The Vertical Distribution of VOCs and Their Impact on the Environment: A Review
Abstract
:1. Introduction
2. Sources of VOCs in the Vertical Direction
3. VOC Vertical Distribution Sampling Techniques
3.1. VOC Vertical Distribution Samplers
3.2. VOC Vertical Distribution Sampling Techniques
3.2.1. Building-/Tower-Based Measurements
3.2.2. Tethered Balloons (Airships)
3.2.3. Aircrafts
3.2.4. Remote Sensing and Satellites
3.2.5. Unmanned Aerial Vehicles (UAVs)
3.3. VOC Analytical Techniques
Technology | Commonly Equipped Instruments | Maximum Sampling Height | Advantages | Disadvantages | References |
---|---|---|---|---|---|
Building-/tower-based measurements | (1) PTR-TOF-MS (2) Adsorbent cartridge/tube (3) Canister | About 280 m | (1) High-resolution data (2) Shorter monitoring time (3) Being steady and long-term observation | (1) Fixed position (2) Low sampling height | [18,51,52,83,84,85] |
Tethered balloons (airships) | (1) Air sample bag (2) Canister | About 1600 m | (1) Low cost compared with aircrafts (2) Can hover for a long time with better stability performance and long-term observation | (1) Requires a large landing space (2) It is difficult to control height and position (ascent height is related to fuel content) (3) Slow moving speed (about 80–100 m/h) | [19,55,56,86] |
Aircrafts | (1) PTR-TOF-MS (2) Canister (3) SPME (4) A novel whole-air sample profiler (WASP), etc. | About 12 km | (1) Higher sampling height (2) Multifunctional—can carry SPME, WASP, and other instruments (3) High-resolution data (4) Shorter monitoring time | (1) Aircraft exhaust emissions may cause cross-contamination of samples (2) Higher risk when flying below 500 m (3) High cost due to human and material investment, such as pilot and aircraft maintenance | [30,60,61,62,63,87,88] |
Remote sensing and satellites | / | / | (1) Regional, national, and even continental scale monitoring is possible (2) Large-scale, high-resolution, real-time data are available | (1) Only a small number of compounds, such as glyoxal, methanol, peroxyacetyl nitrate, and formaldehyde, can be detected (2) Strongly affected by the atmospheric conditions (3) Cost and risk of launching satellites are high (4) Only provide columnar data of the whole atmosphere, unable to extract vertical VOC profiles | [28,36,65] |
UAVs | (1) Canister (2) SPME (3) WASP, etc. | About 1000 m | (1) Flexible sampling altitude and low risk of near-ground flight (2) In addition to SPME, WASP, and other instruments, can also carry meteorological sensors, etc. (3) Flexible sampling time (4) Low cost compared with aircrafts (5) Small takeoff and landing space | (1) Limited battery power and short operating time (2) The external coating of the UAVs may cause cross-contamination of the sample (3) Few types of sensors can be chosen (4) Inadequate laws and regulations regarding the operation of UAVs | [73,76,89,90,91] |
4. Vertical Distribution Characteristics of VOCs
4.1. Temporal Variations in the Vertical Distribution of VOCs
4.1.1. Diurnal Variations in the Vertical Distribution of VOCs
4.1.2. Seasonal Vertical Distribution Characteristics of VOCs
4.2. Regional Vertical Distribution Characteristics of VOCs
4.2.1. Urban and Suburban
4.2.2. Coastal and Inland
5. VOC Vertical Distribution Models
Model | Type | Applicable Scenarios | Simulable Pollutants | Grid Size | Advantages | Disadvantages | References |
---|---|---|---|---|---|---|---|
AERMOD | Bi Gaussian steady-state GP | (1) Dispersion simulation of pollutants on local, urban, and regional scales is possible (2) Point sources, surface sources, and volumetric sources can be modeled (3) Simulation of ground-level sources and elevated point sources is possible (4) Simulation can be performed for both flat terrain and complex terrain | (1) SO2, NO2, VOCs, and other primary pollutants (2) Fine particulate matter | <50 km | (1) Advanced algorithms to describe turbulent mixing processes in the troposphere and steady layer in the planetary boundary layer (2) Plume rise and buoyancy can be calculated to describe the vertical profiles of wind, turbulence, and temperature (3) The algorithm is more simplified and runs faster than ADMS | (1) Underestimation of the average and maximum of pollutant concentrations | [9,106,115] |
ADMS | 3D quasi-GP | Similar to the AERMOD model and especially suitable for the simulation of pollutant dispersion from elevated point sources | (1) SO2, NO2, VOCs, and other primary pollutants (2) Secondary pollutants such as sulfate, nitrate, and O3 (3) Fine particulate matter | 3000 grid cells up to 50 km | (1) Requirements for meteorological data are lower, and simulation process is simpler (2) The latest knowledge of physical parameters of atmospheric structure is used (3) The prediction performance of pollutants is slightly better than AERMOD | (1) Underestimation of pollutant concentrations | [106,116] |
Models-3 CMAQ | Eulerian grid model | (1) Simulations can be performed on local, urban, regional, and continental scales (2) Various chemical and physical processes of atmospheric pollutants can be simulated (3) Can be used for forecasting, assessment, and decision-making studies of air quality for multiple pollutants | (1) SO2, NO2, VOCs, and other primary pollutants (2) Secondary pollutants such as sulfate, nitrate, and O3 (3) Fine particulate matter | Each domain grid cell is 36 km by 36 km | (1) Larger spatial scale (2) More types of pollutants can be simulated (3) Richer functionality and applications (4) Better performance in the current study | (1) Underestimation of organic carbon concentration (2) Slower calculation speed | [108,109] |
CALPUFF | Multilayer, non-steady-state GPuff | (1) Can simulate the dispersion, transport, and deposition of pollutants on a moderate scale from tens of meters to hundreds of kilometers (2) Multiple sources of different types can be modeled (including point, line, and volume sources) (3) Particularly suitable for the simulation of pollutants in special wind-field environments | (1) SO2, NO2, VOCs, and other primary pollutants (2) Secondary pollutants such as sulfate, nitrate, and O3 (3) Fine particulate matter | <200 km | (1) Can simulate the diffusion process of pollutants under some non-stationary conditions (2) Analysis of the initial guess wind field using terrain dynamics and slope flow parameter methods is suitable for simulation under rough and complex terrain conditions | (1) Underestimation of pollutant concentrations (2) Not applicable to the simulation of pollutant dispersion in a turbulent environment (3) Not applicable to the simulation of pollutant dispersion on time scale of less than 1 h | [9,117] |
WRF-Chem | Weather Research and Forecasting model coupled with Chemistry model | (1) Chemistry–meteorology feedbacks from local to global scales can be simulated (2) Air quality can be simulated from cloud scale to various weather scales | (1) NOX, CO, VOCs, and other primary pollutants (2) Secondary pollutants (O3, etc.) (3) Fine particulate matter | / | (1) Has a sophisticated photolysis scheme and a state-of-the-art aerosol module to simulate a more realistic atmospheric environment (2) Is more capable of simulating O3 | (1) Underestimation/overestimation of pollutant concentrations (2) Poor modeling flexibility (3) Slower calculation speed | [107] |
6. The Effect Caused by VOCs
6.1. Atmospheric Chemistry of VOCs in the Troposphere
6.2. Relationship among the Vertical Distributions of VOCs, NOX, and O3
6.3. Effect of VOCs
7. Research Prospects
- (1)
- Vertical sampling techniques for VOCs: Remote sensing and satellite technologies can monitor VOCs on the continental scale. However, it is not easy to obtain VOC vertical profiles. Thus, advanced sampling techniques must be explored to overcome the high cost, high risk, insufficient spatial scale, and other limitations of the current techniques.
- (2)
- Vertical distribution characteristics of VOCs: Comparisons between VOC vertical distribution characteristics in different seasons and regions are incredibly lacking, and the explanations for the VOC vertical distribution characteristics are insufficient in current studies.
- (3)
- Vertical distribution models of VOCs: Current VOCs dispersion models are mainly comprehensive models for simulating various pollutants, such as SO2 and NOX, with result accuracy limitations when facing different environments. Moreover, most of them are focused on ground-level simulations, while a specialized VOC vertical distribution model is highly lacking. In addition, the atmospheric environmental problems (e.g., OFP and SOAP) caused by VOC emissions should also be explored deeply.
- (4)
- Effects caused by VOCs: Although research on VOC atmospheric chemistry has developed, the reaction rate constants and reaction mechanism of organic peroxides R2 with NO and NO2 radicals need to be further investigated.
- (5)
- Sources of VOCs: Previous studies have generally focused on sources of VOCs near the ground level. Research on VOC sources in the vertical direction is extremely lacking. Additionally, a considerable research gap exists in studying VOC sources using PMF at different heights.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haick, H.; Broza, Y.Y.; Mochalski, P.; Ruzsanyi, V.; Amann, A. Assessment, origin, and implementation of breath volatile cancer markers. Chem. Soc. Rev. 2014, 43, 1423–1449. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Tang, G.Q.; Wang, Y.H.; Mai, R.; Yao, D.; Kang, Y.Y.; Wang, Q.L.; Wang, Y.S. Vertical Evolution of Boundary Layer Volatile Organic Compounds in Summer over the North China Plain and the Differences with Winter. Adv. Atmos. Sci. 2021, 38, 1165–1176. [Google Scholar] [CrossRef]
- Wang, W.N.; Cheng, T.H.; Gu, X.F.; Chen, H.; Guo, H.; Wang, Y.; Bao, F.W.; Shi, S.Y.; Xu, B.R.; Zuo, X.; et al. Assessing Spatial and Temporal Patterns of Observed Ground-level Ozone in China. Sci. Rep. 2017, 7, 3651. [Google Scholar] [CrossRef] [PubMed]
- Harrison, R.M.; Yin, J.X. Particulate matter in the atmosphere: Which particle properties are important for its effects on health? Sci. Total Environ. 2000, 249, 85–101. [Google Scholar] [CrossRef] [PubMed]
- Velasco, E.; Marquez, C.; Bueno, E.; Bernabe, R.M.; Sanchez, A.; Fentanes, O.; Wohrnschimmel, H.; Cardenas, B.; Kamilla, A.; Wakamatsu, S.; et al. Vertical distribution of ozone and VOCs in the low boundary layer of Mexico City. Atmos. Chem. Phys. 2008, 8, 3061–3079. [Google Scholar] [CrossRef] [Green Version]
- Geng, C.M.; Wang, J.; Yin, B.H.; Zhao, R.J.; Li, P.; Yang, W.; Xiao, Z.M.; Li, S.J.; Li, K.W.; Bai, Z.P. Vertical distribution of volatile organic compounds conducted by tethered balloon in the Beijing-Tianjin-Hebei region of China. J. Environ. Sci. 2020, 95, 121–129. [Google Scholar] [CrossRef]
- Zhang, K.; Zhou, L.; Fu, Q.Y.; Yan, L.; Bian, Q.G.; Wang, D.F.; Xiu, G.L. Vertical distribution of ozone over Shanghai during late spring: A balloon-borne observation. Atmos. Environ. 2019, 208, 48–60. [Google Scholar] [CrossRef]
- Wu, R.R.; Xie, S.D. Spatial Distribution of Ozone Formation in China Derived from Emissions of Speciated Volatile Organic Compounds. Environ. Sci. Technol. 2017, 51, 2574–2583. [Google Scholar] [CrossRef]
- Holmes, N.S.; Morawska, L. A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available. Atmos. Environ. 2006, 40, 5902–5928. [Google Scholar] [CrossRef] [Green Version]
- Qi, Y.; Shen, L.; Zhang, J.; Yao, J.; Lu, R.; Miyakoshi, T. Species and release characteristics of VOCs in furniture coating process. Environ. Pollut. 2019, 245, 810–819. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, L.; Chen, X.; Nie, L.; Shi, A.; Bai, H.; Li, G. A comprehensive study of volatile organic compounds from the actual emission of Chinese cooking. Environ. Sci. Pollut. Res. 2022, 29, 53821–53830. [Google Scholar] [CrossRef]
- Zhong, Z.; Sha, Q.e.; Zheng, J.; Yuan, Z.; Gao, Z.; Ou, J.; Zheng, Z.; Li, C.; Huang, Z. Sector-based VOCs emission factors and source profiles for the surface coating industry in the Pearl River Delta region of China. Sci. Total Environ. 2017, 583, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Sexton, K.; Westberg, H. Nonmethane hydrocarbon composition of urban and rural atmospheres. Atmos. Environ. 1984, 18, 1125–1132. [Google Scholar] [CrossRef]
- Wei, W.; Wang, S.X.; Hao, J.M.; Cheng, S.Y. Trends of chemical speciation profiles of anthropogenic volatile organic compounds emissions in China, 2005–2020. Front. Environ. Sci. Eng. 2014, 8, 27–41. [Google Scholar] [CrossRef]
- Zheng, C.; Shen, J.; Zhang, Y.; Zhu, X.; Wu, X.; Chen, L.; Gao, X. Atmospheric Emission Characteristics and Control Policies of Anthropogenic VOCs from Industrial Sources in Yangtze River Delta Region, China. Aerosol Air Qual. Res. 2017, 17, 2263–2275. [Google Scholar] [CrossRef]
- Mao, T.; Wang, Y.S.; Xu, H.H.; Jiang, J.; Wu, F.K.; Xu, X.B. A study of the atmospheric VOCs of Mount Tai in June 2006. Atmos. Environ. 2009, 43, 2503–2508. [Google Scholar] [CrossRef]
- Zhang, J.K.; Sun, Y.; Wu, F.K.; Sun, J.; Wang, Y.S. The characteristics, seasonal variation and source apportionment of VOCs at Gongga Mountain, China. Atmos. Environ. 2014, 88, 297–305. [Google Scholar] [CrossRef]
- Mao, T.; Wang, Y.S.; Jiang, J.; Wu, F.K.; Wang, M.X. The vertical distributions of VOCs in the atmosphere of Beijing in autumn. Sci. Total Environ. 2008, 390, 97–108. [Google Scholar] [CrossRef]
- Yang, J.J.; Liu, C.C.; Chen, W.H.; Yuan, C.S.; Lin, C. Assessing the altitude effect on distributions of volatile organic compounds from different sources by principal component analysis. Environ. Sci. Process. Impacts 2013, 15, 972–985. [Google Scholar] [CrossRef]
- Gupta, S.; Gadi, R.; Sharma, S.K.; Mandal, T.K. Characterization and source apportionment of organic compounds in PM10 using PCA and PMF at a traffic hotspot of Delhi. Sustain. Cities Soc. 2018, 39, 52–67. [Google Scholar] [CrossRef]
- Ling, Z.H.; Guo, H.; Cheng, H.R.; Yu, Y.F. Sources of ambient volatile organic compounds and their contributions to photochemical ozone formation at a site in the Pearl River Delta, southern China. Environ. Pollut. 2011, 159, 2310–2319. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.T.; Shao, M.; Lu, S.H.; Wang, M.; Zeng, L.M.; Yuan, B.; Liu, Y. Understanding primary and secondary sources of ambient carbonyl compounds in Beijing using the PMF model. Atmos. Chem. Phys. 2014, 14, 3047–3062. [Google Scholar] [CrossRef] [Green Version]
- Chan, Y.-c.; Hawas, O.; Hawker, D.; Vowles, P.; Cohen, D.D.; Stelcer, E.; Simpson, R.; Golding, G.; Christensen, E. Using multiple type composition data and wind data in PMF analysis to apportion and locate sources of air pollutants. Atmos. Environ. 2011, 45, 439–449. [Google Scholar] [CrossRef]
- Yuan, B.; Shao, M.; de Gouw, J.; Parrish, D.D.; Lu, S.; Wang, M.; Zeng, L.; Zhang, Q.; Song, Y.; Zhang, J.; et al. Volatile organic compounds (VOCs) in urban air: How chemistry affects the interpretation of positive matrix factorization (PMF) analysis. J. Geophys. Res. Atmos. 2012, 117, 3091–3108. [Google Scholar] [CrossRef]
- Masiol, M.; Harrison, R.M. Aircraft engine exhaust emissions and other airport-related contributions to ambient air pollution: A review. Atmos. Environ. 2014, 95, 409–455. [Google Scholar] [CrossRef] [Green Version]
- Pecorari, E.; Mantovani, A.; Franceschini, C.; Bassano, D.; Palmeri, L.; Rampazzo, G. Analysis of the effects of meteorology on aircraft exhaust dispersion and deposition using a Lagrangian particle model. Sci. Total Environ. 2016, 541, 839–856. [Google Scholar] [CrossRef]
- Beyersdorf, A.J.; Thornhill, K.L.; Winstead, E.L.; Ziemba, L.D.; Blake, D.R.; Timko, M.T.; Anderson, B.E. Power-dependent speciation of volatile organic compounds in aircraft exhaust. Atmos. Environ. 2012, 61, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Víden, I. Volatile Organic Compounds: Sampling Methods and Their Worldwide Profile in Ambient Air. Environ. Monit. Assess. 2007, 131, 301–321. [Google Scholar] [CrossRef]
- Krol, S.; Zabiegala, B.; Namiesnik, J. Monitoring VOCs in atmospheric air II. Sample collection and preparation. TrAC Trends Anal. Chem. 2010, 29, 1101–1112. [Google Scholar] [CrossRef]
- Toscano, P.; Gioli, B.; Dugheri, S.; Salvini, A.; Matese, A.; Bonacchi, A.; Zaldei, A.; Cupelli, V.; Miglietta, F. Locating industrial VOC sources with aircraft observations. Environ. Pollut. 2011, 159, 1174–1182. [Google Scholar] [CrossRef]
- Liu, Y.; Feng, X.; Lawless, D. Separation of gasoline vapor from nitrogen by hollow fiber composite membranes for VOC emission control. J. Membr. Sci. 2006, 271, 114–124. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Kim, K.-H.; Jo, S.-H.; Jeon, E.-C.; Sohn, J.R.; Parker, D.B. Comparison of storage stability of odorous VOCs in polyester aluminum and polyvinyl fluoride Tedlar® bags. Anal. Chim. Acta 2012, 712, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; Koziel, J.A.; Cai, L.; Wright, D.; Kuhrt, F. Testing odorants recovery from a novel metallized fluorinated ethylene propylene gas sampling bag. J. Air Waste Manag. Assoc. 2015, 65, 1434–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleming, L.T.; Weltman, R.; Yadav, A.; Edwards, R.D.; Arora, N.K.; Pillarisetti, A.; Meinardi, S.; Smith, K.R.; Blake, D.R.; Nizkorodov, S.A. Emissions from village cookstoves in Haryana, India, and their potential impacts on air quality. Atmos. Chem. Phys. 2018, 18, 15169–15182. [Google Scholar] [CrossRef] [Green Version]
- Cariou, S.; Guillot, J.M. Double-layer Tedlar bags: A means to limit humidity evolution of air samples and to dry humid air samples. Anal. Bioanal. Chem. 2006, 384, 468–474. [Google Scholar] [CrossRef]
- Hien, V.T.D.; Lin, C.; Thanh, V.C.; Oanh, N.T.K.; Thanh, B.X.; Weng, C.E.; Yuan, C.S.; Rene, E.R. An overview of the development of vertical sampling technologies for ambient volatile organic compounds (VOCs). J. Environ. Manage. 2019, 247, 401–412. [Google Scholar] [CrossRef]
- Wang, D.K.W.; Austin, C.C. Determination of complex mixtures of volatile organic compounds in ambient air: An overview. Anal. Bioanal. Chem. 2006, 386, 1089–1098. [Google Scholar] [CrossRef]
- Dobrzynska, E.; Posniak, M.; Szewczynska, M.; Buszewski, B. Chlorinated Volatile Organic Compounds-Old, However, Actual Analytical and Toxicological Problem. Crit. Rev. Anal. Chem. 2010, 40, 41–57. [Google Scholar] [CrossRef]
- Wang, D.K.W.; Austin, C.C. Determination of complex mixtures of volatile organic compounds in ambient air: Canister methodology. Anal. Bioanal. Chem. 2006, 386, 1099–1120. [Google Scholar] [CrossRef]
- Ras, M.R.; Borrull, F.; Marce, R.M. Sampling and preconcentration techniques for determination of volatile organic compounds in air samples. TrAC Trends Anal. Chem. 2009, 28, 347–361. [Google Scholar] [CrossRef]
- Mangani, G.; Berloni, A.; Maione, M. “Cold” solid-phase microextraction method for the determination of volatile halocarbons present in the atmosphere at ultra-trace levels. J. Chromatogr. A 2003, 988, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Koziel, J.A.; Pawliszyn, J. Air sampling and analysis of volatile organic compounds with solid phase microextraction. J. Air Waste Manage. Assoc. 2001, 51, 173–184. [Google Scholar] [CrossRef] [PubMed]
- Ras, M.R.; Marce, R.M.; Borrull, F. Solid-phase microextraction-Gas chromatography to determine volatile organic sulfur compounds in the air at sewage treatment plants. Talanta 2008, 77, 774–778. [Google Scholar] [CrossRef]
- Mochalski, P.; King, J.; Unterkofler, K.; Amann, A. Stability of selected volatile breath constituents in Tedlar, Kynar and Flexfilm sampling bags. Analyst 2013, 138, 1405–1418. [Google Scholar] [CrossRef] [Green Version]
- Herrington, J.S. Storage stability of 66 volatile organic compounds (VOCs) in silicon-lined air canisters for 30 days. Appl. Note EVAN 2015. Available online: https://www.restek.com/row/technical-literature-library/articles/storage-stability-of-66-volatile-organic-compounds-VOCs-in-silicon-lined-air-canisters-for-30-days/ (accessed on 19 October 2022).
- Heo, G.S.; Lee, J.-H.; Kim, D.W.; Lee, D.W. Comparison of analytical methods for ozone precursors using adsorption tube and canister. Microchem. J. 2001, 70, 275–283. [Google Scholar] [CrossRef]
- Sigma, S. SPME for GC Analysis: Getting started with Solid Phase Microextraction; Merck: Darmstadt, Germany, 2018; Available online: https://www.sigmaaldrich.com/deepweb/assets/sigmaaldrich/marketing/global/documents/635/441/solid-phase-microextraction-for-gc-ms.pdf (accessed on 19 October 2022).
- Woolfenden, E. Sorbent-based sampling methods for volatile and semi-volatile organic compounds in air: Part 1: Sorbent-based air monitoring options. J. Chromatogr. A 2010, 1217, 2674–2684. [Google Scholar] [CrossRef]
- Kaser, L.; Peron, A.; Graus, M.; Striednig, M.; Wohlfahrt, G.; Juráň, S.; Karl, T. Interannual variability of terpenoid emissions in an alpine city. Atmos. Chem. Phys. 2022, 22, 5603–5618. [Google Scholar] [CrossRef]
- Li, X.B.; Yuan, B.; Wang, S.; Wang, C.; Lan, J.; Liu, Z.; Song, Y.; He, X.; Huangfu, Y.; Pei, C.; et al. Variations and sources of volatile organic compounds (VOCs) in urban region: Insights from measurements on a tall tower. Atmos. Chem. Phys. 2022, 22, 10567–10587. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Huang, Z.; Acton, W.J.F.; Wang, Z.; Nemitz, E.; Langford, B.; Mullinger, N.; Davison, B.; Shi, Z.; et al. Vertical profiles of biogenic volatile organic compounds as observed online at a tower in Beijing. J. Environ. Sci. 2020, 95, 33–42. [Google Scholar] [CrossRef]
- Ieda, T.; Kitamori, Y.; Mochida, M.; Hirata, R.; Hirano, T.; Inukai, K.; Fujinuma, Y.; Kawamura, K. Diurnal variations and vertical gradients of biogenic volatile and semi-volatile organic compounds at the Tomakomai larch forest station in Japan. Tellus B 2006, 58, 177–186. [Google Scholar] [CrossRef]
- Sangiorgi, G.; Ferrero, L.; Perrone, M.G.; Bolzacchini, E.; Duane, M.; Larsen, B.R. Vertical distribution of hydrocarbons in the low troposphere below and above the mixing height: Tethered balloon measurements in Milan, Italy. Environ. Pollut. 2011, 159, 3545–3552. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.H.; Liu, Y.F.; Yuan, C.S.; Chen, W.H.; Lin, Y.C.; Hung, C.H.; Lin, C.; Jen, Y.H.; Ie, I.R.; Yang, H.Y. Vertical Profile and Spatial Distribution of Ozone and Its Precursors at the Inland and Offshore of an Industrial City. Aerosol Air Qual. Res. 2012, 12, 911–922. [Google Scholar] [CrossRef] [Green Version]
- Wohrnschimmel, H.; Marquez, C.; Mugica, V.; Stahel, W.A.; Staehelin, J.; Cardenas, B.; Blanco, S. Vertical profiles and receptor modeling of volatile organic compounds over Southeastern Mexico City. Atmos. Environ. 2006, 40, 5125–5136. [Google Scholar] [CrossRef]
- Helmig, D.; Balsley, B.; Davis, K.; Kuck, L.R.; Jensen, M.; Bognar, J.; Smith, T.; Arrieta, R.V.; Rodriguez, R.; Birks, J.W. Vertical profiling and determination of landscape fluxes of biogenic nonmethane hydrocarbons within the planetary boundary layer in the Peruvian Amazon. J. Geophys. Res. D Atmos. 1998, 103, 25519–25532. [Google Scholar] [CrossRef]
- Permar, W.; Wang, Q.; Selimovic, V.; Wielgasz, C.; Yokelson, R.J.; Hornbrook, R.S.; Hills, A.J.; Apel, E.C.; Ku, I.T.; Zhou, Y.; et al. Emissions of Trace Organic Gases From Western U.S. Wildfires Based on WE-CAN Aircraft Measurements. J. Geophys. Res. Atmos. 2021, 126, e2020JD033838. [Google Scholar] [CrossRef]
- Koss, A.; Yuan, B.; Warneke, C.; Gilman, J.B.; Lerner, B.M.; Veres, P.R.; Peischl, J.; Eilerman, S.; Wild, R.; Brown, S.S.; et al. Observations of VOC emissions and photochemical products over US oil- and gas-producing regions using high-resolution H3O+ CIMS (PTR-ToF-MS). Atmos. Meas. Technol. 2017, 10, 2941–2968. [Google Scholar] [CrossRef] [Green Version]
- Veres, P.R.; Faber, P.; Drewnick, F.; Lelieveld, J.; Williams, J. Anthropogenic sources of VOC in a football stadium: Assessing human emissions in the atmosphere. Atmos. Environ. 2013, 77, 1052–1059. [Google Scholar] [CrossRef]
- Flocas, H.A.; Assimakopoulos, V.D.; Helmis, C.G.; Gusten, H. VOC and O3 distributions over the densely populated area of greater Athens, Greece. J. Appl. Meteorol. 2003, 42, 1799–1810. [Google Scholar] [CrossRef]
- Xue, L.K.; Wang, T.; Simpson, I.J.; Ding, A.J.; Gao, J.; Blake, D.R.; Wang, X.Z.; Wang, W.X.; Lei, H.C.; Jing, D.Z. Vertical distributions of non-methane hydrocarbons and halocarbons in the lower troposphere over northeast China. Atmos. Environ. 2011, 45, 6501–6509. [Google Scholar] [CrossRef] [Green Version]
- Koßmann, M.; Vogel, H.; Vogel, B.; Vögtlin, R.; Corsmeier, U.; Fiedler, F.; Klemm, O.; Schlager, H. The composition and vertical distribution of volatile organic compounds in southwestern Germany, eastern France and northern Switzerland during the TRACT campaign in September 1992. Phys. Chem. Earth. 1996, 21, 429–433. [Google Scholar] [CrossRef]
- Wespes, C.; Emmons, L.; Edwards, D.P.; Hannigan, J.; Hurtmans, D.; Saunois, M.; Coheur, P.F.; Clerbaux, C.; Coffey, M.T.; Batchelor, R.L.; et al. Analysis of ozone and nitric acid in spring and summer Arctic pollution using aircraft, ground-based, satellite observations and MOZART-4 model: Source attribution and partitioning. Atmos. Chem. Phys. 2012, 12, 237–259. [Google Scholar] [CrossRef] [Green Version]
- Duncan, B.N.; Prados, A.I.; Lamsal, L.N.; Liu, Y.; Streets, D.G.; Gupta, P.; Hilsenrath, E.; Kahn, R.; Nielsen, J.E.; Beyersdorf, A.J.; et al. Satellite data of atmospheric pollution for U.S. air quality applications: Examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmos. Environ. 2014, 94, 647–662. [Google Scholar] [CrossRef] [Green Version]
- Cao, H.S.; Fu, T.M.; Zhang, L.; Henze, D.K.; Miller, C.C.; Lerot, C.; Abad, G.G.; De Smedt, I.; Zhang, Q.; Van Roozendael, M.; et al. Adjoint inversion of Chinese non-methane volatile organic compound emissions using space-based observations of formaldehyde and glyoxal. Atmos. Chem. Phys. 2018, 18, 15017–15046. [Google Scholar] [CrossRef] [Green Version]
- Zeb, N.; Khokhar, M.F.; Pozzer, A.; Khan, S.A. Exploring the temporal trends and seasonal behaviour of tropospheric trace gases over Pakistan by exploiting satellite observations. Atmos. Environ. 2019, 198, 279–290. [Google Scholar] [CrossRef]
- Kota, H.; Guo, H.; Myllyvirta, L.; Hu, J.L.; Sahu, S.K.; Garaga, R.; Ying, Q.; Gao, A.F.; Dahiya, S.; Wang, Y.; et al. Year-long simulation of gaseous and particulate air pollutants in India. Atmos. Environ. 2018, 180, 244–255. [Google Scholar] [CrossRef]
- Ul-Haq, Z.; Ramzan, Z.; Tariq, S.; Batool, S.A.; Ali, M.; Sami, J. Comparison of total ozone column observations from space-borne Ozone Monitoring Instrument with ground-based Dobson Ozone Spectrophotometer measurements at an urban location in Indo-Gangetic Basin. Int. J. Remote Sens. 2018, 39, 544–564. [Google Scholar] [CrossRef]
- Jin, X.M.; Fiore, A.; Boersma, K.F.; De Smedt, I.; Valin, L. Inferring Changes in Summertime Surface Ozone-NOx-VOC Chemistry over US Urban Areas from Two Decades of Satellite and Ground-Based Observations. Environ. Sci. Technol. 2020, 54, 6518–6529. [Google Scholar] [CrossRef]
- McKinney, K.A.; Wang, D.; Ye, J.H.; de Fouchier, J.B.; Guimaraes, P.C.; Batista, C.E.; Souza, R.A.F.; Alves, E.G.; Gu, D.; Guenther, A.B.; et al. A sampler for atmospheric volatile organic compounds by copter unmanned aerial vehicles. Atmos. Meas. Technol. 2019, 12, 3123–3135. [Google Scholar] [CrossRef] [Green Version]
- Peng, Z.R.; Wang, D.S.; Wang, Z.Y.; Gao, Y.; Lu, S.J. A study of vertical distribution patterns of PM2.5 concentrations based on ambient monitoring with unmanned aerial vehicles: A case in Hangzhou, China. Atmos. Environ. 2015, 123, 357–369. [Google Scholar] [CrossRef]
- Yu, F.J.; Liu, Y.F.; Fan, L.Q.; Li, L.H.; Han, Y.; Chen, G. Design and implementation of atmospheric multi-parameter sensor for UAV-based aerosol distribution detection. Sens. Rev. 2017, 37, 196–210. [Google Scholar] [CrossRef]
- Li, X.B.; Wang, D.S.; Lu, Q.C.; Peng, Z.R.; Lu, S.J.; Li, B.; Li, C. Three-dimensional investigation of ozone pollution in the lower troposphere using an unmanned aerial vehicle platform. Environ. Pollut. 2017, 224, 107–116. [Google Scholar] [CrossRef]
- Klemas, V.V. Coastal and Environmental Remote Sensing from Unmanned Aerial Vehicles: An Overview. J. Coast. Res. 2015, 31, 1260–1267. [Google Scholar] [CrossRef] [Green Version]
- Neumann, P.P.; Bennetts, V.H.; Lilienthal, A.J.; Bartholmai, M.; Schiller, J.H. Gas source localization with a micro-drone using bio-inspired and particle filter-based algorithms. Adv. Rob. 2013, 27, 725–738. [Google Scholar] [CrossRef]
- Brady, J.M.; Stokes, M.D.; Bonnardel, J.; Bertram, T.H. Characterization of a Quadrotor Unmanned Aircraft System for Aerosol-Particle-Concentration Measurements. Environ. Sci. Technol. 2016, 50, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S.J.; Hackenberg, S.C.; Carpenter, L.J. Technical Note: A fully automated purge and trap GC-MS system for quantification of volatile organic compound (VOC) fluxes between the ocean and atmosphere. Ocean Sci. 2015, 11, 313–321. [Google Scholar] [CrossRef] [Green Version]
- Han, C.; Liu, R.; Luo, H.; Li, G.; Ma, S.; Chen, J.; An, T. Pollution profiles of volatile organic compounds from different urban functional areas in Guangzhou China based on GC/MS and PTR-TOF-MS: Atmospheric environmental implications. Atmos. Environ. 2019, 214, 116843. [Google Scholar] [CrossRef]
- Vinaixa, M.; Schymanski, E.L.; Neumann, S.; Navarro, M.; Salek, R.M.; Yanes, O. Mass spectral databases for LC/MS- and GC/MS-based metabolomics: State of the field and future prospects. TrAC Trends Anal. Chem. 2016, 78, 23–35. [Google Scholar] [CrossRef] [Green Version]
- Warneke, C.; de Gouw, J.A.; Kuster, W.C.; Goldan, P.D.; Fall, R. Validation of Atmospheric VOC Measurements by Proton-Transfer- Reaction Mass Spectrometry Using a Gas-Chromatographic Preseparation Method. Environ. Sci. Technol. 2003, 37, 2494–2501. [Google Scholar] [CrossRef] [PubMed]
- Wieland, F.; Gloess, A.N.; Keller, M.; Wetzel, A.; Schenker, S.; Yeretzian, C. Online monitoring of coffee roasting by proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS): Towards a real-time process control for a consistent roast profile. Anal. Bioanal. Chem. 2012, 402, 2531–2543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pleil, J.D.; Hansel, A.; Beauchamp, J. Advances in proton transfer reaction mass spectrometry (PTR-MS): Applications in exhaled breath analysis, food science, and atmospheric chemistry. J. Breath Res. 2019, 13, 039002. [Google Scholar] [CrossRef]
- Lin, C.C.; Lin, C.; Hsieh, L.T.; Chen, C.Y.; Wang, J.P. Vertical and Diurnal Characterization of Volatile Organic Compounds in Ambient Air in Urban Areas. J. Air Waste Manage. Assoc. 2011, 61, 714–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, W.-K.; Kim, K.-Y. Vertical variability of volatile organic compound (VOC) levels in ambient air of high-rise apartment buildings with and without occurrence of surface inversion. Atmos. Environ. 2002, 36, 5645–5652. [Google Scholar] [CrossRef]
- Noe, S.M.; Hüve, K.; Niinemets, Ü.; Copolovici, L. Seasonal variation in vertical volatile compounds air concentrations within a remote hemiboreal mixed forest. Atmos. Chem. Phys. 2012, 12, 3909–3926. [Google Scholar] [CrossRef] [Green Version]
- Vierling, L.A.; Fersdahl, M.; Chen, X.; Li, Z.; Zimmerman, P. The Short Wave Aerostat-Mounted Imager (SWAMI): A novel platform for acquiring remotely sensed data from a tethered balloon. Remote Sens. Environ. 2006, 103, 255–264. [Google Scholar] [CrossRef]
- Liu, K.; Quan, J.; Mu, Y.; Zhang, Q.; Liu, J.; Gao, Y.; Chen, P.; Zhao, D.; Tian, H. Aircraft measurements of BTEX compounds around Beijing city. Atmos. Environ. 2013, 73, 11–15. [Google Scholar] [CrossRef]
- Mak, J.E.; Su, L.; Guenther, A.; Karl, T. A novel Whole Air Sample Profiler (WASP) for the quantification of volatile organic compounds in the boundary layer. Atmos. Meas. Technol. 2013, 6, 2703–2712. [Google Scholar] [CrossRef] [Green Version]
- Vo, T.D.H.; Lin, C.T.; Weng, C.E.; Yuan, C.S.; Lee, C.W.; Hung, C.H.; Bui, X.T.; Lo, K.C.; Lin, J.X. Vertical stratification of volatile organic compounds and their photochemical product formation potential in an industrial urban area. J. Environ. Manag. 2018, 217, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Whitehead, K.; Hugenholtz, C.H. Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: A review of progress and challenges. J. Unmanned Veh. Syst. 2014, 02, 69–85. [Google Scholar] [CrossRef]
- Chang, C.-C.; Wang, J.-L.; Chang, C.-Y.; Liang, M.-C.; Lin, M.-R. Development of a multicopter-carried whole air sampling apparatus and its applications in environmental studies. Chemosphere 2016, 144, 484–492. [Google Scholar] [CrossRef] [Green Version]
- Seibert, P.; Beyrich, F.; Gryning, S.-E.; Joffre, S.; Rasmussen, A.; Tercier, P. Review and intercomparison of operational methods for the determination of the mixing height. Atmos. Environ. 2000, 34, 1001–1027. [Google Scholar] [CrossRef]
- Xiong, Y.; Bari, M.A.; Xing, Z.Y.; Du, K. Ambient volatile organic compounds (VOCs) in two coastal cities in western Canada: Spatiotemporal variation, source apportionment, and health risk assessment. Sci. Total Environ. 2020, 706, 135970. [Google Scholar] [CrossRef] [PubMed]
- Na, K.; Kim, Y.P. Seasonal characteristics of ambient volatile organic compounds in Seoul, Korea. Atmos. Environ. 2001, 35, 2603–2614. [Google Scholar] [CrossRef]
- Ruiz-Jimenez, J.; Lan, H.Z.; Leleev, Y.; Hartonen, K.; Riekkola, M.L. Comparison of multiple calibration approaches for the determination of volatile organic compounds in air samples by solid phase microextraction Arrow and in-tube extraction. J. Chromatogr. A 2020, 1616, 460825. [Google Scholar] [CrossRef] [PubMed]
- Field, R.A.; Goldstone, M.E.; Lester, J.N.; Perry, R. The sources and behaviour of tropospheric anthropogenic volatile hydrocarbons. Atmos. Environment. Part A. Gen. Top. 1992, 26, 2983–2996. [Google Scholar] [CrossRef]
- Jin, X.M.; Fiore, A.; Murray, L.T.; Valin, L.C.; Lamsal, L.N.; Duncan, B.; Folkert Boersma, K.; De Smedt, I.; Abad, G.G.; Chance, K.; et al. Evaluating a Space-Based Indicator of Surface Ozone-NOx-VOC Sensitivity Over Midlatitude Source Regions and Application to Decadal Trends. J. Geophys. Res. Atmos. 2017, 122, 410–439. [Google Scholar] [CrossRef]
- Zhang, K.; Xiu, G.L.; Zhou, L.; Bian, Q.G.; Duan, Y.S.; Fei, D.N.; Wang, D.F.; Fu, Q.Y. Vertical distribution of volatile organic compounds within the lower troposphere in late spring of Shanghai. Atmos. Environ. 2018, 186, 150–157. [Google Scholar] [CrossRef]
- Cabañas, B.; Villanueva, F.; Martín, P.; Baeza, M.T.; Salgado, S.; Jiménez, E. Study of reaction processes of furan and some furan derivatives initiated by Cl atoms. Atmos. Environ. 2005, 39, 1935–1944. [Google Scholar] [CrossRef]
- Liu, Y.H.; Wang, H.L.; Jing, S.A.; Zhou, M.; Lou, S.R.; Qu, K.; Qiu, W.Y.; Wang, Q.; Li, S.L.; Gao, Y.Q.; et al. Vertical Profiles of Volatile Organic Compounds in Suburban Shanghai. Adv. Atmos. Sci. 2021, 38, 1177–1187. [Google Scholar] [CrossRef]
- Das, M.; Aneja, V.P.; Kang, D. Vertical distribution of VOCs and ozone observed in suburban North Carolina. IJGEnvI 2006, 6, 149–172. [Google Scholar] [CrossRef]
- Brook, J.R.; Makar, P.A.; Sills, D.M.L.; Hayden, K.L.; McLaren, R. Exploring the nature of air quality over southwestern Ontario: Main findings from the Border Air Quality and Meteorology Study. Atmos. Chem. Phys. 2013, 13, 10461–10482. [Google Scholar] [CrossRef]
- Liu, K.Y.; Wang, Z.F.; Hsiao, L.F. A modeling of the sea breeze and its impacts on ozone distribution in northern Taiwan. Env. Model. Softw. 2002, 17, 21–27. [Google Scholar] [CrossRef]
- Jeon, W.B.; Lee, S.H.; Lee, H.; Park, C.; Kim, D.H.; Park, S.Y. A study on high ozone formation mechanism associated with change of NOx/VOCs ratio at a rural area in the Korean Peninsula. Atmos. Environ. 2014, 89, 10–21. [Google Scholar] [CrossRef]
- Talbot, C.; Augustin, P.; Leroy, C.; Willart, V.; Delbarre, H.; Khomenko, G. Impact of a sea breeze on the boundary-layer dynamics and the atmospheric stratification in a coastal area of the North Sea. Bound. Layer Meteorol. 2007, 125, 133–154. [Google Scholar] [CrossRef]
- Hanna, S.R.; Egan, B.A.; Purdum, J. A review of dispersion modelling and, AERMOD, and ISC3 dispersion models with the OPTEX, Duke Forest, Kincaid, Indianapolis and Lovett field datasets. Int. J. Environ. Pollut. 2001, 16, 301–314. [Google Scholar] [CrossRef]
- Kumar, A.; Jimenez, R.; Belalcazar, L.C.; Rojas, N.Y. Application of WRF-Chem Model to Simulate PM10 Concentration over Bogota. Aerosol Air Qual. Res. 2016, 16, 1206–1221. [Google Scholar] [CrossRef] [Green Version]
- Dennis, R.L.; Byun, D.W.; Novak, J.H.; Galluppi, K.J.; Coats, C.J.; Vouk, M.A. The next generation of integrated air quality modeling: EPA’s models-3. Atmos. Environ. 1996, 30, 1925–1938. [Google Scholar] [CrossRef]
- Byun, D.; Schere, K.L. Review of the governing equations, computational algorithms, and other components of the models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Rev. 2006, 59, 51–77. [Google Scholar] [CrossRef]
- Sokhi, R.S.; San Jose, R.; Kitwiroon, N.; Fragkou, E.; Perez, J.L.; Middleton, D.R. Sexton. Environ. Model. Softw. 2006, 21, 566–576. [Google Scholar] [CrossRef]
- Kwak, B.K.; Kim, J.H.; Park, H.S.; Kim, N.G.; Choi, K.; Yi, J. A GIS-based national emission inventory of major VOCs and risk assessment modeling: Part II—Quantitative verification and risk assessment using an air dispersion model. Korean J. Chem. Eng. 2010, 27, 121–128. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; McKeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Chapman, E.G.; Gustafson, W.I., Jr.; Easter, R.C.; Barnard, J.C.; Ghan, S.J.; Pekour, M.S.; Fast, J.D. Coupling aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point sources. Atmos. Chem. Phys. 2009, 9, 945–964. [Google Scholar] [CrossRef] [Green Version]
- Chutia, L.; Ojha, N.; Girach, I.A.; Sahu, L.K.; Alvarado, L.M.A.; Burrows, J.P.; Pathak, B.; Bhuyan, P.K. Distribution of volatile organic compounds over Indian subcontinent during winter: WRF-chem simulation versus observations. Environ. Pollut. 2019, 252, 256–269. [Google Scholar] [CrossRef]
- Willis, G.E.; Deardorff, J.W. A laboratory study of dispersion from a source in the middle of the convectively mixed layer. Atmos. Environ. 1981, 15, 109–117. [Google Scholar] [CrossRef] [Green Version]
- Carruthers, D.J.; Edmunds, H.A.; Lester, A.E.; McHugh, C.A.; Singles, R.J. Use and validation of ADMS-Urban in contrasting urban and industrial locations. Int. J. Environ. Pollut. 2000, 14, 364–374. [Google Scholar] [CrossRef]
- Li, M.; Yang, D.O.; Ho, W. Comparative study and prospect of Atmospheric diffusion model AERMOD and CALPUFF. Geomat. Inf. Sci. Wuhan Univ. 2020, 45, 1245–1254. [Google Scholar] [CrossRef]
- Jokinen, T.; Sipila, M.; Richters, S.; Kerminen, V.M.; Paasonen, P.; Stratmann, F.; Worsnop, D.; Kulmala, M.; Ehn, M.; Herrmann, H.; et al. Rapid Autoxidation Forms Highly Oxidized RO2 Radicals in the Atmosphere. Angew. Chem. Int. Ed. 2014, 53, 14596–14600. [Google Scholar] [CrossRef]
- Orlando, J.J.; Tyndall, G.S. Laboratory studies of organic peroxy radical chemistry: An overview with emphasis on recent issues of atmospheric significance. Chem. Soc. Rev. 2012, 41, 6294–6317. [Google Scholar] [CrossRef] [Green Version]
- Hasson, A.S.; Tyndall, G.S.; Orlando, J.J.; Singh, S.; Hernandez, S.Q.; Campbell, S.; Ibarra, Y. Branching Ratios for the Reaction of Selected Carbonyl-Containing Peroxy Radicals with Hydroperoxy Radicals. J. Phys. Chem. A 2012, 116, 6264–6281. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R. Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Aumont, B.; Valorso, R.; Mouchel-Vallon, C.; Camredon, M.; Lee-Taylor, J.; Madronich, S. Modeling SOA formation from the oxidation of intermediate volatility n-alkanes. Atmos. Chem. Phys. 2012, 12, 7577–7589. [Google Scholar] [CrossRef]
- Li, L.; Lu, C.; Chan, P.W.; Zhang, X.; Yang, H.L.; Lan, Z.J.; Zhang, W.H.; Liu, Y.W.; Pan, L.; Zhang, L. Tower observed vertical distribution of PM2.5, O3 and NOx in the Pearl River Delta. Atmos. Environ. 2020, 220, 117083. [Google Scholar] [CrossRef]
- Imhof, D.; Weingartner, E.; Vogt, U.; Dreiseidler, A.; Rosenbohm, E.; Scheer, V.; Vogt, R.; Nielsen, O.J.; Kurtenbach, R.; Corsmeier, U.; et al. Vertical distribution of aerosol particles and NOx close to a motorway. Atmos. Environ. 2005, 39, 5710–5721. [Google Scholar] [CrossRef]
- Yang, X.Y.; Wang, X.H.; Yang, W.; Xu, J.; Ren, L.H.; He, Y.J.; Liu, B.; Bai, Z.P.; Meng, F.; Hu, M. Aircraft measurements of SO2, NOx, CO, and O3 over the coastal and offshore area of Yellow Sea of China. Environ. Monit. Assess. 2016, 188, 527. [Google Scholar] [CrossRef] [PubMed]
- Han, S.Q.; Yao, Q.; Tie, X.X.; Zhang, Y.F.; Zhang, M.; Li, P.Y.; Cai, Z.Y. Analysis of surface and vertical measurements of O3 and its chemical production in the NCP region, China. Atmos. Environ. 2020, 241, 117759. [Google Scholar] [CrossRef]
- Wang, Q.g.; Han, Z.; Wang, T.; Zhang, R. Impacts of biogenic emissions of VOC and NOx on tropospheric ozone during summertime in eastern China. Sci. Total Environ. 2008, 395, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Ho, K.F.; Lee, S.C.; Guo, H.; Tsai, W.Y. Seasonal and diurnal variations of volatile organic compounds (VOCs) in the atmosphere of Hong Kong. Sci. Total Environ. 2004, 322, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Dechapanya, W.; Russell, M.; Allen, D.T. Estimates of Anthropogenic Secondary Organic Aerosol Formation in Houston, Texas Special Issue of Aerosol Science and Technology on Findings from the Fine Particulate Matter Supersites Program. Aerosol Sci. Technol. 2004, 38, 156–166. [Google Scholar] [CrossRef]
- Li, Q.Q.; Su, G.J.; Li, C.Q.; Liu, P.F.; Zhao, X.X.; Zhang, C.L.; Sun, X.; Mu, Y.J.; Wu, M.G.; Wang, Q.L.; et al. An investigation into the role of VOCs in SOA and ozone production in Beijing, China. Sci. Total Environ. 2020, 720, 137536. [Google Scholar] [CrossRef]
- Jacobson, M.C.; Hansson, H.C.; Noone, K.J.; Charlson, R.J. Organic atmospheric aerosols: Review and state of the science. Rev. Geophys. 2000, 38, 267–294. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.J.; Wang, H.; Chen, D.; Li, Q.Q.; Thai, P.; Gong, D.C.; Li, Y.; Zhang, C.L.; Gu, Y.G.; Zhou, L.; et al. Emission characteristics of volatile organic compounds and their secondary organic aerosol formation potentials from a petroleum refinery in Pearl River Delta, China. Sci. Total Environ. 2017, 584, 1162–1174. [Google Scholar] [CrossRef]
Sampler | Materials | Operating Principles | Advantages | Disadvantages | Sample Storage Time (Maximum) | References |
---|---|---|---|---|---|---|
Air sampling bags | Tedlar, Kynar, FEP, Fluode, etc. | Introduction of air samples into gas sampling bag using tools such as sampling pumps | (1) Light weight (2) Lower cost than canister (3) Easy to transport (4) Reusable | (1) Easily leaks (2) Short sample holding time (3) Long sampling time (4) Not suitable for highly reactive compounds (5) When transported by air or at high altitudes, may break due to reduced atmospheric pressure | 24 h | [32,36,44] |
Canisters | Summa cans | Automatic gas sample collection through negative pressure in the canister | (1) Easy storage of samples (2) Can be automated (3) Large sample collection volume (4) Long sample storage time (5) Reusable | Proper cleaning of the canister, pump, and flow regulator are required before sampling, otherwise sample contamination occurs | 30 days | [36,45,38] |
Adsorbent cartridge/tube | The sampling tube is usually made of stainless steel or hard glass | (1) Introduction of air samples into the adsorption tube (2) Rapid heating of the adsorption tube for thermal desorption (3) Analyzed with GC-MS | (1) Better absorption capacity (2) Better effect than canister-type sampler (3) Small size and easy to transport | (1) Affected by moisture content (2) Low recovery of non-polar species | 14 days | [36,46] |
SPME | Fibers coated with an extracting phase (liquid or solid) | (1) Introduction of air samples into SPME (2) Adsorption of samples using fibers (3) Analyzed with GC-MS | (1) Easy to operate (2) Friendly towards the environment and human health (3) Can be applied in high-risk industrial areas (4) Low cost of analyses | (1) VOC adsorption quantity is influenced by meteorological conditions (sunlight, wind, temperature, humidity, etc.) (2) Not suitable for collecting high-concentration pollutants | 15 days | [36,47] |
Performance | Tedlar | Kynar | FEP | Fluode |
---|---|---|---|---|
Thermotolerance (°C) | 150~170 | 150~170 | 200~260 | 150~170 |
Water vapor transmission rate (g m−2 24 h) | 12.72 | – | 1.33 | 10.9 |
Oxygen transmission rate (cm3 cm (m2 24 h 0.1 pa)−1) | 114 | – | 2420 | 126 |
Corrosion resistance | Low | Average | High | Average |
Adsorption resistance | Average | Average | High | Average |
VOC residual degree | Average | Low | High | Low |
Mechanical strength | High | Average | Low | High |
References | [28,32,36,44,48] | [34,44] | [33,44] | [31,32] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Xu, Y.; Xu, J.; Lian, M.; Zhang, W.; Wu, W.; Wu, M.; Zhao, J. The Vertical Distribution of VOCs and Their Impact on the Environment: A Review. Atmosphere 2022, 13, 1940. https://doi.org/10.3390/atmos13121940
Chen D, Xu Y, Xu J, Lian M, Zhang W, Wu W, Wu M, Zhao J. The Vertical Distribution of VOCs and Their Impact on the Environment: A Review. Atmosphere. 2022; 13(12):1940. https://doi.org/10.3390/atmos13121940
Chicago/Turabian StyleChen, Da, Yanhong Xu, Jingcheng Xu, Meiling Lian, Wei Zhang, Wenhao Wu, Mengying Wu, and Jingbo Zhao. 2022. "The Vertical Distribution of VOCs and Their Impact on the Environment: A Review" Atmosphere 13, no. 12: 1940. https://doi.org/10.3390/atmos13121940
APA StyleChen, D., Xu, Y., Xu, J., Lian, M., Zhang, W., Wu, W., Wu, M., & Zhao, J. (2022). The Vertical Distribution of VOCs and Their Impact on the Environment: A Review. Atmosphere, 13(12), 1940. https://doi.org/10.3390/atmos13121940