Estimation of Short-Term and Long-Term Ozone Exposure Levels in Beijing–Tianjin–Hebei Region Based on Geographically Weighted Regression Model
Abstract
1. Introduction
2. Data and Methods
2.1. Study Domain
2.2. Data Collection and Processing
2.2.1. Air Pollutant Datasets
2.2.2. Meteorological Data
2.2.3. MERRA-2 Reanalysis Data
2.3. GWR Model Building
2.4. Cross-Validation
3. Result
3.1. Exploratory Data Analysis
3.2. Model Fitting and Cross Validation
3.3. Spatio-Temporal Distribution of O3 Concentration
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, T.; Xue, L.K.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total Environ. 2017, 575, 1582–1596. [Google Scholar] [CrossRef] [PubMed]
- Lefohn, A.S.; Malley, C.S.; Simon, H.; Wells, B.; Xu, X.B.; Zhang, L.; Wang, T. Responses of human health and vegetation exposure metrics to changes in ozone concentration distributions in the European Union, United States, and China. Atmos. Environ. 2017, 152, 123–145. [Google Scholar] [CrossRef]
- Lefohn, A.S.; Malley, C.S.; Smith, L.; Wells, B.; Hazucha, M.; Simon, H.; Naik, V.; Mills, G.; Schultz, M.G.; Paoletti, E.; et al. Tropospheric ozone assessment report: Global ozone metrics for climate change, human health, and crop/ecosystem research. Elem. Sci. Anthr. 2018, 6, 27. [Google Scholar] [CrossRef] [PubMed]
- Nuvolone, D.; Petri, D.; Voller, F. The effects of ozone on human health. Environ. Sci. Pollut. Res. 2018, 25, 8074–8088. [Google Scholar] [CrossRef]
- Zhang, J.F.; Wei, Y.J.; Fang, Z.F. Ozone Pollution: A Major Health Hazard Worldwide. Front. Immunol. 2019, 10, 2518. [Google Scholar] [CrossRef]
- Liu, H.; Liu, S.; Xue, B.R.; Lv, Z.F.; Meng, Z.H.; Yang, X.F.; Xue, T.; Yu, Q.; He, K.B. Ground-level ozone pollution and its health impacts in China. Atmos. Environ. 2018, 173, 223–230. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, W.; Chen, C.; Ban, J.; Xu, D.; Zhu, P.; He, M.Z.; Li, T. Acute effect of multiple ozone metrics on mortality by season in 34 Chinese counties in 2013–2015. J. Intern. Med. 2018, 283, 481–488. [Google Scholar] [CrossRef]
- Liang, S.; Li, X.L.; Teng, Y.; Fu, H.C.; Chen, L.; Mao, J.; Zhang, H.; Gao, S.; Sun, Y.L.; Ma, Z.X.; et al. Estimation of health and economic benefits based on ozone exposure level with high spatial-temporal resolution by fusing satellite and station observations. Environ. Pollut. 2019, 255, 113267. [Google Scholar] [CrossRef]
- Guan, Y.; Xiao, Y.; Wang, Y.M.; Zhang, N.N.; Chu, C.J. Assessing the health impacts attributable to PM2.5 and ozone pollution in 338 Chinese cities from 2015 to 2020. Environ. Pollut. 2021, 287, 117623. [Google Scholar] [CrossRef]
- Zheng, D.Y.; Huang, X.J.; Guo, Y.H. Spatiotemporal variation of ozone pollution and health effects in China. Environ. Sci. Pollut. Res. 2022, 29, 57808–57822. [Google Scholar] [CrossRef]
- Bell, M.L.; Peng, R.D.; Dominici, F. The exposure-response curve for ozone and risk of mortality and the adequacy of current ozone regulations. Environ. Health Perspect. 2006, 114, 532–536. [Google Scholar] [CrossRef]
- Turner, M.C.; Jerrett, M.; Pope, C.A.; Krewski, D.; Gapstur, S.M.; Diver, W.R.; Beckerman, B.S.; Marshall, J.D.; Su, J.; Crouse, D.L.; et al. Long-Term Ozone Exposure and Mortality in a Large Prospective Study. Am. J. Respir. Crit. Care Med. 2016, 193, 1134–1142. [Google Scholar] [CrossRef]
- Zhang, X.X.; Cheng, C.X.; Zhao, H. A Health Impact and Economic Loss Assessment of O3 and PM2.5 Exposure in China from 2015 to 2020. Geohealth 2022, 6, e2021GH000531. [Google Scholar] [CrossRef]
- Ministry of Ecology and Environment of the People’s Republic of China. Bulletin of the State of the Environment in China for Year 2017. Available online: https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/201805/P020180531534645032372.pdf (accessed on 23 September 2022).
- Ministry of Ecology and Environment of the People’s Republic of China. Bulletin of the State of the Environment in China for Year 2018. Available online: https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/201905/P020190619587632630618.pdf (accessed on 23 September 2022).
- Ministry of Ecology and Environment of the People’s Republic of China. Bulletin of the State of the Environment in China for Year 2019. Available online: https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202006/P020200602509464172096.pdf (accessed on 23 September 2022).
- Ministry of Ecology and Environment of the People’s Republic of China. Bulletin of the State of the Environment in China for Year 2020. Available online: https://www.mee.gov.cn/hjzl/sthjzk/zghjzkgb/202105/P020210526572756184785.pdf (accessed on 23 September 2022).
- Chen, L.; Liang, S.; Li, X.L.; Mao, J.; Gao, S.; Zhang, H.; Sun, Y.L.; Vedal, S.; Bai, Z.P.; Ma, Z.X.; et al. A hybrid approach to estimating long-term and short-term exposure levels of ozone at the national scale in China using land use regression and Bayesian maximum entropy. Sci. Total Environ. 2021, 752, 141780. [Google Scholar] [CrossRef]
- Wang, W.N.; Cheng, T.H.; Gu, X.F.; Chen, H.; Guo, H.; Wang, Y.; Bao, F.W.; Shi, S.Y.; Xu, B.R.; Zuo, X.; et al. Assessing Spatial and Temporal Patterns of Observed Ground-level Ozone in China. Sci. Rep. 2017, 7, 3651. [Google Scholar] [CrossRef]
- Zhao, S.H.; Yang, X.Y.; Li, Z.Q.; Wang, Z.T.; Zhang, Y.H.; Wang, Y.; Zhou, C.Y.; Ma, P.F. Advances of ozone satellite remote sensing in 60 years. Natl. Remote Sens. Bull. 2022, 26, 817–833. [Google Scholar]
- Chianese, E.; Galletti, A.; Giunta, G.; Landi, T.C.; Marcellino, L.; Montella, R.; Riccio, A. Spatiotemporally resolved ambient particulate matter concentration by fusing observational data and ensemble chemical transport model simulations. Ecol. Model. 2018, 385, 173–181. [Google Scholar] [CrossRef]
- Akita, Y.; Baldasano, J.M.; Beelen, R.; Cirach, M.; de Hoogh, K.; Hoek, G.; Nieuwenhuijsen, M.; Serre, M.L.; de Nazelle, A. Large Scale Air Pollution Estimation Method Combining Land Use Regression and Chemical Transport Modeling in a Geostatistical Framework. Environ. Sci. Technol. 2014, 48, 4452–4459. [Google Scholar] [CrossRef]
- Hu, L.M.; Li, Y.X.; Shi, N.F.; Su, J. Spatio-temporal Change Characteristics of Ozone Concentration in Beijing-Tianjin-Hebei Region. Environ. Sci. Technol. 2019, 42, 1–7. [Google Scholar]
- Zhang, H.; Zhan, Y.; Li, J.Y.; Chao, C.Y.; Liu, Q.F.; Wang, C.Y.; Jia, S.Q.; Ma, L.; Biswas, P. Using Kriging incorporated with wind direction to investigate ground-level PM2.5 concentration. Sci. Total Environ. 2021, 751, 141813. [Google Scholar] [CrossRef]
- Li, J.; Heap, A.D. Spatial interpolation methods applied in the environmental sciences: A review. Environ. Model. Softw. 2014, 53, 173–189. [Google Scholar] [CrossRef]
- Couzo, E.; Olatosi, A.; Jeffries, H.E.; Vizuete, W. Assessment of a regulatory model’s performance relative to large spatial heterogeneity in observed ozone in Houston, Texas. J. Air Waste Manag. Assoc. 2012, 62, 696–706. [Google Scholar] [CrossRef] [PubMed]
- Narayan, T.; Bhattacharya, T.; Chakraborty, S.; Konar, S. Application of Multiple Linear Regression and Geographically Weighted Regression Model for Prediction of PM2.5. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2022, 92, 217–229. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, A.S.; Charlton, M.E. Geographically weighted regression: A method for exploring spatial nonstationarity. Geogr. Anal. 1996, 28, 281–298. [Google Scholar] [CrossRef]
- Stowell, J.D.; Bi, J.Z.; Al-Hamdan, M.Z.; Lee, H.J.; Lee, S.M.; Freedman, F.; Kinney, P.L.; Liu, Y. Estimating PM2.5 in Southern California using satellite data: Factors that affect model performance. Environ. Res. Lett. 2020, 15, 094004. [Google Scholar] [CrossRef]
- Shen, Y.; de Hoogh, K.; Schmitz, O.; Clinton, N.; Tuxen-Bettman, K.; Brandt, J.; Christensen, J.H.; Frohn, L.M.; Geels, C.; Karssenberg, D.; et al. Europe-wide air pollution modeling from 2000 to 2019 using geographically weighted regression. Environ. Int. 2022, 168, 107485. [Google Scholar] [CrossRef]
- Ma, R.M.; Ban, J.; Wang, Q.; Zhang, Y.Y.; Yang, Y.; He, M.K.Z.; Li, S.S.; Shi, W.J.; Li, T.T. Random forest model based fine scale spatiotemporal O3 trends in the Beijing-Tianjin-Hebei region in China, 2010 to 2017. Environ. Pollut. 2021, 276, 116635. [Google Scholar] [CrossRef]
- Lyu, Y.; Ju, Q.R.; Lv, F.M.; Feng, J.L.; Pang, X.B.; Li, X. Spatiotemporal variations of air pollutants and ozone prediction using machine learning algorithms in the Beijing-Tianjin-Hebei region from 2014 to 2021. Environ. Pollut. 2022, 306, 119420. [Google Scholar] [CrossRef]
- Hu, X.M.; Zhang, J.; Xue, W.H.; Zhou, L.H.; Che, Y.F.; Han, T. Estimation of the Near-Surface Ozone Concentration with Full Spatiotemporal Coverage across the Beijing-Tianjin-Hebei Region Based on Extreme Gradient Boosting Combined with a WRF-Chem Model. Atmosphere 2022, 13, 632. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.Q.; Li, K.; Dickerson, R.R.; Pinker, R.T.; Wang, J.; Liu, X.; Sun, L.; Xue, W.H.; Cribb, M. Full-coverage mapping and spatiotemporal variations of ground-level ozone (O3) pollution from 2013 to 2020 across China. Remote Sens. Environ. 2022, 270, 112775. [Google Scholar] [CrossRef]
- Xue, W.H.; Zhang, J.; Hu, X.M.; Yang, Z.; Wei, J. Hourly Seamless Surface O3 Estimates by Integrating the Chemical Transport and Machine Learning Models in the Beijing-Tianjin-Hebei Region. Int. J. Environ. Res. Public Health 2022, 19, 8511. [Google Scholar] [CrossRef] [PubMed]
- Masri, S.; Hou, H.Y.; Dang, A.; Yao, T.; Zhang, L.W.; Wang, T.; Qin, Z.; Wu, S.Y.; Hang, B.; Chen, J.C.; et al. Development of spatiotemporal models to predict ambient ozone and NOx concentrations in Tianjin, China. Atmos. Environ. 2019, 213, 37–46. [Google Scholar] [CrossRef]
- Dong, Y.M.; Li, J.; Guo, J.P.; Jiang, Z.J.; Chu, Y.Q.; Chang, L.; Yang, Y.; Liao, H. The impact of synoptic patterns on summertime ozone pollution in the North China Plain. Sci. Total Environ. 2020, 735, 139559. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zheng, Y.F.; Liu, Y.J.; Li, Q.P.; Ding, Y.H. Characteristics of ozone and its relationship with meteorological factors in Beijing-Tianjin-Hebei Region. China Environ. Sci. 2019, 39, 2689–2698. [Google Scholar]
- Yao, Q.; Fan, W.Y.; Huang, H.; Sun, M.L.; Liu, A.X. Variation of surface O3 concentration and its influencing factors in summer in Tianjin. Ecol. Environ. Sci. 2009, 18, 12–16. [Google Scholar]
- Wang, Y.L.; Xue, W.B.; Lei, Y.; Wu, W.L. Model-derived source apportionment and regional transport matrix study of ozone in Jingjinji. China Environ. Sci. 2017, 37, 3684–3691. [Google Scholar]
- Rahman, M.M.; Shuo, W.; Zhao, W.X.; Xu, X.Z.; Zhang, W.J.; Arshad, A. Investigating the Relationship between Air Pollutants and Meteorological Parameters Using Satellite Data over Bangladesh. Remote Sens. 2022, 14, 2757. [Google Scholar] [CrossRef]
- Mao, J.; Wang, L.L.; Lu, C.H.; Liu, J.D.; Li, M.G.; Tang, G.Q.; Ji, D.S.; Zhang, N.; Wang, Y.S. Meteorological mechanism for a large-scale persistent severe ozone pollution event over eastern China in 2017. J. Environ. Sci. 2020, 92, 187–199. [Google Scholar] [CrossRef]
- Li, H.; Wang, S.L.; Zhang, W.J.; Wang, H.; Wang, H.; Wang, S.B.; Li, H.S. Characteristics and Influencing Factors of Urban Air Quality in Beijing-Tianjin Hebei and Its Surrounding Areas (‘2 + 26’ Cities). Res. Environ. Sci. 2021, 34, 172–184. [Google Scholar]
- Adame, J.A.; Lozano, A.; Bolivar, J.P.; De la Morena, B.A.; Contreras, J.; Godoy, F. Behavior, distribution and variability of surface ozone at an arid region in the south of Iberian Peninsula (Seville, Spain). Chemosphere 2008, 70, 841–849. [Google Scholar] [CrossRef]
- Yao, Q.; Ma, Z.Q.; Hao, T.Y.; Fan, W.Y.; Yang, X.; Tang, Y.X.; Cai, Z.Y.; Han, S.Q. Temporal and spatial distribution characteristics and background concentration estimation of ozone in Beijing-Tianjin-Hebei region. China Environ. Sci. 2021, 41, 4999–5008. [Google Scholar]
- Qi, J.; Zheng, B.; Li, M.; Yu, F.; Chen, C.C.; Liu, F.; Zhou, X.F.; Yuan, J.; Zhang, Q.; He, K.B. A high-resolution air pollutants emission inventory in 2013 for the Beijing-Tianjin-Hebei region, China. Atmos. Environ. 2017, 170, 156–168. [Google Scholar] [CrossRef]
- Beijing Bureau of Statistics of China. Beijing Statistical Year Book 2021; China Statistics Press: Beijing, China, 2021. Available online: http://nj.tjj.beijing.gov.cn/nj/main/2021-tjnj/zk/indexch.htm (accessed on 23 September 2022).
- Hebei Bureau of Statistics of China. Hebei Statistical Year Book 2021; China Statistics Press: Hebei, China, 2021. Available online: http://tjj.hebei.gov.cn/hetj/tjnj/2021/zk/indexch.htm (accessed on 23 September 2022).
- Tianjin Bureau of Statistics of China. Tianjin Statistical Year Book 2021; China Statistics Press: Tianjin, China, 2021. Available online: http://stats.tj.gov.cn/nianjian/2021nj/zk/indexch.htm (accessed on 23 September 2022).
Year | Point | Valid Value | Min (μg/m3) | Max (μg/m3) | Mean (μg/m3) | Median (μg/m3) |
---|---|---|---|---|---|---|
2017 | 83 | 28,175 | 1.46 | 476.63 | 93.64 | 83.38 |
2018 | 80 | 27,927 | 2.50 | 314.33 | 95.98 | 84.90 |
2019 | 80 | 27,820 | 1.50 | 319.5 | 92.25 | 82.65 |
2020 | 82 | 28,832 | 3.08 | 366.58 | 90.49 | 81.63 |
O3 (μg/m3) | PM2.5 (μg/m3) | PM10 (μg/m3) | CO (μg/m3) | NO2 (μg/m3) | SO2 (μg/m3) | Precipitation (mm) | |
Mean | 93.07 | 53.01 | 95.63 | 1.02 | 40.43 | 15.66 | 1.30 |
Min | 1.46 | 2.62 | 5.19 | 0.10 | 1.54 | 1.00 | 0 |
Max | 476.63 | 644.14 | 1767.46 | 10.00 | 188.29 | 261.45 | 158.25 |
Standard deviation | 52.23 | 44.68 | 68.73 | 0.70 | 21.13 | 14.78 | 6.03 |
Pressure (hPa) | Relative Humidity (%) | Temperature (°C) | Wind Speed (m/s) | AOD | PBLH (m) | TI (°C/100 m) | |
Mean | 1004.24 | 55.76 | 13.76 | 1.66 | 0.47 | 815.48 | 0.45 |
Min | 869.63 | 7.24 | −21.12 | 0.05 | 0.02 | 63.90 | 0 |
Max | 1043.97 | 99.56 | 34.84 | 7.35 | 4.37 | 3651.20 | 4.95 |
Standard deviation | 26.21 | 19.25 | 11.36 | 0.77 | 0.37 | 464.45 | 0.60 |
Variables | β | p | VIF |
---|---|---|---|
Intercept | 93.036 | <0.001 | NA |
Precipitation | −1.385 | 0.002 | 1.572 |
Temperature | 4.235 | <0.001 | 1.812 |
NO2 | −3.951 | <0.001 | 2.574 |
Wind speed | 1.304 | <0.001 | 1.043 |
SO2 | 0.986 | 0.041 | 1.993 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiao, Z.; Liu, Y.; Cui, C.; Shan, M.; Tu, Y.; Liu, Y.; Xu, S.; Mi, K.; Chen, L.; Ma, Z.; et al. Estimation of Short-Term and Long-Term Ozone Exposure Levels in Beijing–Tianjin–Hebei Region Based on Geographically Weighted Regression Model. Atmosphere 2022, 13, 1706. https://doi.org/10.3390/atmos13101706
Qiao Z, Liu Y, Cui C, Shan M, Tu Y, Liu Y, Xu S, Mi K, Chen L, Ma Z, et al. Estimation of Short-Term and Long-Term Ozone Exposure Levels in Beijing–Tianjin–Hebei Region Based on Geographically Weighted Regression Model. Atmosphere. 2022; 13(10):1706. https://doi.org/10.3390/atmos13101706
Chicago/Turabian StyleQiao, Zequn, Yusi Liu, Chen Cui, Mei Shan, Yan Tu, Yaxin Liu, Shiwen Xu, Ke Mi, Li Chen, Zhenxing Ma, and et al. 2022. "Estimation of Short-Term and Long-Term Ozone Exposure Levels in Beijing–Tianjin–Hebei Region Based on Geographically Weighted Regression Model" Atmosphere 13, no. 10: 1706. https://doi.org/10.3390/atmos13101706
APA StyleQiao, Z., Liu, Y., Cui, C., Shan, M., Tu, Y., Liu, Y., Xu, S., Mi, K., Chen, L., Ma, Z., Zhang, H., Gao, S., & Sun, Y. (2022). Estimation of Short-Term and Long-Term Ozone Exposure Levels in Beijing–Tianjin–Hebei Region Based on Geographically Weighted Regression Model. Atmosphere, 13(10), 1706. https://doi.org/10.3390/atmos13101706