An Integrated System Dynamics Model and Life Cycle Assessment for Cement Production in South Africa
Abstract
:1. Introduction
2. Literature Review
2.1. Cement Life Cycle Assessment
2.2. System Dynamics Model
2.3. Integration of LCA and SDs
3. Materials and Methods
3.1. Life Cycle Assessment and System Dynamics Methods
3.2. LCA of the Cement Production Process
3.2.1. System Boundary, Goal and Scope Definition
3.2.2. Life Cycle Inventory
3.2.3. Life Cycle Impact Assessment
3.3. System Dynamics
- I.
- Identify Problem:
- II.
- Conceptualization of the System:
- III.
- Validation of the Model:
- IV.
- Evaluation of Possible Policy:
3.4. System Dynamics Model Development
3.5. Data Source
4. Results and Discussion
4.1. Integrating LCA with System Dynamics
4.2. Model Development
4.3. Overview of Cement Production, Real Gross Domestic Product from South Africa from 2000 to 2017
4.4. Model Fitting for Cement Production and Real GDP in the South African Cement Industry from 2000 to 2017
4.5. Future Prediction of Cement Production in South Africa
4.6. Major Environmental Impact Categories of Portland Cement
4.6.1. Analysis of Midpoint Approach of Five Production Stages
4.6.2. Long-Term Environmental Impact of Cement Production in South Africa
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Valderrama, C.; Granados, R.; Cortina, J.L.; Gasol, C.M.; Guillem, M.; Josa, A. Implementation of best available techniques in cement manufacturing: A life-cycle assessment study. J. Clean. Prod. 2012, 25, 60–67. [Google Scholar] [CrossRef]
- Galvez-Martos, J.-L.; Schoenberger, H. An analysis of the use of life cycle assessment for waste co-incineration in cement kilns. Resour. Conserv. Recycl. 2014, 86, 118–131. [Google Scholar] [CrossRef]
- Madlool, N.; Saidur, R.; Rahim, N.; Kamalisarvestani, M. An overview of energy savings measures for cement industries. Renew. Sustain. Energy Rev. 2013, 19, 18–29. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Saha, J. High level automation to achieve improved productivity, energy efficiency and consistent cement quality. In Proceedings of the 2015 IEEE-IAS/PCA Cement Industry Conference (IAS/PCA CIC), Toronto, ON, Canada, 26–30 April 2015; pp. 1–7. [Google Scholar]
- DEA. GHG National Inventory Report For South Africa 2000–2010; Department of Environmental Affairs (DEA): Pretoria, South Africa, 2014; Available online: http://www.saaqis.org.za (accessed on 9 January 2022).
- WBCSD. Cement Technology Roadmap Shows How the Path to Achieve CO2 Reductions Up to 24% by 2050; World Business Council for Sustainable Development (WBCSD): Paris, France; Geneva, Switzerland, 2018; Available online: https://www.wbcsd.org/Sector-Projects/Cement-Sustainability-Initiative/News/Cement-technology-roadmap-shows-how-the-path-to-achieve-CO2-reductions-up-to-24-by-2050 (accessed on 23 June 2022).
- Maddalena, R.; Roberts, J.J.; Hamilton, A. Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative cements. J. Clean. Prod. 2018, 186, 933–942. [Google Scholar] [CrossRef]
- Summerbell, D.L.; Barlow, C.Y.; Cullen, J.M. Potential reduction of carbon emissions by performance improvement: A cement industry case study. J. Clean. Prod. 2016, 135, 1327–1339. [Google Scholar] [CrossRef]
- South Africa GHG inventory. Draft 7th National GHG Inventory Report South Africa 2000–2017; Department of Environment, Forestry and Fisheries: Pretoria, South Africa, 2020. Available online: https://cer.org.za/wp-content/uploads/2020/09/Draft-7th-National-Greenhouse-Gas-Inventory-Report-for-the-Republic-of-South-Africa-for-public-comment.pdf (accessed on 15 March 2022).
- OEC. South Africa Cement Import and Export. 2020. Available online: https://oec.world/en/profile/bilateral-product/cement/reporter/zaf#:~:text=The%20fastest%20growing%20export%20markets,of%20Cement%20in%20the%20world (accessed on 17 June 2022).
- Muigai, R.; Alexander, M.G.; Moyo, P. Cradle-to-gate environmental impacts of the concrete industry in South Africa. J. S. Afr. Inst. Civ. Eng. 2013, 55, 02–07. Available online: http://www.scielo.org.za/scielo.php?script=sci_arttext&pid=S1021-20192013000200001&nrm=iso (accessed on 15 March 2022).
- Arp, R.; Bole-Rentel, T.; Jakuja, N. Greenhouse Gas Emissions Reduction Options for the South African Cement Sector. WWF Technical Report. Emerging Climate Smart Business Opportunities. Technical Report. WWF. 2018. Available online: http://awsassets.wwf.org.za/downloads/wwf_2018_ghg_reduction_options_for_sa_cement_sector.pdf (accessed on 2 May 2022).
- P. Pretoria Portland Cement. Annual Report 2018. Pretoria Portland Cement. 2018. Available online: https://www.sharedata.co.za/data/000567/pdfs/PPC_fin_mar18.pdf (accessed on 2 May 2022).
- Abdul-Wahab, S.A.; Al-Rawas, G.A.; Ali, S.; Al-Dhamri, H. Assessment of greenhouse CO2 emissions associated with the cement manufacturing process. Environ. Forensics 2016, 17, 338–354. [Google Scholar] [CrossRef]
- Cembureau. The Role of Cement in the 2050 Low Carbon Economy; The European Cement Association: Brussels, Belgium, 2013. [Google Scholar]
- Cembureau. The European Cement Association (Cembureau) 2017 Activity Report; The European Cement Association: Brussels, Belgium, 2017; pp. 1–42. [Google Scholar]
- Cembureau. The European Cement Association (Cembureau) 2020 Activity Report; The European Cement Association: Brussels, Belgium, 2020; pp. 1–52. [Google Scholar]
- IEA. CO2 Emissions from Fuel Combustion: Overview; IEA Publications: Paris, France, 2017. [Google Scholar]
- IEA. Reducing CO2 Emissions while Producing Enough Cement to Meet Demand Is a Global Challenge, Especially since Demand Growth Is Expected to Resume. 2019. Available online: https://www.iea.org/fuels-and-technologies/cement (accessed on 13 March 2022).
- Rubenstein. Emissions from the Cement Industry. Columbia Climate School Climate Earth and Society. 2012. Available online: https://news.climate.columbia.edu/2012/05/09/emissions-from-the-cement-industry (accessed on 2 February 2022).
- Salas, D.A.; Ramirez, A.D.; Rodríguez, C.R.; Petroche, D.M.; Boero, A.J.; Duque-Rivera, J. Environmental impacts, life cycle assessment and potential improvement measures for cement production: A literature review. J. Clean. Prod. 2016, 113, 114–122. [Google Scholar] [CrossRef]
- Mathew, B.J.; Sudhakar, M.; Natarajan, C. Strength, economic and sustainability characteristics of coal ash–GGBS based geopolymer concrete. Int. J. Comput. Eng. Res. 2013, 3, 207–212. [Google Scholar]
- Benhelal, E.; Zahedi, G.; Shamsaei, E.; Bahadori, A. Global strategies and potentials to curb CO2 emissions in cement industry. J. Clean. Prod. 2013, 51, 142–161. [Google Scholar] [CrossRef]
- Mikulčić, H.; Klemeš, J.J.; Vujanović, M.; Urbaniec, K.; Duić, N. Reducing greenhouse gasses emissions by fostering the deployment of alternative raw materials and energy sources in the cleaner cement manufacturing process. J. Clean. Prod. 2016, 136, 119–132. [Google Scholar] [CrossRef]
- Hasanbeigi, A.; Price, L.; Lin, E. Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review. Renew. Sustain. Energy Rev. 2012, 16, 6220–6238. [Google Scholar] [CrossRef]
- Mahasenan, N.; Smith, S.; Humphreys, K. The Cement Industry and Global Climate Change Current and Potential Future Cement Industry CO2 Emissions. In Proceedings of the Greenhouse Gas Control Technologies—6th International Conference, Kyoto, Japan, 1–4 October 2003; pp. 995–1000. [Google Scholar]
- David, J.; Flower, M.; Sanjayan, J.G. Green house gas emissions due to concrete manufacture. Int. J. Life Cycle Assess. 2007, 12, 282. [Google Scholar]
- Hossain, U.; Poon, C.S.; Lo, I.M.; Cheng, J.C. Comparative LCA on using waste materials in the cement industry: A Hong Kong case study. Resour. Conserv. Recycl. 2017, 120, 199–208. [Google Scholar] [CrossRef]
- Napp, T.; Gambhir, A.; Hills, T.; Florin, N.; Fennell, P. A review of the technologies, economics and policy instruments for decarbonising energy-intensive manufacturing industries. Renew. Sustain. Energy Rev. 2014, 30, 616–640. [Google Scholar] [CrossRef]
- Worrell, E.; Kermeli, K.; Galitsky, C. Energy Efficiency Improvement and Cost Saving Opportunities for Cement Making an ENERGY STAR® Guide for Energy and Plant Managers; EPA-United States Environmental Protection Agency: Washington, DC, USA, 2013. [Google Scholar]
- Hendriks, C.A.; Worrell, E.; De Jager, D.; Blok, K.; Riemer, P. Emission reduction of greenhouse gases from the cement industry. In Proceedings of the Fourth International Conference on Greenhouse Gas Control Technologies, IEA GHG R&D Programme, Interlaken, Switzerland, 30 August–2 September 1998; pp. 939–944. [Google Scholar]
- Humphreys, K.; Mahasenan, M. Towards a Sustainable Cement Industry. Substudy 8: Climate Change; World Business Council for Sustainable Development: Conches-Geneva, Switzerland, 2002. [Google Scholar]
- Sarker, P. A constitutive model for fly ash-based geopolymer concrete. Archit. Civ. Eng. Environ. 2008, 1, 113–120. [Google Scholar]
- Zhang, L.; Mabee, W.E. Comparative study on the life-cycle greenhouse gas emissions of the utilization of potential low carbon fuels for the cement industry. J. Clean. Prod. 2016, 122, 102–112. [Google Scholar] [CrossRef]
- Ishak, S.A.; Hashim, H.; Ting, T.S. Eco innovation strategies for promoting cleaner cement manufacturing. J. Clean. Prod. 2016, 136, 133–149. [Google Scholar] [CrossRef]
- Tesema, G.; Worrell, E. Energy efficiency improvement potentials for the cement industry in Ethiopia. Energy 2015, 93, 2042–2052. [Google Scholar] [CrossRef]
- Karstensen, K.; Engelsen, C.; Ng, S.; Saha, P.; Malmedal, M. Cement manufacturing and air quality. Compr. Anal. Chem. 2016, 73, 683–705. [Google Scholar]
- Rodrigues, F.; Joekes, I. Cement industry: Sustainability, challenges and perspectives. Environ. Chem. Lett. 2011, 9, 151–166. [Google Scholar] [CrossRef]
- Potgieter, J.H. An Overview of Cement production: How “green” and sustainable is the industry? Environ. Manag. Sustain. Dev. 2012, 1, 14–37. [Google Scholar] [CrossRef] [Green Version]
- Barcelo, L.; Kline, J.; Walenta, G.; Gartner, E. Cement and carbon emissions. Mater. Struct. 2013, 47, 1055–1065. [Google Scholar] [CrossRef]
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-Efficient Cements: Potential Economically Viable Solutions for a Low-CO2 Cement-Based Materials Industry; United Nations Environment Program: Nairobi, Kenya, 2016. [Google Scholar]
- Brown, D.; Sadiq, R.; Hewage, K. An overview of air emission intensities and environmental performance of grey cement manufacturing in Canada. Clean Technol. Environ. Policy 2014, 16, 1119–1131. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, S.; Wagner, F. Exploring the driving forces of energy consumption and environmental pollution in China’s cement industry at the provincial level. J. Clean. Prod. 2018, 184, 274–285. [Google Scholar] [CrossRef]
- Chinyama, M.P. Alternative fuels in cement manufacturing. Altern. Fuel 2011, 2011, 263–284. Available online: https://www.intechopen.com/chapters/17593 (accessed on 1 October 2022).
- Rahman, A.; Rasul, M.; Khan, M.; Sharma, S. Recent development on the uses of alternative fuels in cement manufacturing process. Fuel 2015, 145, 84–99. [Google Scholar] [CrossRef]
- Georgiopoulou, M.; Lyberatos, G. Life cycle assessment of the use of alternative fuels in cement kilns: A case study. J. Environ. Manag. 2018, 216, 224–234. [Google Scholar] [CrossRef]
- Fund, W.W. Cement sector: Life cycle optimisation service. In Emerging Climate-Smart Business Opportunities; World Wide Fund for Nature: Johannesburg, South Africa, 2018; Available online: https://wwfafrica.awsassets.panda.org/downloads/wwf_2018_cement_sector_life_cycle_optimisation_service.pdf?25461/Cement-Sector-Life-Cycle-Optimisation-Service (accessed on 1 October 2022).
- Usón, A.A.; López-Sabirón, A.M.; Ferreira, G.; Sastresa, E.L. Uses of alternative fuels and raw materials in the cement industry as sustainable waste management options. Renew. Sustain. Energy Rev. 2013, 23, 242–260. [Google Scholar] [CrossRef]
- Ristimäki, M.; Säynäjoki, A.; Heinonen, J.; Junnila, S. Combining life cycle costing and life cycle assessment for an analysis of a new residential district energy system design. Energy 2013, 63, 168–179. [Google Scholar] [CrossRef]
- Ma, F.; Sha, A.; Yang, P.; Huang, Y. The Greenhouse Gas Emission from Portland Cement Concrete Pavement Construction in China. Int. J. Environ. Res. Public Health 2016, 13, 632. [Google Scholar] [CrossRef]
- Feiz, R.; Ammenberg, J.; Baas, L.; Eklund, M.; Helgstrand, A.; Marshall, R. Improving the CO2 performance of cement, part I: Utilizing life-cycle assessment and key performance indicators to assess development within the cement industry. J. Clean. Prod. 2015, 98, 272–281. [Google Scholar] [CrossRef] [Green Version]
- Boughrara, S.; Aksas, H.; Louhab, K. Comparative Study of Wet and Dry Process of Cement Manufacturing Using Life Cycle Assessment Approach; University of Boumerdes: Boumerdes, Algeria, 2014. [Google Scholar]
- Ali, A.; Negm, A.; Bady, M.; Ibrahim, M. Effect of Fuel Type on the life cycle of Egyptian cement industry: Environmental impact assessment approach. In Proceedings of the Asian Conference on Sustainability, Energy & the Environment, Osaka, Japan, 12–15 June 2014; Volume 4. [Google Scholar]
- Ali, A.A.M.; Negm, A.M.; Bady, M.F.; Ibrahim, M.G.E.; Suzuki, M. Environmental impact assessment of the Egyptian cement industry based on a life-cycle assessment approach: A comparative study between Egyptian and Swiss plants. Clean Technol. Environ. Policy 2016, 18, 1053–1068. [Google Scholar] [CrossRef]
- Koelling, P.; Schwandt, M.J. Health systems: A dynamic system-benefits from system dynamics. In Proceedings of the Winter Simulation Conference, Orlando, FL, USA, 4 December 2005; p. 7. [Google Scholar]
- Brown, G.S.; Campbell, D.P. Principles of Servomechanisms: Dynamics and Synthesis of Closed-Loop Control Systems; Wiley: Hoboken, NJ, USA, 1948. [Google Scholar]
- Macmillan, R.H. An Introduction to the Theory of Control in Mechanical Engineering; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Schaefer, R.G. Introduction to Servomechanisms; University of Wyoming: Laramie, WY, USA, 1950. [Google Scholar]
- Forrester, J.W. Industrial Dynamics; M.I.T. Press: Cambridge, MA, USA, 1961. [Google Scholar]
- Dong, X.; Li, C.; Li, J.; Huang, W.; Wang, J.; Liao, R. Application of a system dynamics approach for assessment of the impact of regulations on cleaner production in the electroplating industry in China. J. Clean. Prod. 2012, 20, 72–81. [Google Scholar] [CrossRef]
- Gartner, E.; Hirao, H. A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete. Cem. Concr. Res. 2015, 78, 126–142. [Google Scholar] [CrossRef] [Green Version]
- Gartner, E. Industrially interesting approaches to “low-CO2” cements. Cem. Concr. Res. 2004, 34, 1489–1498. [Google Scholar] [CrossRef]
- Scrivener, K.L. Options for the future of cement. Indian Concr. J. 2014, 88, 11–21. [Google Scholar]
- Díaz, Y.C.; Berriel, S.S.; Heierli, U.; Favier, A.; Machado, I.R.S.; Scrivener, K.L.; Hernández, J.F.M.; Habert, G. Limestone calcined clay cement as a low-carbon solution to meet expanding cement demand in emerging economies. Dev. Eng. 2017, 2, 82–91. [Google Scholar] [CrossRef]
- Turner, L.K.; Collins, F.G. Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Constr. Build. Mater. 2013, 43, 125–130. [Google Scholar] [CrossRef]
- Ishak, S.A.; Hashim, H. Low carbon measures for cement plant–A review. J. Clean. Prod. 2015, 103, 260–274. [Google Scholar] [CrossRef]
- Shekhovtsova, J. Using South African Fly Ash as a Component of Alkali-Activated Binder. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2015. [Google Scholar]
- DEA. South Africa’s Greenhouse Gas (GHG) Mitigation Potential Analysis; Department of Environmental Affairs: Pretoria, South Africa, 2014. Available online: https://www.dffe.gov.za/sites/default/files/docs/appendixA_approachandmethodology.pdf (accessed on 1 October 2022).
- Çankaya, S.; Pekey, B. A comparative life cycle assessment for sustainable cement production in Turkey. J. Environ. Manag. 2019, 249, 109362. Available online: https://www.sciencedirect.com/science/article/pii/S0301479719310710?via%3Dihub (accessed on 16 August 2022). [CrossRef] [PubMed]
- García-Gusano, D.; Herrera, I.; Garraín, D.; Lechón, Y.; Cabal, H. Life cycle assessment of the Spanish cement industry: Implementation of environmental-friendly solutions. Clean Technol. Environ. Policy 2015, 17, 59–73. [Google Scholar] [CrossRef]
- Tun, T.Z.; Bonnet, S.; Gheewala, S.H. Life cycle assessment of Portland cement production in Myanmar. Int. J. Life Cycle Assess. 2020, 25, 2106–2121. [Google Scholar] [CrossRef]
- Chen, C.; Habert, G.; Bouzidi, Y.; Jullien, A. Environmental impact of cement production: Detail of the different processes and cement plant variability evaluation. J. Clean. Prod. 2010, 18, 478–485. [Google Scholar] [CrossRef]
- Li, C.; Cui, S.; Nie, Z.; Gong, X.; Wang, Z.; Itsubo, N. The LCA of Portland cement production in China. Int. J. Life Cycle Assess. 2021, 20, 117–127. [Google Scholar] [CrossRef]
- Thwe, E.; Khatiwada, D.; Gasparatos, A. Life cycle assessment of a cement plant in Naypyitaw, Myanmar. Clean. Environ. Syst. 2021, 2, 100007. [Google Scholar] [CrossRef]
- Morsali, S. Emissions from portland cement production using life cycle assessment inventory and method. Environ. Energy Econ. 2016, 1, 1–8. [Google Scholar]
- Song, D.; Chen, B. A Life Cycle Modeling Framework for Greenhouse Gas Emissions of Cement Industry. Energy Procedia 2014, 61, 2649–2653. [Google Scholar] [CrossRef]
- Ansari, N.; Seifi, A. A system dynamics analysis of energy consumption and corrective policies in Iranian iron and steel industry. Energy 2012, 43, 334–343. [Google Scholar] [CrossRef]
- Pan, L.; Liu, P.; Li, Z. A system dynamic analysis of China’s oil supply chain: Over-capacity and energy security issues. Appl. Energy 2017, 188, 508–520. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, S.; Zhang, L. System dynamics modeling for urban energy consumption and CO2 emissions: A case study of Beijing, China. Ecol. Model. 2013, 252, 44–52. [Google Scholar] [CrossRef]
- Gu, S.; Fu, B.; Thriveni, T.; Fujita, T.; Ahn, J.W. Coupled LMDI and system dynamics model for estimating urban CO2 emission mitigation potential in Shanghai, China. J. Clean. Prod. 2019, 240, 118034. [Google Scholar] [CrossRef]
- Onat, N.C.; Egilmez, G.; Tatari, O. Towards greening the U.S. residential building stock: A system dynamics approach. Build. Environ. 2014, 78, 68–80. [Google Scholar] [CrossRef]
- Proaño, L.; Sarmiento, A.T.; Figueredo, M.; Cobo, M. Techno-economic evaluation of indirect carbonation for CO2 emissions capture in cement industry: A system dynamics approach. J. Clean. Prod. 2020, 263, 121457. [Google Scholar] [CrossRef]
- Saysel, A.K.; Hekimoğlu, M. Exploring the options for carbon dioxide mitigation in Turkish electric power industry: System dynamics approach. Energy Policy 2013, 60, 675–686. [Google Scholar] [CrossRef]
- Robalino-López, A.; Mena-Nieto, A.; García-Ramos, J. System dynamics modeling for renewable energy and CO2 emissions: A case study of Ecuador. Energy Sustain. Dev. 2014, 20, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Wang, J.; Ren, Y. Research on CO2 emissions from China’s electric power industry based on system dynamics model. Int. J. Ind. Syst. Eng. 2016, 22, 423–439. [Google Scholar]
- Procter, A.; Bassi, A.; Kolling, J.; Cox, L.; Flanders, N.; Tanners, N.; Araujo, R. The effectiveness of Light Rail transit in achieving regional CO2 emissions targets is linked to building energy use: Insights from system dynamics modeling. Clean Technol. Environ. Policy 2017, 19, 1459–1474. [Google Scholar] [CrossRef]
- Han, J.; Hayashi, Y. A system dynamics model of CO2 mitigation in China’s inter-city passenger transport. Transp. Res. Part D Transp. Environ. 2008, 13, 298–305. [Google Scholar] [CrossRef]
- Han, J.; Bhandari, K.; Hayashi, Y. Evaluating Policies for CO2 Mitigation in India’s Passenger Transport. Int. J. Urban Sci. 2008, 12, 28–39. [Google Scholar] [CrossRef]
- Barisa, A.; Rosa, M. A system dynamics model for CO2 emission mitigation policy design in road transport sector. Energy Procedia 2018, 147, 419–427. [Google Scholar] [CrossRef]
- Ansari, N.; Seifi, A. A system dynamics model for analyzing energy consumption and CO2 emission in Iranian cement industry under various production and export scenarios. Energy Policy 2013, 58, 75–89. [Google Scholar] [CrossRef]
- Anand, S.; Vrat, P.; Dahiya, R.P. Application of a system dynamics approach for assessment and mitigation of CO2 emissions from the cement industry. J. Environ. Manag. 2006, 79, 383–398. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-S.; Cho, Y.-J.; Jeong, S.-J. Simulation of CO2 emission reduction potential of the iron and steel industry using a system dynamics model. Int. J. Precis. Eng. Manuf. 2014, 15, 361–373. [Google Scholar] [CrossRef]
- Wen, L.; Bai, L.; Zhang, E. System dynamic modeling and scenario simulation on Beijing industrial carbon emissions. Environ. Eng. Res. 2016, 21, 355–364. [Google Scholar] [CrossRef]
- Fong, W.-K.; Matsumoto, H.; Lun, Y.-F. Application of System Dynamics model as decision making tool in urban planning process toward stabilizing carbon dioxide emissions from cities. Build. Environ. 2009, 44, 1528–1537. [Google Scholar] [CrossRef]
- Vargas, J.; Halog, A. Effective carbon emission reductions from using upgraded fly ash in the cement industry. J. Clean. Prod. 2015, 103, 948–959. [Google Scholar] [CrossRef] [Green Version]
- Jokar, Z.; Mokhtar, A. Policy making in the cement industry for CO2 mitigation on the pathway of sustainable development- A system dynamics approach. J. Clean. Prod. 2018, 201, 142–155. [Google Scholar] [CrossRef]
- Tang, M.; Wang, S.; Dai, C.; Liu, Y. Exploring CO2 mitigation pathway of local industries using a regional-based system dynamics model. Int. J. Inf. Manag. 2020, 52, 102079. [Google Scholar] [CrossRef]
- McAvoy, S.; Grant, T.; Smith, C.; Bontinck, P. Combining Life Cycle Assessment and System Dynamics to improve impact assessment: A systematic review. J. Clean. Prod. 2021, 315, 128060. [Google Scholar] [CrossRef]
- Karka, P.; Papadokonstantakis, S.; Kokossis, A. Predictive LCA-a systems approach to integrate LCA decisions ahead of design. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2019; Volume 46, pp. 97–102. [Google Scholar]
- Onat, N.C.; Kucukvar, M.; Tatari, O.; Egilmez, G. Integration of system dynamics approach toward deepening and broadening the life cycle sustainability assessment framework: A case for electric vehicles. Int. J. Life Cycle Assess. 2016, 21, 1009–1034. [Google Scholar] [CrossRef]
- Jin, E.; Sutherland, J.W. An integrated sustainability model for a bioenergy system: Forest residues for electricity generation. Biomass-Bioenergy 2018, 119, 10–21. [Google Scholar] [CrossRef]
- Menten, F.; Tchung-Ming, S.; Lorne, D.; Bouvart, F. Lessons from the use of a long-term energy model for consequential life cycle assessment: The BTL case. Renew. Sustain. Energy Rev. 2015, 43, 942–960. [Google Scholar] [CrossRef] [Green Version]
- Arbault, D.; Rivière, M.; Rugani, B.; Benetto, E.; Tiruta-Barna, L. Integrated earth system dynamic modeling for life cycle impact assessment of ecosystem services. Sci. Total Environ. 2014, 472, 262–272. [Google Scholar] [CrossRef]
- Stasinopoulos, P.; Compston, P.; Newell, B.; Jones, H.M. A system dynamics approach in LCA to account for temporal effects—a consequential energy LCI of car body-in-whites. Int. J. Life Cycle Assess. 2012, 17, 199–207. [Google Scholar] [CrossRef]
- Laurenti, R.; Lazarevic, D.; Poulikidou, S.; Montrucchio, V.; Bistagnino, L.; Frostell, B. Group Model-Building to identify potential sources of environmental impacts outside the scope of LCA studies. J. Clean. Prod. 2014, 72, 96–109. [Google Scholar] [CrossRef] [Green Version]
- Sim, J.; Prabhu, V. The life cycle assessment of energy and carbon emissions on wool and nylon carpets in the United States. J. Clean. Prod. 2018, 170, 1231–1243. [Google Scholar] [CrossRef]
- Pinto, J.T.; Diemer, A. Supply chain integration strategies and circularity in the European steel industry. Resour. Conserv. Recycl. 2020, 153, 104517. [Google Scholar] [CrossRef]
- Thomas, A.; Menassa, C.C.; Kamat, V.R. System Dynamics Framework to Study the Effect of Material Performance on a Building’s Lifecycle Energy Requirements. J. Comput. Civ. Eng. 2016, 30, 04016034. [Google Scholar] [CrossRef]
- Bixler, T.S.; Houle, J.; Ballestero, T.; Mo, W. A dynamic life cycle assessment of green infrastructures. Sci. Total Environ. 2019, 692, 1146–1154. [Google Scholar] [CrossRef]
- El Gafy, I.; Grigg, N.; Reagan, W. Dynamic Behaviour of the Water-Food-Energy Nexus: Focus on Crop Production and Consumption. Irrig. Drain. 2017, 66, 19–33. [Google Scholar] [CrossRef]
- Zhai, Y.; Bai, Y.; Wu, Z.; Hong, J.; Shen, X.; Xie, F.; Li, X. Grain self-sufficiency versus environmental stress: An integration of system dynamics and life cycle assessment. Renew. Sustain. Energy Rev. 2022, 159, 112153. [Google Scholar] [CrossRef]
- Ekvall, T.; Assefa, G.; Björklund, A.; Eriksson, O.; Finnveden, G. What life-cycle assessment does and does not do in assessments of waste management. Waste Manag. 2007, 27, 989–996. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Liu, T.; Chen, X.; Mahdi, M.; Ni, J. An integrated method of life-cycle assessment and system dynamics for waste mobile phone management and recycling in China. J. Clean. Prod. 2018, 187, 852–862. [Google Scholar] [CrossRef]
- Ige, O.E.; Olanrewaju, O.A.; Duffy, K.J.; Collins, O.C. Environmental Impact Analysis of Portland Cement (CEM1) Using the Midpoint Method. Energies 2022, 15, 2708. Available online: https://www.mdpi.com/1996-1073/15/7/2708 (accessed on 12 June 2022). [CrossRef]
- ISO. 14040: International Organization for Standardization. Environmental Management: Life Cycle Assessment; Principles and Framework; International Organization for Standardization, ISO: Geneva, Switzerland, 2006; Available online: https://www.iso.org/obp/ui/#iso:std:iso:14040:ed-2:v1:en (accessed on 12 June 2022).
- ISO. 14044: International Organization for Standardization. Environmental Management: Environmental Management: Life Cycle Assessment; Requirements and Guidelines; International Organization for Standardization, ISO: Geneva, Switzerland, 2006; Available online: https://www.iso.org/obp/ui/#iso:std:iso:14044:ed-1:v1:en (accessed on 12 June 2022).
- ISO/TS. Environmental Management—Life Cycle Assessment—Requirements and Guidelines for Organizational Life Cycle Assessment; ISO/TS,14072:2014; International Organization for Standardization, ISO: Geneva, Switzerland, 2014; Available online: https://www.iso.org/obp/ui/#iso:std:iso:ts:14072:ed-1:v1:en (accessed on 12 June 2022).
- ISO/TS. Environmental Management—Life Cycle Assessment—Critical Review Processes and Reviewer Competencies: Additional Requirements and Guidelines to ISO 14044:2006; ISO/TS,14071:2014; International Organization for Standardization: Geneva, Switzerland, 2014; Available online: https://www.iso.org/obp/ui/#iso:std:iso:ts:14071:ed-1:v1:en (accessed on 12 June 2022).
- Moreno Ruiz, E.; Valsasina, L.; FitzGerald, D.; Symeonidis, A.; Turner, D.; Müller, J.; Minas, N.; Bourgault, G.; Vadenbo, C.; Ioannidou, D.; et al. Cement production: Documentation of changes implemented in Ecoinvent Database v3. 7 & v3. 7.1. Documentation cement production, Portland—ZA. In Identifying Improvement Potentials in Cement Production with Life Cycle Assessment 2010, 2019; ecoinvent Association: Zürich, Switzerland, 2020. [Google Scholar]
- Moreno Ruiz, E.; Valsasina, L.; Brunner, F.; Symeonidis, A.; FitzGerald, D.; Treyer, K.; Bourgault, G.; Wernet, G. Documentation of Changes Implemented in Ecoinvent Database v3. 7 & v3. 7.1; ecoinvent Association: Zürich, Switzerland, 2020. [Google Scholar]
- Frischknecht, R.; Jungbluth, N.; Althaus, H.-J.; Doka, G.; Dones, R.; Heck, T.; Hellweg, S.; Hischier, R.; Nemecek, T.; Rebitzer, G.; et al. The ecoinvent Database: Overview and Methodological Framework (7 pp). Int. J. Life Cycle Assess. 2005, 10, 3–9. [Google Scholar] [CrossRef]
- Andersson, K.; Ohlsson, T.; Olsson, P. Life cycle assessment (LCA) of food products and production systems. Trends Food Sci. Technol. 1994, 5, 134–138. [Google Scholar] [CrossRef]
- Huijbregts, M.; Thissen, U.; Guinée, J.; Jager, T.; Kalf, D.; van de Meent, D.; Ragas, A.; Sleeswijk, A.W.; Reijnders, L. Priority assessment of toxic substances in life cycle assessment. Part I: Calculation of toxicity potentials for 181 substances with the nested multi-media fate, exposure and effects model USES–LCA. Chemosphere 2000, 41, 541–573. [Google Scholar] [CrossRef]
- Pennington, D.; Potting, J.; Finnveden, G.; Lindeijer, E.; Jolliet, O.; Rydberg, T.; Rebitzer, G. Life cycle assessment Part 2: Current impact assessment practice. Environ. Int. 2004, 30, 721–739. [Google Scholar] [CrossRef]
- Arvanitoyannis, I.S. ISO 14040: Life cycle assessment (LCA)–principles and guidelines. Waste Manag. Food Ind. 2008, 97–132. [Google Scholar]
- Ford, D.N.; Sterman, J.D. Dynamic modeling of product development processes. Syst. Dyn. Rev. J. Syst. Dyn. Soc. 1998, 14, 31–68. [Google Scholar] [CrossRef]
- Rockström, J.; Gaffney, O.; Rogelj, J.; Meinshausen, M.; Nakicenovic, N.; Schellnhuber, H.J. A roadmap for rapid decarbonization. Science 2017, 355, 1269–1271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IEA. Energy Technology Perspectives. 2014. Available online: https://www.iea.org/reports/energy-technology-perspectives-2014 (accessed on 1 October 2022).
- Kunche, A.; Mielczarek, B. Application of System Dynamic Modelling for Evaluation of Carbon Mitigation Strategies in Cement Industries: A Comparative Overview of the Current State of the Art. Energies 2021, 14, 1464. [Google Scholar] [CrossRef]
- Duffy, K.J.; Collins, O.C.; Simelane, T. System dynamics model linking demand, employment movement between sectors and the economy for the south african construction sector. Theor. Empir. Res. Urban Manag. 2022, 17, 5–15. [Google Scholar]
- Herdicho, F.F.; Chukwu, W.; Tasman, H. An optimal control of malaria transmission model with mosquito seasonal factor. Results Phys. 2021, 25, 104238. [Google Scholar]
- Economics, W. South Africa Real Gross Domestic Product. World Economics. 2020. Available online: http://dev.worldeconomics.com/GrossDomesticProduct/Real-GDP/South%20Africa.aspx (accessed on 25 August 2020).
- International Energy Agency. Cement Technology Roadmap Plots Path to Cutting CO2 Emissions 24% by 2050—News; International Energy Agency: Paris, France, 2018; pp. 1–3. [Google Scholar]
- Independent Pricing and Regulatory Tribunal. Review of Regulated Retail Tariffs and Charges for Electricity 2010–2013: Electricity-Final Report; Independent Pricing and Regulatory Tribunal: Sydney, Australia, 2010. [Google Scholar]
- WITS. South Africa Cement; Portland, Exports in “The World Bank”; World Integrated Trade Solution (WITS). 2017. Available online: https://wits.worldbank.org/trade/comtrade/en/country/ZAF/year/2017/tradeflow/Exports/partner/ALL/product/252321 (accessed on 1 April 2022).
- WITS. South Africa Cement; Portland, Import in “The World Bank”; World Integrated Trade Solution (WITS). 2017. Available online: https://wits.worldbank.org/trade/comtrade/en/country/ZAF/year/2017/tradeflow/Imports/partner/ALL/product/252321 (accessed on 1 April 2022).
- Erdfelder, E.; Castela, M.; Michalkiewicz, M.; Heck, D.W. The advantages of model fitting compared to model simulation in research on preference construction. Front. Psychol. 2015, 6, 140. [Google Scholar] [CrossRef] [Green Version]
- Taylor, M.; Tam, C.; Gielen, D. Energy efficiency and CO2 emissions from the global cement industry. Korea 2006, 50, 61–67. [Google Scholar]
- Pradhan, S.; Tiwari, B.; Kumar, S.; Barai, S.V. Comparative LCA of recycled and natural aggregate concrete using Particle Packing Method and conventional method of design mix. J. Clean. Prod. 2019, 228, 679–691. [Google Scholar] [CrossRef]
- Berriel, S.S.; Favier, A.; Domínguez, E.R.; Machado, I.S.; Heierli, U.; Scrivener, K.; Hernández, F.M.; Habert, G. Assessing the environmental and economic potential of Limestone Calcined Clay Cement in Cuba. J. Clean. Prod. 2016, 124, 361–369. [Google Scholar] [CrossRef]
- Republic of South Africa National Treasury. Carbon Tax Policy Paper; Republic of South Africa National Treasury: Pretoria, South Africa, 2013. Available online: http://www.treasury.gov.za/public%20comments/carbon%20tax%20policy%20paper%202013.pdf (accessed on 1 October 2022).
- Republic of South Africa National Treasury. Draft Carbon Tax Bill; Republic of South Africa National Treasury: Pretoria, South Africa, 2015. Available online: http://www.treasury.gov.za/public%20comments/carbontaxbill2015/carbon%20tax%20bill%20final%20for%20release%20for%20comment.pdf (accessed on 1 October 2022).
Product | Additives | Clinker Ratio | |
---|---|---|---|
CEM I | Gypsum | >95% | |
CEM II | Gypsum + pozzolanic components such as blast furnace slag, micro silica, fly ash and ground limestone | Group A | Group B |
80–94% | 65–79% | ||
CEM III | Gypsum + Slag | Group A | Group B |
35–64% | 20–34% |
Variables | Meaning | Units |
---|---|---|
(t) | Quantity of cement produced in South Africa per year (t) | Kg |
(t) | Real gross domestic product of South Africa per year | US dollars |
Parameters | Meaning | Units |
---|---|---|
Parameter linking GDP and CP | (US dollars per Year)−1 | |
Annual growth of (t) | Year−1 | |
MaxG | Maximum value of (t) | kg |
Fitting parameters | Dimensionless |
Impact Category | Unit | Portland Cement Production | |
---|---|---|---|
1 | Global warming | kg CO2 eq | 9.93 × 10−1 |
2 | Stratospheric ozone depletion | kg CFC11 eq | 1.94 × 10−7 |
3 | Ionizing radiation | kBq Co-60 eq | 9.97 × 10−3 |
4 | Ozone formation, human health | kg NOx eq | 2.10 × 10−3 |
5 | Fine particulate matter formation | kg PM2.5 eq | 7.93 × 10−4 |
6 | Ozone formation, terrestrial ecosystems | kg NOx eq | 2.12 × 10−3 |
7 | Terrestrial acidification | kg SO2 eq | 2.44 × 10−3 |
8 | Freshwater eutrophication | kg P eq | 3.16 × 10−4 |
9 | Marine eutrophication | kg N eq | 1.93 × 10−5 |
10 | Terrestrial ecotoxicity | kg 1,4-DB eq | 1.04 |
11 | Freshwater ecotoxicity | kg 1,4-DB eq | 1.58 × 10−2 |
12 | Marine ecotoxicity | kg 1,4-DB eq | 2.14 × 10−2 |
13 | Human carcinogenic toxicity | kg 1,4-DB eq | 2.44 × 10−2 |
14 | Human non-carcinogenic toxicity | kg 1,4-DB eq | 4.97 × 10−1 |
15 | Land use | m2a crop eq | 7.83 × 10−3 |
16 | Mineral resource scarcity | kg Cu eq | 2.16 × 10−3 |
17 | Fossil resource scarcity | kg oil eq | 1.39 × 10−1 |
18 | Water consumption | m3 | 1.36 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ige, O.E.; Duffy, K.J.; Olanrewaju, O.A.; Collins, O.C. An Integrated System Dynamics Model and Life Cycle Assessment for Cement Production in South Africa. Atmosphere 2022, 13, 1788. https://doi.org/10.3390/atmos13111788
Ige OE, Duffy KJ, Olanrewaju OA, Collins OC. An Integrated System Dynamics Model and Life Cycle Assessment for Cement Production in South Africa. Atmosphere. 2022; 13(11):1788. https://doi.org/10.3390/atmos13111788
Chicago/Turabian StyleIge, Oluwafemi E., Kevin J. Duffy, Oludolapo A. Olanrewaju, and Obiora C. Collins. 2022. "An Integrated System Dynamics Model and Life Cycle Assessment for Cement Production in South Africa" Atmosphere 13, no. 11: 1788. https://doi.org/10.3390/atmos13111788
APA StyleIge, O. E., Duffy, K. J., Olanrewaju, O. A., & Collins, O. C. (2022). An Integrated System Dynamics Model and Life Cycle Assessment for Cement Production in South Africa. Atmosphere, 13(11), 1788. https://doi.org/10.3390/atmos13111788