google Scholar]
- Mughal, M.O.; Lynch, M.; Yu, F.; McGann, B.; Jeanneret, F.; Sutton, J. Wind modelling, validation and sensitivity study using Weather Research and Forecasting model in complex terrain. Environ. Model. Softw. 2017, 90, 107–125. [Google Scholar] [CrossRef]
- Salvaçao, N.; Soares, C.G. Wind resource assessment offshore the Atlantic Iberian coast with the WRF model. Energy 2018, 145, 276–287. [Google Scholar] [CrossRef]
- Prosper, M.A.; Otero-Casal, C.; Canoura, F.F.; Miguez-Macho, G. Wind power forecasting for a real onshore wind farm on complex terrain using WRF high resolution simulations. Renew. Energy 2019, 135, 674–686. [Google Scholar] [CrossRef]
- Huffman, G.J.; Stocker, E.F.; Bolvin, D.T.; Nelkin, E.J.; Tan, J. GPM IMERG Final Precipitation L3 1 Day 0.1 Degree x 0.1 Degree V06; Savtchenko, A., Ed.; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MD, USA, 2019. [CrossRef]
- Hong, S.; Pan, H. Nonlocal boundary layer vertical diffusion in a medium range forecast model. Mon. Weather Rev. 1996, 124, 2322–2339. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubnam, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Chen, F.; Dudhia, J. Coupling an advanced landsurface hydrology model with the Penn State/NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Huang, L.; Luo, Y.; Bai, L. An evaluation of convection-permitting ensemble simulations of coastal nocturnal rainfall over South China during the early-summer rainy season. J. Geophys. Res. Atmos. 2022, 127, e2021JD035656. [Google Scholar] [CrossRef]
- Nakanishi, M.; Niino, H. An improved Mellor–Yamada level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteorolol. 2004, 112, 1–31. [Google Scholar] [CrossRef]
- Bougeault, P.; Lacarrere, P. Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Weather Rev. 1989, 117, 1872–1890. [Google Scholar] [CrossRef]
- Hong, S.; Noh, Y. A New Vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef]
- Pleim, J. A combined local and nonlocal closure model for the atmospheric 611 boundary layer. Part I: Model description and testing. J. Appl. Meteorol. Climatol. 2007, 46, 1383–1395. [Google Scholar] [CrossRef]
- Grenier, H.; Bretherton, C. A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon. Weather Rev. 2001, 129, 357–377. [Google Scholar] [CrossRef]
- Bretherton, C.; Sungsu, P. A New Moist Turbulence Parameterization in the Community Atmosphere Model. J. Clim. 2009, 22, 3422–3448. [Google Scholar] [CrossRef]
- Fu, S.M.; Zhang, Y.C.; Wang, H.J.; Tang, H.; Li, W.L.; Sun, J.H. On the evolution of a long-lived mesoscale convective vortex that acted as a crucial condition for the extremely strong hourly precipitation in Zhengzhou. J. Geophys. Res. Atmos. 2022, 127, e2021JD036233. [Google Scholar] [CrossRef]
- Fu, S.M.; Mai, Z.; Sun, J.H.; Li, W.L.; Ding, D.; Wang, Y.Q. Impacts of convective activity over the Tibetan Plateau on plateau vortex, southwest vortex, and downstream precipitation. J. Atmos. Sci. 2019, 76, 3803–3830. [Google Scholar] [CrossRef]
- Etherton, B.; Santos, P. Sensitivity of WRF forecasts for South Florida to initial conditions. Weather Forecast. 2008, 23, 725–740. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.; Xue, M.; Thomas, K. Real-time storm-scale ensemble forecast experiment -analysis of 2008 spring experiment data. In Proceedings of the 24th Conference on Several Local Storms, Savannah, GA, USA, 27–31 October 2008; American Meteorological Society: Boston, MA, USA, 2008. [Google Scholar]
- Gualtieri, G. Reliability of ERA5 reanalysis data for wind resource assessment: A comparison against tall towers. Energies 2021, 14, 4169. [Google Scholar] [CrossRef]
- Aboobacker, V.M.; Shanas, P.R.; Veerasingam, S.; Al-Ansari, E.M.A.S.; Sadooni, F.N.; Vethamony, P. Long-term assessment of onshore and offshore wind energy potentials of Qatar. Energies 2021, 14, 1178. [Google Scholar] [CrossRef]
- Wen, Y.; Kamranzad, B.; Lin, P.Z. Assessment of long-term offshore wind energy potential in the south and southeast coasts of China based on a 55-year dataset. Energy 2021, 224, 120225. [Google Scholar] [CrossRef]
- Jung, C.; Schindler, D. The annual cycle and intra-annual variability of the global wind power distribution estimated by the system of wind speed distributions. Sustain. Energy Technol. Assess. 2020, 42, 100852. [Google Scholar] [CrossRef]
Full Name | Abbreviation | Key Features | Reference |
---|---|---|---|
The Medium-Range Forecast scheme | MRF | Nonlocal | [33] |
The Mellor–Yamada Nakanishi and Niino Level 2.5 scheme | MYN | Local | [38] |
The Bougeault and Lacarrere scheme | BLS | Local | [39] |
The Yonsei University scheme | YSU | Nonlocal | [40] |
The asymmetric convective model, version 2 | ACM | Nonlocal | [41] |
The Grenier–Bretherthon–McCaa scheme | GBM | Local | [42] |
The University of Washington moist turbulence scheme | UWS | Local | [43] |
Ranks First | Ranks Second | Ranks Third | |
---|---|---|---|
100 m wind speed | MRF | MYN | YSU |
10 m zonal wind | MRF | MYN/YSU | -- |
10 m meridional wind | MRF | YSU | MYN |
Sea level pressure | MRF | YSU | MYN |
500 hPa geopotential height | MRF | MYN | YSU |
2 m temperature | MYN | MRF | YSU |
24 h precipitation | YSU | MRF | MYN |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, H.; Cao, X.; Ma, X.; Su, H.; Jing, Y.; Zhu, K. Improving the Wind Power Density Forecast in the Middle- and High-Latitude Regions of China by Selecting the Relatively Optimal Planetary Boundary Layer Schemes. Atmosphere 2022, 13, 2034. https://doi.org/10.3390/atmos13122034
Ma H, Cao X, Ma X, Su H, Jing Y, Zhu K. Improving the Wind Power Density Forecast in the Middle- and High-Latitude Regions of China by Selecting the Relatively Optimal Planetary Boundary Layer Schemes. Atmosphere. 2022; 13(12):2034. https://doi.org/10.3390/atmos13122034
Chicago/Turabian StyleMa, Hui, Xin Cao, Xiaolei Ma, Haijing Su, Yanwei Jing, and Kunshuang Zhu. 2022. "Improving the Wind Power Density Forecast in the Middle- and High-Latitude Regions of China by Selecting the Relatively Optimal Planetary Boundary Layer Schemes" Atmosphere 13, no. 12: 2034. https://doi.org/10.3390/atmos13122034
APA StyleMa, H., Cao, X., Ma, X., Su, H., Jing, Y., & Zhu, K. (2022). Improving the Wind Power Density Forecast in the Middle- and High-Latitude Regions of China by Selecting the Relatively Optimal Planetary Boundary Layer Schemes. Atmosphere, 13(12), 2034. https://doi.org/10.3390/atmos13122034