Comparison of Particle Sizers and Counters with Soot-like, Salt, and Silver Particles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Particle Generators
2.1.1. Salt Generator
2.1.2. Silver Generator
2.1.3. Diffusion Flame Soot Generator
2.1.4. Spark Discharge Graphite Generator
2.1.5. Glowing Wire Generator
2.2. Measurement Instruments
2.2.1. CPC
2.2.2. SMPS
2.2.3. EEPS
2.3. Vehicle Testing
2.4. Calibration and Controls
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Year | Citation | Ref. Instrument | Material | EEPS GMD (nm) | EEPS Conc. × 105 (#/cm3) | Comment |
---|---|---|---|---|---|---|
2013 | [83] | SMPS (wCPC) | silver oxidized | 7–25 | 1.3–48.7 | |
2017 | [84] | CPC and SMPS | salt and others | 37 | - | details not given |
2009 | [44] | SMPS | salt | 30 | 1.4 | |
2009 | [85] | SMPS (wCPC) | salt | 52 | 0.2 | |
2013 | [45] | SMPS | salt and others | 41 | 0.1 | |
2014 | [15] | SMPS | salt and others | 29–32 | 10 | |
2013 | [88] | SMPS (wCPC) | air | 95 | 0.1 | |
2014 | [25] | CPC and SMPS | air | 25 | <0.8 | |
2015 | [26] | CPC | air | 25 | 0.03–2.5 | |
2021 | [89] | SMPS | air | 15–50 | 0.2 | |
2007 | [87] | CPC | Diesel | 70 | up to 1000 | |
2009 | [44] | SMPS | Diesel | 70–80 | 6–20 | |
2013 | [45] | SMPS | soot | 73 | 0.3 | |
2014 | [25] | SMPS | Diesel | 70 | 1.0 | |
2015 | [26] | CPC | Diesel, GDI | 70–80 | 0.3–1.7 | |
2015 | [86] | SMPS | Diesel, GDI, PFI | 12–52 | - | From the CVS |
References
- European Environment Agency. Air Quality in Europe: 2020 Report; Publications Office: Luxembourg, 2020. [Google Scholar]
- Giechaskiel, B.; Maricq, M.; Ntziachristos, L.; Dardiotis, C.; Wang, X.; Axmann, H.; Bergmann, A.; Schindler, W. Review of Motor Vehicle Particulate Emissions Sampling and Measurement: From Smoke and Filter Mass to Particle Number. J. Aerosol Sci. 2014, 67, 48–86. [Google Scholar] [CrossRef]
- Ntziachristos, L.; Mamakos, A.; Samaras, Z.; Mathis, U.; Mohr, M.; Thompson, N.; Stradling, R.; Forti, L.; de Serves, C. Overview of the European “Particulates” Project on the Characterization of Exhaust Particulate Emissions from Road Vehicles: Results for Light-Duty Vehicles; Technical Paper 2004-01–1985; SAE International: Warrendale, PA, USA, 2004. [Google Scholar]
- Mohr, M.; Lehmann, U.; Margaria, G. ACEA Programme on the Emissions of Fine Particulates from Passenger Cars (2) Part 2: Effect of Sampling Conditions and Fuel Sulphur Content on the Particle Emission; Technical Paper 2003-01-1890; SAE International: Warrendale, PA, USA, 2003. [Google Scholar]
- Giechaskiel, B.; Dilara, P.; Andersson, J. Particle Measurement Programme (PMP) Light-Duty Inter-Laboratory Exercise: Repeatability and Reproducibility of the Particle Number Method. Aerosol Sci. Technol. 2008, 42, 528–543. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Melas, A.; Martini, G.; Dilara, P. Overview of Vehicle Exhaust Particle Number Regulations. Processes 2021, 9, 2216. [Google Scholar] [CrossRef]
- Bischof, O.F. Recent Developments in the Measurement of Low Particulate Emissions from Mobile Sources: A Review of Particle Number Legislations. Emiss. Control. Sci. Technol. 2015, 1, 203–212. [Google Scholar] [CrossRef] [Green Version]
- DieselNet, Emission Standards 2022. Available online: https://dieselnet.com/standards/ (accessed on 10 October 2022).
- Owen, B.; Anet, J.G.; Bertier, N.; Christie, S.; Cremaschi, M.; Dellaert, S.; Edebeli, J.; Janicke, U.; Kuenen, J.; Lim, L.; et al. Review: Particulate Matter Emissions from Aircraft. Atmosphere 2022, 13, 1230. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Wang, X.; Horn, H.-G.; Spielvogel, J.; Gerhart, C.; Southgate, J.; Jing, L.; Kasper, M.; Drossinos, Y.; Krasenbrink, A. Calibration of Condensation Particle Counters for Legislated Vehicle Number Emission Measurements. Aerosol Sci. Technol. 2009, 43, 1164–1173. [Google Scholar] [CrossRef]
- Wang, X.; Caldow, R.; Sem, G.J.; Hama, N.; Sakurai, H. Evaluation of a Condensation Particle Counter for Vehicle Emission Measurement: Experimental Procedure and Effects of Calibration Aerosol Material. J. Aerosol Sci. 2010, 41, 306–318. [Google Scholar] [CrossRef]
- Wang, S.C.; Flagan, R.C. Scanning Electrical Mobility Spectrometer. Aerosol Sci. Technol. 1990, 13, 230–240. [Google Scholar] [CrossRef]
- Wiedensohler, A.; Birmili, W.; Nowak, A.; Sonntag, A.; Weinhold, K.; Merkel, M.; Wehner, B.; Tuch, T.; Pfeifer, S.; Fiebig, M.; et al. Mobility Particle Size Spectrometers: Harmonization of Technical Standards and Data Structure to Facilitate High Quality Long-Term Observations of Atmospheric Particle Number Size Distributions. Atmos. Meas. Tech. 2012, 5, 657–685. [Google Scholar] [CrossRef] [Green Version]
- Wiedensohler, A.; Wiesner, A.; Weinhold, K.; Birmili, W.; Hermann, M.; Merkel, M.; Müller, T.; Pfeifer, S.; Schmidt, A.; Tuch, T.; et al. Mobility Particle Size Spectrometers: Calibration Procedures and Measurement Uncertainties. Aerosol Sci. Technol. 2018, 52, 146–164. [Google Scholar] [CrossRef]
- Hornsby, K.E.; Pryor, S.C. A Laboratory Comparison of Real-Time Measurement Methods for 10–100-Nm Particle Size Distributions. Aerosol Sci. Technol. 2014, 48, 571–582. [Google Scholar] [CrossRef]
- Liu, P.S.K.; Deshler, T. Causes of Concentration Differences Between a Scanning Mobility Particle Sizer and a Condensation Particle Counter. Aerosol Sci. Technol. 2003, 37, 916–923. [Google Scholar] [CrossRef]
- Keskinen, J.; Pietarinen, K.; Lehtimäki, M. Electrical Low Pressure Impactor. J. Aerosol Sci. 1992, 23, 353–360. [Google Scholar] [CrossRef]
- Biskos, G.; Reavell, K.; Collings, N. Description and Theoretical Analysis of a Differential Mobility Spectrometer. Aerosol Sci. Technol. 2005, 39, 527–541. [Google Scholar] [CrossRef] [Green Version]
- Johnson, T.; Caldow, R.; Pöcher, A.; Mirme, A.; Kittelson, D. A New Electrical Mobility Particle Sizer Spectrometer for Engine Exhaust Particle Measurements; Technical Paper 2004-01-1341; SAE International: Warrendale, PA, USA, 2004. [Google Scholar]
- Takegawa, N.; Murashima, Y.; Fushimi, A.; Misawa, K.; Fujitani, Y.; Saitoh, K.; Sakurai, H. Characteristics of Sub-10 Nm Particle Emissions from In-Use Commercial Aircraft Observed at Narita International Airport. Atmos. Chem. Phys. 2021, 21, 1085–1104. [Google Scholar] [CrossRef]
- Premnath, V.; Khalek, I.A.; Morgan, P. Relationship among Various Particle Characterization Metrics Using GDI Engine Based Light-Duty Vehicles; Technical Paper 2018-01-0353; SAE International: Warrendale, PA, USA, 2018. [Google Scholar]
- Giechaskiel, B.; Melas, A.; Martini, G.; Dilara, P.; Ntziachristos, L. Revisiting Total Particle Number Measurements for Vehicle Exhaust Regulations. Atmosphere 2022, 13, 155. [Google Scholar] [CrossRef]
- Distaso, E.; Amirante, R.; Calò, G.; De Palma, P.; Tamburrano, P. Evolution of Soot Particle Number, Mass and Size Distribution along the Exhaust Line of a Heavy-Duty Engine Fueled with Compressed Natural Gas. Energies 2020, 13, 3993. [Google Scholar] [CrossRef]
- Rubino, L.; Phillips, P.R.; Twigg, M.V. Measurements of Ultrafine Particle Number Emissions from a Light-Duty Diesel Engine Using SMPS, DMS, ELPI and EEPS; Technical Paper 2005-24-015; SAE International: Warrendale, PA, USA, 2005. [Google Scholar]
- Zimmerman, N.; Pollitt, K.J.G.; Jeong, C.-H.; Wang, J.M.; Jung, T.; Cooper, J.M.; Wallace, J.S.; Evans, G.J. Comparison of Three Nanoparticle Sizing Instruments: The Influence of Particle Morphology. Atmos. Environ. 2014, 86, 140–147. [Google Scholar] [CrossRef]
- Zimmerman, N.; Jeong, C.-H.; Wang, J.M.; Ramos, M.; Wallace, J.S.; Evans, G.J. A Source-Independent Empirical Correction Procedure for the Fast Mobility and Engine Exhaust Particle Sizers. Atmos. Environ. 2015, 100, 178–184. [Google Scholar] [CrossRef]
- Quiros, D.C.; Hu, S.; Hu, S.; Lee, E.S.; Sardar, S.; Wang, X.; Olfert, J.S.; Jung, H.S.; Zhu, Y.; Huai, T. Particle Effective Density and Mass during Steady-State Operation of GDI, PFI, and Diesel Passenger Cars. J. Aerosol Sci. 2015, 83, 39–54. [Google Scholar] [CrossRef]
- Zare, A.; Bodisco, T.A.; Verma, P.; Jafari, M.; Babaie, M.; Yang, L.; Rahman, M.M.; Banks, A.P.W.; Ristovski, Z.D.; Brown, R.J.; et al. Particulate Number Emissions during Cold-Start with Diesel and Biofuels: A Special Focus on Particle Size Distribution. Sustain. Energy Technol. Assess. 2022, 51, 101953. [Google Scholar] [CrossRef]
- Feinauer, M.; Ehrenberger, S.; Epple, F.; Schripp, T.; Grein, T. Investigating Particulate and Nitrogen Oxides Emissions of a Plug-In Hybrid Electric Vehicle for a Real-World Driving Scenario. Appl. Sci. 2022, 12, 1404. [Google Scholar] [CrossRef]
- Kim, K.; Chung, W.; Kim, M.; Kim, C.; Myung, C.-L.; Park, S. Inspection of PN, CO2, and Regulated Gaseous Emissions Characteristics from a GDI Vehicle under Various Real-World Vehicle Test Modes. Energies 2020, 13, 2581. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Mamakos, A.; Woodburn, J.; Szczotka, A.; Bielaczyc, P. Evaluation of a 10 Nm Particle Number Portable Emissions Measurement System (PEMS). Sensors 2019, 19, 5531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giechaskiel, B.; Lähde, T.; Gandi, S.; Keller, S.; Kreutziger, P.; Mamakos, A. Assessment of 10-Nm Particle Number (PN) Portable Emissions Measurement Systems (PEMS) for Future Regulations. Int. J. Environ. Res. Public Health 2020, 17, 3878. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Melas, A.; Lähde, T. Detailed Characterization of Solid and Volatile Particle Emissions of Two Euro 6 Diesel Vehicles. Appl. Sci. 2022, 12, 3321. [Google Scholar] [CrossRef]
- Su, S.; Lv, T.; Lai, Y.; Mu, J.; Ge, Y.; Giechaskiel, B. Particulate Emissions of Heavy Duty Diesel Engines Measured from the Tailpipe and the Dilution Tunnel. J. Aerosol Sci. 2021, 156, 105799. [Google Scholar] [CrossRef]
- Kontses, A.; Ntziachristos, L.; Zardini, A.A.; Papadopoulos, G.; Giechaskiel, B. Particulate Emissions from L-Category Vehicles towards Euro 5. Environ. Res. 2020, 182, 109071. [Google Scholar] [CrossRef]
- Mathis, U.; Mohr, M.; Kaegi, R.; Bertola, A.; Boulouchos, K. Influence of Diesel Engine Combustion Parameters on Primary Soot Particle Diameter. Environ. Sci. Technol. 2005, 39, 1887–1892. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Manfredi, U.; Martini, G. Engine Exhaust Solid Sub-23 Nm Particles: I. Literature Survey. SAE Int. J. Fuels Lubr. 2014, 7, 950–964. [Google Scholar] [CrossRef]
- Catapano, F.; Di Iorio, S.; Magno, A.; Sementa, P.; Vaglieco, B.M. Measurement of Sub-23 Nm Particles Emitted from PFI/DI SI Engine Fueled with Oxygenated Fuels: A Comparison between Conventional and Novel Methodologies. Energies 2022, 15, 2021. [Google Scholar] [CrossRef]
- Samaras, Z.; Rieker, M.; Papaioannou, E.; van Dorp, W.F.; Kousoulidou, M.; Ntziachristos, L.; Andersson, J.; Bergmann, A.; Hausberger, S.; Keskinen, J.; et al. Perspectives for Regulating 10 Nm Particle Number Emissions Based on Novel Measurement Methodologies. J. Aerosol Sci. 2022, 162, 105957. [Google Scholar] [CrossRef]
- Mamakos, A.; Schwelberger, M.; Fierz, M.; Giechaskiel, B. Effect of Selective Catalytic Reduction on Exhaust Nonvolatile Particle Emissions of Euro VI Heavy-Duty Compression Ignition Vehicles. Aerosol Sci. Technol. 2019, 53, 898–910. [Google Scholar] [CrossRef] [Green Version]
- Giechaskiel, B.; Bonnel, P.; Perujo, A.; Dilara, P. Solid Particle Number (SPN) Portable Emissions Measurement Systems (PEMS) in the European Legislation: A Review. Int. J. Environ. Res. Public Health 2019, 16, 4819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melas, A.; Selleri, T.; Suarez-Bertoa, R.; Giechaskiel, B. Evaluation of Solid Particle Number Sensors for Periodic Technical Inspection of Passenger Cars. Sensors 2021, 21, 8325. [Google Scholar] [CrossRef]
- Michler, T.; Dörnhöfer, J.; Erforth, D.; Heinz, A.; Scheiber, K.; Weber, P.; Nowak, N.; Kubach, H.; Meyer, J.; Koch, T.; et al. Comparison of Different Particle Measurement Techniques at a Heavy-Duty Diesel Engine Test Bed; Technical Paper 2019-24-0158; SAE International: Warrendale, PA, USA, 2019. [Google Scholar]
- Asbach, C.; Kaminski, H.; Fissan, H.; Monz, C.; Dahmann, D.; Mülhopt, S.; Paur, H.R.; Kiesling, H.J.; Herrmann, F.; Voetz, M.; et al. Comparison of Four Mobility Particle Sizers with Different Time Resolution for Stationary Exposure Measurements. J. Nanopart. Res. 2009, 11, 1593–1609. [Google Scholar] [CrossRef]
- Kaminski, H.; Kuhlbusch, T.A.J.; Rath, S.; Götz, U.; Sprenger, M.; Wels, D.; Polloczek, J.; Bachmann, V.; Dziurowitz, N.; Kiesling, H.-J.; et al. Comparability of Mobility Particle Sizers and Diffusion Chargers. J. Aerosol Sci. 2013, 57, 156–178. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Ntziachristos, L.; Samaras, Z. Effect of Ejector Dilutors on Measurements of Automotive Exhaust Gas Aerosol Size Distributions. Meas. Sci. Technol. 2009, 20, 45703. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Arndt, M.; Schindler, W.; Bergmann, A.; Silvis, W.; Drossinos, Y. Sampling of Non-Volatile Vehicle Exhaust Particles: A Simplified Guide. SAE Int. J. Engines 2012, 5, 379–399. [Google Scholar] [CrossRef]
- Hammer, T.; Irwin, M.; Swanson, J.; Berger, V.; Sonkamble, U.; Boies, A.; Schulz, H.; Vasilatou, K. Characterising the Silver Particle Generator; a Pathway towards Standardising Silver Aerosol Generation. J. Aerosol Sci. 2022, 163, 105978. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Davok, R.; Giovanella, K.M.; Joergl, H.; Diewald, R.; Schindler, W. Particle Generator (APG): A Soot Generator for the On-Site Checks of Particle Number (PN) Measurement Systems. In Proceedings of the JSAE Annual Congress, SAE, Yokohama, Japan, 24 May 2013. [Google Scholar]
- Ess, M.N.; Vasilatou, K. Characterization of a New MiniCAST with Diffusion Flame and Premixed Flame Options: Generation of Particles with High EC Content in the Size Range 30 Nm to 200 Nm. Aerosol Sci. Technol. 2019, 53, 29–44. [Google Scholar] [CrossRef]
- Horvath, H.; Gangl, M. A Low-Voltage Spark Generator for Production of Carbon Particles. J. Aerosol Sci. 2003, 34, 1581–1588. [Google Scholar] [CrossRef]
- Meuller, B.O.; Messing, M.E.; Engberg, D.L.J.; Jansson, A.M.; Johansson, L.I.M.; Norlén, S.M.; Tureson, N.; Deppert, K. Review of Spark Discharge Generators for Production of Nanoparticle Aerosols. Aerosol Sci. Technol. 2012, 46, 1256–1270. [Google Scholar] [CrossRef]
- Tabrizi, N.S.; Ullmann, M.; Vons, V.A.; Lafont, U.; Schmidt-Ott, A. Generation of Nanoparticles by Spark Discharge. J. Nanopart. Res. 2009, 11, 315–332. [Google Scholar] [CrossRef] [Green Version]
- Burtscher, H.; Schmidt-Ott, A.; Siegmann, H.C. Photoelectron Yield of Small Silver and Gold Particles Suspended in Gas up to a Photon Energy of 10 EV. Z. Phys. B Condens. Matter 1984, 56, 197–199. [Google Scholar] [CrossRef]
- Peineke, C.; Attoui, M.B.; Schmidt-Ott, A. Using a Glowing Wire Generator for Production of Charged, Uniformly Sized Nanoparticles at High Concentrations. J. Aerosol Sci. 2006, 37, 1651–1661. [Google Scholar] [CrossRef]
- McMurry, P.H. The History of Condensation Nucleus Counters. Aerosol Sci. Technol. 2000, 33, 297–322. [Google Scholar] [CrossRef] [Green Version]
- TSI Inc. Model 3752 Condensation Particle Counter Operation Manual; P/N 6011194, Revision D; TSI: Shoreview, MN, USA, 2022. [Google Scholar]
- Sem, G.J. Design and Performance Characteristics of Three Continuous-Flow Condensation Particle Counters: A Summary. Atmos. Res. 2002, 62, 267–294. [Google Scholar] [CrossRef]
- Wang, X.; Grose, M.A.; Avenido, A.; Stolzenburg, M.R.; Caldow, R.; Osmondson, B.L.; Chow, J.C.; Watson, J.G. Improvement of Engine Exhaust Particle Sizer (EEPS) Size Distribution Measurement—I. Algorithm and Applications to Compact-Shape Particles. J. Aerosol Sci. 2016, 92, 95–108. [Google Scholar] [CrossRef]
- TSI Inc. Model 3090 Engine Exhaust Particle Sizer Spectrometer Operation and Service Manual; P/N 1980494, Revision M; TSI: Shoreview, MN, USA, 2021. [Google Scholar]
- Shin, W.G.; Wang, J.; Mertler, M.; Sachweh, B.; Fissan, H.; Pui, D.Y.H. The Effect of Particle Morphology on Unipolar Diffusion Charging of Nanoparticle Agglomerates in the Transition Regime. J. Aerosol Sci. 2010, 41, 975–986. [Google Scholar] [CrossRef]
- Wang, X.; Grose, M.A.; Caldow, R.; Osmondson, B.L.; Swanson, J.J.; Chow, J.C.; Watson, J.G.; Kittelson, D.B.; Li, Y.; Xue, J.; et al. Improvement of Engine Exhaust Particle Sizer (EEPS) Size Distribution Measurement—II. Engine Exhaust Particles. J. Aerosol Sci. 2016, 92, 83–94. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Zardini, A.; Martini, G. Particle Emission Measurements from L-Category Vehicles. SAE Int. J. Engines 2015, 8, 2322–2337. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Riccobono, F.; Bonnel, P. Feasibility Study on the Extension of the Real-Driving Emissions (RDE) Procedure to Particle Number (PN): Chassis Dynamometer Evaluation of Portable Emission Measurement Systems (PEMS) to Measure Particle Number (PN) Concentration: Phase II; Publications Office: Luxembourg, 2015; ISBN 978-92-79-51003-8. [Google Scholar]
- Giechaskiel, B.; Lähde, T.; Drossinos, Y. Regulating Particle Number Measurements from the Tailpipe of Light-Duty Vehicles: The next Step? Environ. Res. 2019, 172, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Amanatidis, S.; Ntziachristos, L.; Giechaskiel, B.; Katsaounis, D.; Samaras, Z.; Bergmann, A. Evaluation of an Oxidation Catalyst (“Catalytic Stripper”) in Eliminating Volatile Material from Combustion Aerosol. J. Aerosol Sci. 2013, 57, 144–155. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Cresnoverh, M.; Jörgl, H.; Bergmann, A. Calibration and Accuracy of a Particle Number Measurement System. Meas. Sci. Technol. 2010, 21, 45102. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Bergmann, A. Validation of 14 Used, Re-Calibrated and New TSI 3790 Condensation Particle Counters According to the UN-ECE Regulation 83. J. Aerosol Sci. 2011, 42, 195–203. [Google Scholar] [CrossRef]
- Olfert, J.S.; Symonds, J.P.R.; Collings, N. The Effective Density and Fractal Dimension of Particles Emitted from a Light-Duty Diesel Vehicle with a Diesel Oxidation Catalyst. J. Aerosol Sci. 2007, 38, 69–82. [Google Scholar] [CrossRef]
- Abegglen, M.; Durdina, L.; Brem, B.T.; Wang, J.; Rindlisbacher, T.; Corbin, J.C.; Lohmann, U.; Sierau, B. Effective Density and Mass-Mobility Exponents of Particulate Matter in Aircraft Turbine Exhaust: Dependence on Engine Thrust and Particle Size. J. Aerosol Sci. 2015, 88, 135–147. [Google Scholar] [CrossRef]
- Austin, J.; Minelli, C.; Hamilton, D.; Wywijas, M.; Jones, H.J. Nanoparticle Number Concentration Measurements by Multi-Angle Dynamic Light Scattering. J. Nanopart. Res. 2020, 22, 108. [Google Scholar] [CrossRef]
- Mamakos, A.; Giechaskiel, B.; Drossinos, Y. Experimental and Theoretical Investigations of the Effect of the Calibration Aerosol Material on the Counting Efficiencies of TSI 3790 Condensation Particle Counters. Aerosol Sci. Technol. 2013, 47, 11–21. [Google Scholar] [CrossRef]
- Mamakos, A. Methodology to Quantify the Ratio of Multiple-to Single-Charged Fractions Acquired in Aerosol Neutralizers. Aerosol Sci. Technol. 2016, 50, 363–372. [Google Scholar] [CrossRef] [Green Version]
- Maricq, M.M. Bipolar Diffusion Charging of Soot Aggregates. Aerosol Sci. Technol. 2008, 42, 247–254. [Google Scholar] [CrossRef]
- Johnson, T.J.; Nishida, R.T.; Zhang, X.; Symonds, J.P.R.; Olfert, J.S.; Boies, A.M. Generating an Aerosol of Homogeneous, Non-Spherical Particles and Measuring Their Bipolar Charge Distribution. J. Aerosol Sci. 2021, 153, 105705. [Google Scholar] [CrossRef]
- Xiao, K.; Swanson, J.J.; Pui, D.Y.H.; Kittelson, D.B. Bipolar Diffusion Charging of Aggregates. Aerosol Sci. Technol. 2012, 46, 794–803. [Google Scholar] [CrossRef] [Green Version]
- de La Verpilliere, J.L.; Swanson, J.J.; Boies, A.M. Unsteady Bipolar Diffusion Charging in Aerosol Neutralisers: A Non-Dimensional Approach to Predict Charge Distribution Equilibrium Behaviour. J. Aerosol Sci. 2015, 86, 55–68. [Google Scholar] [CrossRef] [Green Version]
- Forsyth, B.; Liu, B.Y.H.; Romay, F.J. Particle Charge Distribution Measurement for Commonly Generated Laboratory Aerosols. Aerosol Sci. Technol. 1998, 28, 489–501. [Google Scholar] [CrossRef]
- Tsai, C.-J.; Lin, J.-S.; Deshpande, C.G.; Liu, L.-C. Electrostatic Charge Measurement and Charge Neutralization of Fine Aerosol Particles during the Generation Process. Part. Part. Syst. Charact. 2005, 22, 293–298. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Martini, G. Engine Exhaust Solid Sub-23 Nm Particles: II. Feasibility Study for Particle Number Measurement Systems. SAE Int. J. Fuels Lubr. 2014, 7, 935–949. [Google Scholar] [CrossRef]
- Keller, A.; Tritscher, T.; Burtscher, H. Performance of Water-Based CPC 3788 for Particles from a Propane-Flame Soot-Generator Operated with Rich Fuel/Air Mixtures. J. Aerosol Sci. 2013, 60, 67–72. [Google Scholar] [CrossRef]
- Yli-Ojanperä, J.; Sakurai, H.; Iida, K.; Mäkelä, J.M.; Ehara, K.; Keskinen, J. Comparison of Three Particle Number Concentration Calibration Standards through Calibration of a Single CPC in a Wide Particle Size Range. Aerosol Sci. Technol. 2012, 46, 1163–1173. [Google Scholar] [CrossRef]
- Awasthi, A.; Wu, B.-S.; Liu, C.-N.; Chen, C.-W.; Uang, S.-N.; Tsai, C.-J. The Effect of Nanoparticle Morphology on the Measurement Accuracy of Mobility Particle Sizers. MAPAN 2013, 28, 205–215. [Google Scholar] [CrossRef]
- Bau, S.; Payet, R.; Witschger, O.; Jankowska, E. Performance Study of Portable Devices for the Real-Time Measurement of Airborne Particle Number Concentration and Size (Distribution). J. Phys. Conf. Ser. 2017, 838, 12001. [Google Scholar] [CrossRef]
- Jeong, C.-H.; Evans, G.J. Inter-Comparison of a Fast Mobility Particle Sizer and a Scanning Mobility Particle Sizer Incorporating an Ultrafine Water-Based Condensation Particle Counter. Aerosol Sci. Technol. 2009, 43, 364–373. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Li, Y.; Wang, X.; Durbin, T.D.; Johnson, K.C.; Karavalakis, G.; Asa-Awuku, A.; Villela, M.; Quiros, D.; Hu, S.; et al. Comparison of Vehicle Exhaust Particle Size Distributions Measured by SMPS and EEPS during Steady-State Conditions. Aerosol Sci. Technol. 2015, 49, 984–996. [Google Scholar] [CrossRef] [Green Version]
- Konstandopoulos, A.G.; Zarvalis, D.; Dolios, I. Multi-Instrumental Assessment of Diesel Particulate Filters; Technical Paper 2007-01-0313; SAE International: Warrendale, PA, USA, 2007. [Google Scholar]
- Lee, B.P.; Li, Y.J.; Flagan, R.C.; Lo, C.; Chan, C.K. Sizing Characterization of the Fast-Mobility Particle Sizer (FMPS) Against SMPS and HR-ToF-AMS. Aerosol Sci. Technol. 2013, 47, 1030–1037. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Pham, L.; Wang, X.; Bahreini, R.; Jung, H.S. Evaluation of Fast Mobility Particle Sizer (FMPS) for Ambient Aerosol Measurement. Aerosol Air Qual. Res. 2021, 21, 200525. [Google Scholar] [CrossRef]
- Levin, M.; Witschger, O.; Bau, S.; Jankowska, E.; Koponen, I.K.; Koivisto, A.J.; Clausen, P.A.; Jensen, A.; Mølhave, K.; Asbach, C.; et al. Can We Trust Real Time Measurements of Lung Deposited Surface Area Concentrations in Dust from Powder Nanomaterials? Aerosol Air Qual. Res. 2016, 16, 1105–1117. [Google Scholar] [CrossRef] [Green Version]
- Leskinen, J.; Joutsensaari, J.; Lyyränen, J.; Koivisto, J.; Ruusunen, J.; Järvelä, M.; Tuomi, T.; Hämeri, K.; Auvinen, A.; Jokiniemi, J. Comparison of Nanoparticle Measurement Instruments for Occupational Health Applications. J. Nanopart. Res. 2012, 14, 718. [Google Scholar] [CrossRef]
- Jørgensen, R.B. Comparison of Four Nanoparticle Monitoring Instruments Relevant for Occupational Hygiene Applications. J. Occup. Med. Toxicol. 2019, 14, 28. [Google Scholar] [CrossRef]
- Gini, M.I.; Helmis, C.; Melas, A.D.; Papanastasiou, D.; Orfanopoulos, G.; Giannakopoulos, K.P.; Drossinos, Y.; Eleftheriadis, K. Characterization of Carbon Fractal-like Aggregates by Size Distribution Measurements and Theoretical Calculations. Aerosol Sci. Technol. 2016, 50, 133–147. [Google Scholar] [CrossRef]
- Zervas, E.; Dorlhène, P. Comparison of Exhaust Particle Number Measured by EEPS, CPC, and ELPI. Aerosol Sci. Technol. 2006, 40, 977–984. [Google Scholar] [CrossRef]
Setting | Fuel Propane (mL/min) | Mixing N2 (mL/min) | Oxidation Air (L/min) | Burner Air (L/min) | Sampling Position | PN (#/cm3) | GMD (nm) | Example |
---|---|---|---|---|---|---|---|---|
1 | 21 | 15 | 0.70 | 3 | Burner | 1.3 × 107 | 24 * | Figure A1f |
1 | 21 | 15 | 0.70 | 3 | VPR | 8.5 × 105 | 24 * | Figure A1h |
2 | 21 | 5 | 0.70 | 3 | VPR | 7.0 × 105 | 32 * | - |
3 | 21 | 0 | 0.70 | 3 | VPR | 5.5 × 105 | 43 * | Figure A1j |
4 | 21 | 0 | 0.80 | 3 | VPR | 5.5 × 105 | 76 | - |
5 | 21 | 0 | 1.00 | 3 | VPR | 4.7 × 105 | 85 | Figure A1i |
6 | 21 | 0 | 0.37 | 3 | VPR | 6.7 × 105 | 15 | - |
6 | 21 | 0 | 0.37 | 3 | DB | 1.2 × 105 | 16 | Figure A1g |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giechaskiel, B.; Melas, A. Comparison of Particle Sizers and Counters with Soot-like, Salt, and Silver Particles. Atmosphere 2022, 13, 1675. https://doi.org/10.3390/atmos13101675
Giechaskiel B, Melas A. Comparison of Particle Sizers and Counters with Soot-like, Salt, and Silver Particles. Atmosphere. 2022; 13(10):1675. https://doi.org/10.3390/atmos13101675
Chicago/Turabian StyleGiechaskiel, Barouch, and Anastasios Melas. 2022. "Comparison of Particle Sizers and Counters with Soot-like, Salt, and Silver Particles" Atmosphere 13, no. 10: 1675. https://doi.org/10.3390/atmos13101675
APA StyleGiechaskiel, B., & Melas, A. (2022). Comparison of Particle Sizers and Counters with Soot-like, Salt, and Silver Particles. Atmosphere, 13(10), 1675. https://doi.org/10.3390/atmos13101675