Simulating the Impacts of Wind Farm Wake under the Changes in MYNN Planetary Boundary Layer Scheme in High Resolution Weather Research and Forecasting Model
Abstract
:1. Introduction
2. Data and Method
2.1. Observed Wind Data and Selection of Time Period
2.2. Model Simulations
2.2.1. MYNN PBL Scheme
2.2.2. Wind Farm Parametrization
2.2.3. Hypothetical Wind Farm Design
3. Results and Discussion
3.1. Performance of WRF without WFP for Main Simulations
3.2. Impacts of WRF-WFP on TKE
3.3. Impacts of WRF-WFP on Wind Speed
3.4. Impact of WRF-WFP on Air Temperature
3.5. Impact of WRF-WFP on Planetary Boundary Layer Height
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keith, D.W.; DeCarolis, J.F.; Denkenberger, D.C.; Lenschow, D.H.; Malyshev, S.L.; Pacala, S.; Rasch, P.J. The influence of large-scale wind power on global climate. Proc. Natl. Acad. Sci. USA 2004, 101, 16115–16120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baidya Roy, S.; Pacala, S.; Walko, R. Can large wind farms affect local meteorology? J. Geophys. Res. 2004, 109, D19101. [Google Scholar] [CrossRef]
- Ivanova, I.A.; Nadyozhina, E.D. Numerical simulation of wind farm influence on wind flow. Wind Eng. 2000, 24, 257–269. [Google Scholar] [CrossRef]
- Kirk-Davidoff, D.B.; Keith, D.W. On the climate impact of surface roughness anomalies. J. Atmos. Sci. 2008, 65, 2215–2234. [Google Scholar] [CrossRef] [Green Version]
- Barrie, D.B.; Kirk-Davidoff, D.B. Weather response to a large wind turbine array. Atmos. Chem. Phys. 2010, 10, 769–775. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Prinn, R.G. Potential climatic impacts and reliability of very large-scale wind farms. Atmos. Chem. Phys. 2010, 10, 2053–2061. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Prinn, R.G. Potential climatic impacts and reliability of large-scale offshore wind farms. Envrion. Res. Lett. 2011, 6, 025101. [Google Scholar] [CrossRef]
- Blahak, U.; Goretzki, B.; Meis, J. A simple parametrization of drag forces induced by large wind farms for numerical weather prediction models. In Proceedings of the European Wind Energy Conference and Exhibition 2010, PO ID 445, EWEC, Warsaw, Poland, 14–17 March 2011; pp. 186–189. [Google Scholar]
- Abkar, M.; Porte-Agel, F. A new wind-farm parametrization for large-scale atmospheric models. J. Renew. Sustain. Energy 2015, 7, 013121. [Google Scholar] [CrossRef]
- Volker, P.; Badger, J.; Hahmann, A.N. The explicit wake parametrisation v1.0: A wind farm parametrisation in the mesoscale model WRF. Geosci. Model Dev. 2015, 8, 3715–3731. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Archer, C.L. A hybrid wind-farm parametrization for mesoscale and climate models. Bound. Layer Meteor. 2018, 168, 469–495. [Google Scholar] [CrossRef]
- Fitch, A.C.; Olson, J.B.; Lundquist, J.K.; Dudhia, J.; Gupta, A.K.; Michalakes, J.; Barstad, I. Local and mesoscale impacts of wind farms as parametrized in a mesoscale NWP model. Mon. Wea. Rev. 2012, 140, 3017–3038. [Google Scholar] [CrossRef]
- Eriksson, O.; Lindvall, J.; Breton, S.P.; Ivanell, S. Wake downstream of the Lillgrund wind farm—A Comparison between LES using the actuator disc method and a Wind farm Parametrization in WRF. J. Phys. Conf. Ser. 2015, 625, 012028. [Google Scholar] [CrossRef]
- Jimenez, P.A.; Navarro, J.; Palomares, A.M.; Dudhia, J. Mesoscale modeling of offshore wind turbine wakes at the wind farm resolving scale: A composite-based analysis with the Weather Research and Forecasting model over Horns Rev: Mesoscale modeling at the wind farm resolving scale. Wind Energy 2015, 18, 559–566. [Google Scholar] [CrossRef]
- Miller, L.M.; Brunsell, N.A.; Mechem, D.B.; Gans, F.; Monagham, A.J.; Vautard, R.; Keith, D.W.; Kleidon, A. Two methods for estimating limits to large-scale wind power generation. Proc. Natl. Acad. Sci. USA 2015, 112, 11169–11174. [Google Scholar] [CrossRef] [Green Version]
- Wanderwende, B.J.; Kosovic, B.; Lundquist, J.K.; Mirocha, J.D. Simulating the effects of a wind-turbine arrays using LES and RAS: Simulating turbines using LES and RANS. J. Adv. Model Earth Sys. 2016, 8, 1376–1390. [Google Scholar] [CrossRef]
- Vanderwende, B.J.; Lundquist, J.K. Could crop height affect the wind resource at agriculturally productive wind farm sites? Bound. Layer Meteor. 2016, 158, 409–428. [Google Scholar] [CrossRef] [Green Version]
- Pryor, S.C.; Barthelmie, R.J.; Shepherd, T.J. The influence of real-world wind turbine deployments on local to mesocale climate. J. Geophys. Res. Atm. 2018, 123, 5804–5826. [Google Scholar] [CrossRef]
- Wang, Q.; Luo, K.; Wu, C.; Fan, J. Impact of substantial wind farms on local and regional atmospheric boundary layer: Case study of Zhangbei wind power base in China. Energy 2019, 18, 1136–1149. [Google Scholar] [CrossRef]
- Vautard, R.; Thais, F.; Tobin, I.; Breon, F.M.; de Lavergne, J.G.D.; Colette, A.; Yiou, P.; Ruti, P.M. Regional climate model simulations indicate limited climatic impacts by operational and planned Eurpoean wind farms. Nat. Commun. 2014, 5, 3196. [Google Scholar] [CrossRef] [Green Version]
- Miller, L.M.; Keith, D.W. Climatic impacts of wind power. Joule 2018, 2, 2618–2632. [Google Scholar] [CrossRef]
- Pryor, S.C.; Barthelmie, R.J.; Shepherd, T.J. 20% of US electricity from wind will have limited impacts on system efficiency and regional climate. Sci. Rep. 2020, 10, 541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, H.; Luo, Y.; Chang, R. The impacts of Chinese wind farms on climate. J. Geophys. Res. Atm. 2018, 123, 5177–5187. [Google Scholar] [CrossRef]
- Lee, J.C.Y.; Lundquist, J.K. Evaluation of the wind farm parametrization in Weather Research and Forecasting model (version 3.8.1) with meteorological and turbine power data. Geosci. Model Dev. 2017, 10, 4229–4244. [Google Scholar] [CrossRef] [Green Version]
- Tomaszewski, J.M.; Lundquist, J.K. Simulated wind farm wake sensitivity to configuration choices in the Weather Research and Forecasting model version 3.8.1. Geosci. Model Dev. 2020, 13, 2645–2662. [Google Scholar] [CrossRef]
- Siedersleben, S.K.; Platis, A.; Lundquist, J.K.; Djath, B.; Lampert, A.; Barfuss, K.; Canadillas, B.; Schulz-Stellenfleth, J.; Banges, J.; Neumann, T.; et al. Turbulent kinetic energy over large offshore wind farms observed and simulated by the mesoscale model WRF (3.8.1). Geosci. Model Dev. 2020, 13, 249–268. [Google Scholar] [CrossRef] [Green Version]
- Mangara, R.J.; Guo, Z.; Li, S. Performance of the wind farm parametrization scheme coupled with Weather Reseach and Forecasting model under multiple resolution regimes for simulating an onshore wind farm. Adv. Atmos Sci. 2019, 36, 119–132. [Google Scholar] [CrossRef]
- Xia, G.; Zhou, L.; Minder, J.R.; Fovell, R.G.; Jimenez, P.A. Simulating impacts of real-world wind farms on land surface temperature using the WRF model: Physical mechanism. Clim. Dynam. 2019, 53, 1723–1739. [Google Scholar] [CrossRef]
- Witha, B.; Hahmann, A.; Sile, T.; Dörenkämper, M.; Ezber, Y.; García-Bustamante, E.; González-Rouco, J.F.; Leroy, G.; Navarro, J. WRF model sensitivity studies and specifications for the NEWA mesoscale wind atlas production runs. Zenodo 2019. [Google Scholar] [CrossRef]
- Hahmann, A.N.; Sile, T.; Witha, B.; Davis, N.N.; Dörenkämper, M.; Ezber, Y.; García-Bustamate, E.; González Rouco, J.F.; Navarro, J.; Olsen, B.T.; et al. New European wind atlas, part 1: Model sensitivity. Geosci. Model Dev. 2020, 13, 5053–5078. [Google Scholar] [CrossRef]
- Archer, C.L.; Wu, S.; Ma, Y.; Jimenez, P.A. Two corrections for turbulent kinetic energy generated by wind farms in the WRF model. Mon. Weather Rev. 2020, 148, 4823–4835. [Google Scholar] [CrossRef]
- Chang, R.; Zhu, R.; Guo, P. A case study of land-surface-temperature impaact from large-scale deployment of wind farms in China from Guazhou. Remote Sens. 2016, 8, 790. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Tian, Y.; Baidya Roy, S.; Thorncroft, C.; Bosart, L.F.; Hu, Y. Impacts of wind farms on land surface temperature. Nat. Clim. Change 2012, 2, 539–543. [Google Scholar] [CrossRef]
- Zhou, L.; Tian, Y.; Baidya Roy, S. Diurnal and seasonal variations of wind farm impact on land surface temperature over western Texas. Clim. Dyn. 2013, 41, 307–326. [Google Scholar] [CrossRef]
- Skamarock, W.; Klemp, J.; Dudhia, J.; Gill, D.; Barker, D.; Duda, M.; Huang, X.; Wang, W.; Powers, J. A Description of the Advanced Research WRF Version 3; NCAR Technical Note; NCAR: Boulder, CO, USA, 2008. [Google Scholar]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, D13103. [Google Scholar] [CrossRef]
- Hong, S.Y.; Dudhia, J.; Chen, S.H. A revised approach to ice microphysical processes for the bulk parametrization of clouds and precipitation. Mon. Wea. Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain-Fritsch convective parametrization: An update. J. Appl. Meteor. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Atmos. 2003, 108, 2002jd003296. [Google Scholar] [CrossRef]
- Nakanishi, M.; Niino, H. Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Jpn. 2009, 87, 895–912. [Google Scholar] [CrossRef] [Green Version]
- Wyngaard, J.C. Toward numerical modeling in the “Terra Incognita”. J. Atmos. Sci. 2004, 61, 1816–1826. [Google Scholar] [CrossRef]
- Siedersleben, S.K.; Lundquist, J.K.; Platis, A.; Bange, J.; Bärfuss, K.; Lampert, A.; Cañadillas, B.; Neumann, T.; Emeis, S. Micrometorological impacts of offshore wind farms as seen in observations and simulations. Environ. Res. Lett. 2018, 13, 124012. [Google Scholar] [CrossRef]
- Olson, J.B.; Kenyon, J.S.; Angevine, W.A.; Brown, J.M.; Mariusz, P.; Sušelj, K. A Description of the MYNN-EDMF Scheme and the Coupling to Other Components in WRF-ARW; NOAA Technical Memorandum OAR GSD-61; NOAA: Silver Spring, MD, USA, 2019. [CrossRef]
- Manwell, J.F.; McGowan, J.G.; Rogers, A.I. Wind Energy Explained: Theory, Design and Application; Wiley: Hoboken, NJ, USA, 2002. [Google Scholar]
- Gupta, T.; Baidya Roy, S. Recovery processes in a large offshore wind farm. Wind. Energ. Sci. 2021, 6, 1089–1106. [Google Scholar] [CrossRef]
- Wu, Y.T.; Porté-Agel, F. Large-Eddy Simulation of Wind-Turbine Wakes: Evaluation of Turbine Parametrisations. Bound. Layer Meteor. 2011, 138, 345–366. [Google Scholar] [CrossRef]
- Slawsky, L.M.; Zhou, L.; Baidya Roy, S.; Xia, G.; Vuille, M.; Harris, R.A. Observed thermal impacts of wind farms over northern Illionis. Sensors 2015, 15, 14981–15005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rajewski, D.A.; Takle, E.S.; Lundquist, J.K.; Oncley, S.; Prueger, J.H.; Horst, T.W.; Rhodes, M.E.; Pfeiffer, R.; Hatfield, J.L.; Spoth, K.K.; et al. Crop wind energy experiment (CWEX): Observations of surface-layer, boundary layer, and mesoscale interactions with a wind farm. Bull. Amer. Meteor. Soc. 2013, 94, 655–672. [Google Scholar] [CrossRef]
- Armstrong, A.; Burton, R.R.; Lee, S.E.; Mobbs, S.; Ostle, N.; Smith, V.; Waldron, S.; Whitaker, J. Ground-level climate at a peatland wind farm in Scotland is affected by wind turbine operation. Envrion. Res. Lett. 2016, 11, 044024. [Google Scholar] [CrossRef]
- Smith, M.C.; Barthelmie, R.J.; Pryor, S.C. In situ observations of the influence of a large onshore wind farm on near-surface temperature, turbulence intensity and wind speed profiles. Environ. Res. Lett. 2013, 8, 034006. [Google Scholar] [CrossRef]
- Xia, G.; Zhou, L.; Freedman, J.M.; Baidya Roy, S.; Harris, R.A.; Cervarich, C. A case study of effects of atmospheric boundary layer turbulence, wind speed, and stability on wind farm induced temperature changes using observations from a field campaign. Clim. Dyn. 2016, 46, 2179–2196. [Google Scholar] [CrossRef]
- Xie, B.; Hunt, J.C.; Carruthers, D.J.; Fung, J.C.H.; Barlow, J.F. Structure of the planetary boundary layer over southeast England: Modeling and measurements. J. Geophys. Res. Atmos. 2013, 118, 7799–7818. [Google Scholar] [CrossRef]
2015/7/17 | ||||
V (ms−1) @ 31 m | V (ms−1) @ 61 m | V (ms−1) @ 81 m | DIR (°) @ 78 m | |
Mean | 9.76 | 10.83 | 11.4 | 60.71 |
Standard Deviation | 0.97 | 0.67 | 0.72 | 6.13 |
2015/7/18 | ||||
V (ms−1) @ 31 m | V (ms−1) @ 61 m | V (ms−1) @ 81 m | DIR (°) @ 78 m | |
Mean | 8.82 | 9.95 | 10.55 | 57.63 |
Standard Deviation | 0.97 | 1.03 | 1.26 | 9.17 |
PBL | Mixing Length opt. No | TKE adv. | CF for CTKE | TKE Tend. (WFP) | Mom. Tend. (WFP) | |
---|---|---|---|---|---|---|
BASE | MYNN | 1 | Off | 1 | On | On |
ORGMYNN | MYNN | 0 | Off | 1 | On | On |
EDMFv1 | EDMF | 1 | Off | 1 | On | On |
EDMFv2 | EDMF | 2 | Off | 1 | On | On |
ADV | MYNN | 1 | On (B) | 1 | On | On |
ADVBF | MYNN | 1 | On (BF) | 1 | On | On |
ADVBF-MCTKE | MYNN | 1 | On (BF) | 0.25 | On | On |
MOM | MYNN | 1 | Off | 1 | Of | On |
TUR | MYNN | 1 | Off | 1 | On | Of |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaytancı, T.; Menteş, Ş.S.; Ünal, Y. Simulating the Impacts of Wind Farm Wake under the Changes in MYNN Planetary Boundary Layer Scheme in High Resolution Weather Research and Forecasting Model. Atmosphere 2022, 13, 1838. https://doi.org/10.3390/atmos13111838
Kaytancı T, Menteş ŞS, Ünal Y. Simulating the Impacts of Wind Farm Wake under the Changes in MYNN Planetary Boundary Layer Scheme in High Resolution Weather Research and Forecasting Model. Atmosphere. 2022; 13(11):1838. https://doi.org/10.3390/atmos13111838
Chicago/Turabian StyleKaytancı, Tarık, Şükran Sibel Menteş, and Yurdanur Ünal. 2022. "Simulating the Impacts of Wind Farm Wake under the Changes in MYNN Planetary Boundary Layer Scheme in High Resolution Weather Research and Forecasting Model" Atmosphere 13, no. 11: 1838. https://doi.org/10.3390/atmos13111838
APA StyleKaytancı, T., Menteş, Ş. S., & Ünal, Y. (2022). Simulating the Impacts of Wind Farm Wake under the Changes in MYNN Planetary Boundary Layer Scheme in High Resolution Weather Research and Forecasting Model. Atmosphere, 13(11), 1838. https://doi.org/10.3390/atmos13111838