Simulation of Air Pollutants Emission by Trucks and Their Health Effects
Abstract
:1. Introduction
2. Materials and Methods
2.1. Base Information
2.2. Estimation of Emissions
- Emissions estimation: Once the vehicles have been instrumented with the GPS, the information is extracted and processed to enter the data in the HBEFA model. To this effect, the information must be adjusted (units), that is, the GPS speed in km/h, the speed in m/s, and additionally, it is necessary to calculate the acceleration of the vehicle during the journey. The model must be adjusted according to the characteristics of the vehicle, knowing the type of truck and the EURO technology. With this, the emission of CO2, CO, NOx, HC, and PM2.5 is estimated.
- The routes are loaded with the emissions in GIS software, and the routes are drawn to know the critical areas of the study area.
- Analyze the literature to know the emission range in which a person can experience a health problem due to some type of pollutant and what diseases they can manifest.
- Information from the department of health is analyzed to seek the zones with the highest levels of pollution and people from those zones that present cases of ARI disease.
- Obtain the costs generated by the diseases caused by the different pollutants in people and thus know the economic value of this.
- Different scenarios must be analyzed, that is, routes in HCON and HNC, to make a comparison of the emissions generated at different times.
2.3. Change of Circulation Schedule
3. Results
3.1. Results by Route
3.2. Speed
3.3. Speed Comparison in HCON and HNC
3.4. Schedule Change
3.5. Comparison between Pollutant Emission Methodologies
3.6. Pollutants Amount and Health Issues
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- -
- Units: [mg/s]
- -
- HBEFA Model version 3
References
- Vieira, S.E.; Stein, R.T.; Ferraro, A.A.; Pastro, L.D.; Pedro, S.S.C.; Lemos, M.; da Silva, E.R.; Sly, P.D.; Saldiva, P.H. Urban Air Pollutants Are Significant Risk Factors for Asthma and Pneumonia in Children: The Influence of Location on the Measurement of Pollutants. Arch. Bronconeumol. 2012, 48, 389–395. [Google Scholar] [CrossRef]
- D’amato, G.; Cecchi, L.; Amato, D’.; Liccardi, G. Urban Air Pollution and Climate Change as Environmental Risk Factors of Respiratory Allergy: An Update. J. Investig. Allergol. Clin. Immunol. 2010, 20, 95–102. [Google Scholar] [PubMed]
- Rahman Khan, A.S.; Clark, N.N.; Thompson, G.J.; Wayne, W.S.; Gautam, M.; Lyons, D.W.; Hawelti, D. Idle Emissions from Heavy-Duty Diesel Vehicles: Review and Recent Data. J. Air Waste Manag. Assoc. 2006, 56, 1404–1419. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallardo, L.; Escribano, J.; Dawidowski, L.; Rojas, N.; de Fátima Andrade, M.; Osses, M. Evaluation of Vehicle Emission Inventories for Carbon Monoxide and Nitrogen Oxides for Bogotá, Buenos Aires, Santiago, and São Paulo. Atmos. Environ. 2012, 47, 12–19. [Google Scholar] [CrossRef]
- Sivalingam, M.; Mahapatra, S.S.; Hansdah, D.; Horák, B. Validation of Some Engine Combustion and Emission Parameters of a Bioethanol Fuelled Di Diesel Engine Using Theoretical Modelling. Alexandria Eng. J. 2015, 54, 993–1002. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.; Goodchild, A. Land Use Policies and Transport Emissions: Modeling the Impact of Trip Speed, Vehicle Characteristics and Residential Location. Transp. Res. Part D Transp. Environ. 2014, 26, 47–51. [Google Scholar] [CrossRef]
- Propper, R.; Wong, P.; Bui, S.; Austin, J.; Vance, W.; Alvarado, Á.; Croes, B.; Luo, D. Ambient and Emission Trends of Toxic Air Contaminants in California. Environ. Sci. Technol. 2015, 49, 11329–11339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, B.; Shen, X.; Cao, X.; Zhang, W.; Wu, H.; Yao, Z. Carbonaceous Composition of PM2.5 Emitted from on-Road China III Diesel Trucks in Beijing, China. Atmos. Environ. 2015, 116, 216–224. [Google Scholar] [CrossRef]
- Sociedad Nacional de Mineria, Petroleo y Energía. El Gas Natural Vehícular-GNV; Sociedad Nacional de Minería, Petróleo y Energía: Magdalena del Mar Lima, Peru, 2011. [Google Scholar]
- U.S. Environmental Protection Agency; Office of Research and Development; National Center for Environmental Assessment. U.S. EPA. Health Assessment Document For Diesel Engine Exhaust (Final 2002); Environmental Protection Agency: Washington, DC, USA, 2002.
- Pino-Cortés, E.; Díaz-Robles, L.A.; Cubillos, F.; Fu, J.S.; Vergara-Fernández, A. Sensitivity Analysis of Biodiesel Blends on Benzo[a]Pyrene and Main Emissions Using MOVES: A Case Study in Temuco, Chile. Sci. Total Environ. 2015, 537, 352–359. [Google Scholar] [CrossRef] [PubMed]
- European Parliament and Council. REGULATION (EU) 2019/1242 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 20 June 2019 Setting CO2 Emission Performance Standards for New Heavy-Duty Vehicles and Amending Regulations (EC) No 595/2009 and (EU) 2018/956 of the European Parliament and of Th; European Union: Paris, France, 2019; Volume 198. [Google Scholar]
- Rexeis, M.; Hausberger, S.; Kühlwein, J.; Luz, R. Update of Emission Factors for EURO 5 and EURO 6 Vehicles for the HBEFA Version 3.2; Graz University of Technology: Graz, Austria, 2013; Volume 43. [Google Scholar]
- Yusuf, A.A.; Inambao, F.L.; Ampah, J.D. Evaluation of Biodiesel on Speciated PM2.5, Organic Compound, Ultrafine Particle and Gaseous Emissions from a Low-Speed EPA Tier II Marine Diesel Engine Coupled with DPF, DEP and SCR Filter at Various Loads. Energy 2022, 239, 121837. [Google Scholar] [CrossRef]
- Yusuf, A.A.; Dankwa Ampah, J.; Soudagar, M.E.M.; Veza, I.; Kingsley, U.; Afrane, S.; Jin, C.; Liu, H.; Elfasakhany, A.; Buyondo, K.A. Effects of Hybrid Nanoparticle Additives in N-Butanol/Waste Plastic Oil/Diesel Blends on Combustion, Particulate and Gaseous Emissions from Diesel Engine Evaluated with Entropy-Weighted PROMETHEE II and TOPSIS: Environmental and Health Risks of Plastic Waste. Energy Convers. Manag. 2022, 264, 115758. [Google Scholar] [CrossRef]
- Boldo, E.; Querol, X. Nuevas Políticas Europeas de Control de La Calidad Del Aire: ¿un Paso Adelante Para La Mejora de La Salud Pública? New European Policies for Air Pollution Control: A Step Forward in Improving Public Health? Gac Sanit 2014, 28, 263–266. [Google Scholar] [CrossRef] [PubMed]
- Aguiar Gil, D.; Calle Palacio, J.M.; Hernández Vasco, D.F.; González Manosalva, J.L. Medellín y Su Calidad Del Aire; Instituto Tecnológico Metropolitano: Medellín, Colombia, 2016. [Google Scholar]
- Zhang, Y.; Yao, Z.; Shen, X.; Liu, H.; He, K. Chemical Characterization of PM2.5 Emitted from on-Road Heavy-Duty Diesel Trucks in China. Atmos. Environ. 2015, 122, 885–891. [Google Scholar] [CrossRef]
- Arango, J.H. Calidad de Los Combustibles en Colombia. Rev. Ing. Univ. los Andes 2009, 29, 100–108. [Google Scholar] [CrossRef]
- Clean Air Institute; Área metropolitana Valle de Aburrá. Estrategia Ambiental Integrada Para una Movilidad Sustentable en el Área Metropolitana del Valle de Aburrá; Área Metropolitana del Valle de Aburrá: Medellín, Colombia, 2011. [Google Scholar]
- ESCAP-Economic and Social Commission for Asia and the Pacific; United Nations. Transport and Communications Bulletin for Asia and the Pacific No. 80 Sustainable Urban Freight Transport; United Nations: Bangkok, Thailand, 2011. [Google Scholar]
- Ministerio de ambiente y Desarrollo Sostenible, República de Colombia. Resolución 2254. “Por la Cual se Adopta la Norma de Calidad del Aire Ambiente y se Dictan Otras Disposiciones”; Ministerio de Ambiente y Desarrollo Sostenible: Medellín, Colombia, 2017; pp. 1–11.
- Ballester, F.; Llop, S.; Querol, X.; Esplugues, A. Evolución de Los Riesgos Ambientales en el Contexto de la Crisis Económica. Informe SESPAS 2014. Gac. Sanit. 2014, 28, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Área Metropolitana del Valle de Aburrá; Universidad Pontificia Bolivariana. Inventario de Emisiones Atmosféricas del Valle de Aburrá, Año Base 2013; Área Metropolitana del Valle de Aburrá: Medellín, Colombia, 2014. [Google Scholar]
- Morales-Pinzón, T.; Arias Mendoza, J.J. Contaminación Vehicular En La Conurbación Pereira-Dosquebradas. Luna Azul 2013, 37, 101–129. [Google Scholar]
- Janssen, N.A.H.; Brunekreef, B.; van Vliet, P.; Aarts, F.; Maliefste, K.; Harssema, H.; Fischer, P. The Relationship between Air Pollution from Heavy Traffic and Allergic Sensitization, Bronchial Byperresponsiveness, and Respiratory Symptoms in Dutch Schoolchildren. Environ. Health Perspect. 2003, 111, 1512–1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, L.; Sunyer, J.; Künzli, N. Estimating the Health and Economic Benefits Associated with Reducing Air Pollution in the Barcelona Metropolitan Area (Spain). Gac. Sanit. 2009, 23, 287–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, H.W.; Jobson, B.T.; Erickson, M.H.; McCoskey, J.K.; VanReken, T.M.; Lamb, B.K.; Vaughan, J.K.; Hardy, R.J.; Cole, J.L.; Strachan, S.M.; et al. Comparison of Wintertime CO to NO x Ratios to MOVES and MOBILE6.2 on-Road Emissions Inventories. Atmos. Environ. 2012, 63, 289–297. [Google Scholar] [CrossRef]
- Gonzalez Valencia, A.; Gomez Gallo, M.H. Diagnóstico Ambiental y Técnico Mecánico del Sector Volquetas del Área Metropolitana del Valle de Aburrá. Prod. + Limpia 2010, 5, 39–57. [Google Scholar]
- Borrego, C.; Amorim, J.H.; Tchepel, O.; Dias, D.; Rafael, S.; Sá, E.; Pimentel, C.; Fontes, T.; Fernandes, P.; Pereira, S.R.; et al. Urban Scale Air Quality Modelling Using Detailed Traffic Emissions Estimates. Atmos. Environ. 2016, 131, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Gallus, J.; Kirchner, U.; Vogt, R.; Börensen, C.; Benter, T. On-Road Particle Number Measurements Using a Portable Emission Measurement System (PEMS). Atmos. Environ. 2016, 124, 37–45. [Google Scholar] [CrossRef]
- Keller, M.; MK Consulting. HEBFA-Status, Outlook HBEFA-Overview; Keller Consulting: Kansas City, MO, USA, 2014. [Google Scholar]
- Hausberger, S.; Rexeis, M.; Zallinger, M.; Luz, R. Emission Factors from the Model PHEM for the HBEFA Version 3; Balint, G., Antala, B., Carty, C., Mabieme, J.-M.A., Amar, I.B., Kaplanova, A., Eds.; Graz University of Technology: Graz, Austria, 2009; Volume 7. [Google Scholar]
- Maneva Mitrovikj, K.; Skácel, F.; Maneva Mitrovikj, K.; Skácel, F. Verification of Traffic Emission Factors Using Measurements in a Short Tunnel in the Czech Republic. Atmósfera 2019, 32, 213–223. [Google Scholar] [CrossRef]
- Zamboni, G.; André, M.; Roveda, A.; Capobianco, M. Experimental Evaluation of Heavy Duty Vehicle Speed Patterns in Urban and Port Areas and Estimation of Their Fuel Consumption and Exhaust Emissions. Transp. Res. Part D Transp. Environ. 2015, 35, 1–10. [Google Scholar] [CrossRef]
- Posada-Henao, J.J. Efecto de La Cantidad de Carga en el Consumo de Combustible en Camiones; Universidad Nacional de Colombia, Sede Medellín: Medellín, Colombia, 2012. [Google Scholar]
- Brodrick, C.-J.; Dwyer, H.A.; Farshchi, M.; Harris, D.B.; King, F.G. Effects of Engine Speed and Accessory Load on Idling Emissions from Heavy-Duty Diesel Truck Engines. J. Air Waste Manag. Assoc. 2002, 52, 1026–1031. [Google Scholar] [CrossRef] [PubMed]
- Goel, R.; Guttikunda, S.K.; Mohan, D.; Tiwari, G. Benchmarking Vehicle and Passenger Travel Characteristics in Delhi for On-Road Emissions Analysis. Travel Behav. Soc. 2015, 2, 88–101. [Google Scholar] [CrossRef]
- Agudelo Santamaria, J.R.; Grupo de Manejo Eficiente de la Energía (GIMEL). Articulación Universidad-Empresa-Estado Para Establecer los Factores de Emisión Reales de Vehículos Pesados en el Valle de Aburrá (FEVA-II); Universidad de Antioquia: Medellín, Colombia, 2019. [Google Scholar]
Pollutant | Origin and Health Effects |
---|---|
CO | Product of incomplete combustion of hydrocarbons. Intoxicates the blood preventing oxygen transport. |
NOX | Released into the air from the emission of vehicles (combustion). Irritation eyes, nose, throat, and lungs, dilatation of throat and upper respiratory tract, reducing oxygenation of body tissues. |
SOX | Produced by gases from car leakages. Levels 1–10 ppm induces increased respiratory rate and pulse. |
PM | The main anthropogenic sources of small particles include burning solid fuels such as wood and coal. They can be inhaled and easily penetrate the human respiratory system causing effects on people’s health. |
Pollutant | Fuel | ||
---|---|---|---|
Gasoline | Diesel | NGV | |
CO | High | Medium | Low |
NOX | Medium | High | High |
SOX | Medium | High | Low |
PM2.5 | Medium | High | Low |
Brand | Year | Fuel Type | Euro | Cylindrical |
---|---|---|---|---|
Chevrolet | 2011 | Diesel | III | 2771 |
Hino | 2015 | Diesel | III | 5123 |
Chevrolet | 2005 | Diesel | III | 2771 |
Chevrolet | 2013 | Diesel | III | 2771 |
Chevrolet | 2007 | Diesel | III | 2700 |
Route | Initial Hour hhmmss | Final Hour hhmmss | Time (h) | Average Speed (km/h) | Max. Speed (km/h) | Distance (Km) |
---|---|---|---|---|---|---|
1 | 04:20:16 | 11:02:44 | 5 | 23.5 | 76.0 | 31.0 |
2 | 04:36:44 | 13:02:14 | 7 | 22.0 | 67.0 | 52.0 |
3 | 05:10:22 | 13:14:37 | 8 | 23.9 | 74.0 | 15.4 |
4 | 04:38:45 | 13:55:09 | 8 | 18.8 | 57.0 | 31.5 |
5 | 04:53:59 | 14:35:54 | 9 | 12.7 | 40.0 | 17.3 |
Route | Emissions HBEFA | Emissions UA | Comparison (%) | |||
---|---|---|---|---|---|---|
CO2 | PM2.5 | CO2 | PM2.5 | CO2 | PM2.5 | |
(g/km) | (g/km) | (g/km) | (g/km) | (g/km) | (g/km) | |
1 | 9566.00 | 4.04 | 11,235.95 | 4.03 | 17.5 | 0.2 |
2 | 6247.00 | 1.24 | 6524.10 | 1.30 | 4.4 | 4.8 |
3 | 5027.00 | 2.09 | 5690.47 | 2.21 | 13.2 | 5.7 |
4 | 3099.00 | 0.59 | 3530.26 | 0.70 | 13.9 | 18.6 |
5 | 12,685.00 | 2.58 | 12,540.77 | 2.34 | 1.1 | 9.3 |
Validation CO2 | ||||||
---|---|---|---|---|---|---|
Origin of Variations | Sum of Squares | Degrees of Freedom | Average of the Squares | F | Probability | Critical Value for F |
Between groups | 839,579.60 | 1 | 839,579.60 | 0.06 | 0.82 | 5.32 |
Within groups | 116,588,611.81 | 8 | 14,573,576.48 | |||
Total | 117,428,191.41 | 9 | ||||
Validation PM2.5 | ||||||
Origin of Variations | Sum of Squares | Degrees of Freedom | Average of the Squares | F | Probability | Critical Value for F |
Between groups | 1.60 × 10−4 | 1 | 1.60 × 10−4 | 9.55 × 10−5 | 9.92 × 10−1 | 5.32 |
Within groups | 13.4 × 101 | 8 | 1.68 | |||
Total | 13.40696 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Posada-Henao, J.J.; Restrepo-Peña, H.M.; González-Calderón, C.A. Simulation of Air Pollutants Emission by Trucks and Their Health Effects. Atmosphere 2022, 13, 1691. https://doi.org/10.3390/atmos13101691
Posada-Henao JJ, Restrepo-Peña HM, González-Calderón CA. Simulation of Air Pollutants Emission by Trucks and Their Health Effects. Atmosphere. 2022; 13(10):1691. https://doi.org/10.3390/atmos13101691
Chicago/Turabian StylePosada-Henao, John Jairo, Heliana Marcela Restrepo-Peña, and Carlos A. González-Calderón. 2022. "Simulation of Air Pollutants Emission by Trucks and Their Health Effects" Atmosphere 13, no. 10: 1691. https://doi.org/10.3390/atmos13101691
APA StylePosada-Henao, J. J., Restrepo-Peña, H. M., & González-Calderón, C. A. (2022). Simulation of Air Pollutants Emission by Trucks and Their Health Effects. Atmosphere, 13(10), 1691. https://doi.org/10.3390/atmos13101691