Relations between Urban Entropies, Geographical Configurations, Habitability and Sustainability
Abstract
:1. Introduction
1.1. Urban Microclimates
1.2. Geomorphology
1.3. Geography and Wind Regimes
1.4. Local Winds
1.5. Contaminants in This Study
1.6. Meteorological Variables
2. Theoretical Bases
2.1. Kolmogorov Entropy and Its Relation to Information Loss
2.2. Information Loss
3. Materials and Methods
3.1. Study Area
3.2. The Data
3.3. Mathematical Method Used in the Analysis of Nonlinear Time Series
4. Results
4.1. Loss of Information and Fractal Dimension
4.2. Entropy Quotient
- (a)
- Pudahuel is a commune in the interior of Santiago de Chile, the country’s capital and largest city. It is located in a valley surrounded by the Cordilleras de los Andes and the Coast (Figure 9):
- (b)
- Kingston College, environmental monitoring station, located in Concepción, a city with irregular geomorphology near the Cordillera of the Coast, marked by many geographical landmarks such as hills and depressions (Figure 10):
- (c)
- Coyhaique is located in the central zone of the Aysén Region at the foot of Cerro Mackay, to the east of the Cordillera de los Andes (part of it forms the Cerro Castillo range), in the place where the Simpson and Coyhaique rivers converge. Figure 10 is a representation of the geomorphology of the area (Figure 11):
- (d)
- Las Encinas station is in the city of Temuco, which is in a straight line 85.4 km from Puerto Saavedra, with access to the Pacific Ocean. It is located in the depression between the Cordillera de los Andes (highest peak, Lanín volcano, 3747 m above sea level) and the Cordillera of the Coast (highest peak, Cerro Alto Nahuelbuta, 1565 m above sea level) (Figure 12):
- (e)
- Entre Lagos station is located in the city of Osorno, 60.9 away from Bahía Mansa, access to the Pacific Ocean. It is located in the intermediate depression, between the Cordillera de los Andes (highest peak, Osorno volcano, 2660 masl) and the Cordillera of the Coast, low and undulating in the north, more robust in the south, exerting an effect of climatic screen in the intermediate depression (La Unión, Osorno and Río Negro) (Figure 13):
- (f)
- Mexico City, located in a frank basin (a valley surrounded by heights), is circled by mountains that are part of the geological province of Anahuac Lakes and Volcanoes, forming the orographic cord of the capital (Figure 14):
- (g)
- The Centro station is located within the commune of Calama, an inland and Andean city of Antofagasta (Figure 15):
- (h,i)
- The Tumbaco and Carapungo stations are located in the interior of Quito, mountain cities of Ecuador (Figure 16).
- (j)
- The Andacollo station is located within the commune of the same name, Cordilleran city of Coquimbo (Figure 17):
- (k)
- The Concón station is located in the commune of the same name (Figure 18):
- (l)
- The Loncura station belongs to the commune of Quintero (Figure 19):
- (m)
- The Lota Rural station is located in the district of Coronel (Figure 20):
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Girardet, H. Cities People Planet: Liveable Cities for a Sustainable World; Earthscan: London, UK, 2004. [Google Scholar]
- Delgado, G.C. Geoingeniería, apuesta incierta frente al cambio climático. Estud. Soc. 2012, 20, 213–236. [Google Scholar] [CrossRef]
- Hernàndez, J.M. Cambio Climático y Geología. Interacciones y Consecuencias a Escala Local y Global. Communicational Strategy against the Climate Change in the City of San Sebastian. 2016. Available online: www.conama2016.org (accessed on 10 December 2021).
- Cárdenas-Jirón, L.-A.; Morales-Salinas, L. Urbanismo bioclimático en Chile: Propuesta de biozonas para la planificación urbana y ambiental. EURE 2019, 45, 135–162. [Google Scholar] [CrossRef] [Green Version]
- Bettini, V. Elementos de Ecología Urbana. In Serie Medio Ambiente; Trotta: Madrid, Spain, 1998. [Google Scholar]
- Stull, R.B. Meteorology for Scientists and Engineers, 2nd ed.; Brooks/Cole: Pacific Grove, CA, USA, 2000. [Google Scholar]
- Mauree, D.; Naboni, E.; Coccolo, S.; Perera, A.; Nik, V.M.; Scartezzini, J.-L. A review of assessment methods for the urban environment and its energy sustainability to guarantee climate adaptation of future cities. Renew. Sustain. Energy Rev. 2019, 112, 733–746. [Google Scholar] [CrossRef]
- Dennis, M.; Scaletta, K.L.; James, P. Evaluating urban environmental and ecological landscape characteristics as a function of landsharing-sparing, urbanity and scale. PLoS ONE 2019, 14, e0215796. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, P.; Mera, E.; Salini, G. Urban Densification Effect on Micrometeorology in Santiago, Chile: A Comparative Study Based on Chaos Theory. Sustainability 2022, 14, 2845. [Google Scholar] [CrossRef]
- Sharples, S.; Lash, D. Daylight in Atrium Buildings: A Critical Review. Arch. Sci. Rev. 2007, 50, 301–312. [Google Scholar] [CrossRef]
- Du, J.; Sharples, S. An Analysis of Vertical Daylight Level Distributions across the Walls of Atria. In Proceedings of the CIE 2010: Lighting Quality & Energy Efficiency, Vienna, Austria, 14–17 March 2010; Volume 1. Available online: https://www.researchgate.net/publication/335565925 (accessed on 22 January 2022).
- Aguilar, G.; Riquelme, R.; Martinod, J.; Darrozes, J. Role of climate and tectonics in the geomorphologic evolution of the Semiarid Chilean Andes between 27-32 °S. Andean Geol. 2013, 40, 79–101. [Google Scholar] [CrossRef] [Green Version]
- Belušić, D.; Hrastinski, M.; Večenaj, Ž.; Grisogono, B. Wind Regimes Associated with a Mountain Gap at the Northeastern Adriatic Coast. J. Appl. Meteorol. Clim. 2013, 52, 2089–2105. [Google Scholar] [CrossRef]
- Strahler, A.N. Physical Geography; John Wiley & Sons: New York, NY, USA, 1960. [Google Scholar]
- O’Connor, J.J.; Robertson, E.F. Evangelista Torricelli. MacTutor History of Mathematics and Science. 2002. Available online: http://www-history.mcs.st-and.ac.uk/Biographies/Torricelli.html (accessed on 30 July 2021).
- Toledano, C. Los Aerosoles Atmosféricos y su Influencia en la Península Ibérica. Manual Formativo de ACTA Nº 48. 2008. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=509874621/06/2019 (accessed on 14 February 2022).
- Ilabaca, M.; Olaeta, I.; Campos, E.; Villaire, J.; Tellez-Rojo, M.M.; Romieu, I. Association between levels of fine particulate and emergency visits for pneumonia and other respiratory illnesses among children in Santiago, Chile. J. Air Waste Manag. Assoc. 1999, 49, 154–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bełcik, M.; Trusz-Zdybek, A.; Zaczyńska, E.; Czarny, A.; Piekarska, K. Genotoxic and cytotoxic properties of PM2.5 collected over the year in Wrocław (Poland). Sci. Total Environ. 2018, 637–638, 480–497. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Schmid, C.; Shuliakevich, A.; Hammers-Wirtz, M.; Gottschlich, A.; der Beek, T.A.; Yin, D.; Qin, B.; Zou, H.; Dopp, E.; et al. Toxicological and ecotoxicological evaluation of the water quality in a large and eutrophic freshwater lake of China. Sci. Total Environ. 2019, 667, 809–820. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.; Laden, F.; Zanobetti, A. The concentration-response relation between PM2.5 and daily deaths. Environ. Health Perspect. 2002, 110, 1025–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raabe, O.G. Respiratory exposure to air pollutants. In Air Pollutants and the Respiratory Tract; Swift, D.L., Foster, W.M., Eds.; Taylor and Francis: Boca Ratón, CA, USA, 2005; pp. 39–74. [Google Scholar]
- Reyna, M.A.; Mérida, J.V.; Osornio-Vargas, A.R.; Lerma, C.; Bravo-Zanoguera, M.E.; Avitia, R.L.; Nieblas, E.C. Association between personal PM10 exposure and pulmonary function in healthy volunteers from a semi-arid city on the US-Mexican border. Rev. Int. Contam. Ambient. 2018, 34, 583–585. [Google Scholar] [CrossRef]
- Peters, A.; Dockery, D.W. Lung Biology in Health and Disease. In Air Pollutants and the Respiratory Tract; Foster, W.M., Costa, D.L., Eds.; CRC Press: Boca Raton, CA, USA, 2005; pp. 1–20. [Google Scholar]
- Cifuentes, L.A.; Vega, J.; Köpfer, K.; Lave, L.B. Effect of the Fine Fraction of Particulate Matter versus the Coarse Mass and Other Pollutants on Daily Mortality in Santiago, Chile. J. Air Waste Manag. Assoc. 2000, 50, 1287–1298. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-J.; Kim, B.; Lee, K. Air Pollution Exposure and Cardiovascular Disease. Toxicol. Res. 2014, 30, 71–75. [Google Scholar] [CrossRef]
- Santiago, J.; Sanchez, B.; Quaassdorff, C.; de la Paz, D.; Martilli, A.; Martín, F.; Borge, R.; Rivas, E.; Gómez-Moreno, F.; Díaz, E.; et al. Performance Evaluation of a Multiscale Modelling System Applied to Particulate Matter Dispersion in A Real Traffic Hot Spot in Madrid (Spain). Atmospheric Pollut. Res. 2019, 11, 141–155. [Google Scholar] [CrossRef]
- Farmer, J.D. Chaotic attractors of an infinite-dimensional dynamical system. Phys. D Nonlinear Phenom. 1982, 4, 366–393. [Google Scholar] [CrossRef]
- Farmer, J.D.; Otto, E.; Yorke, J.A. The dimension of chaotic attractors. Physica D 1983, 7, 153–180. [Google Scholar] [CrossRef] [Green Version]
- Kolmogorov, A.N. On entropy per unit time as a metric invariant of automorphisms. Dokl. Akad. Nauk SSSR 1959, 124, 754–755. [Google Scholar]
- Martínez, J.A.; Vinagre, F.A. La Entropía de Kolmogorov; su Sentido Físico y su Aplicación al Estudio de Lechos Fluidizados 2D; University of Alcalá: Alcalá de Henares, Madrid, 2016; Available online: https://www.academia.edu/2479372/LA_ENTROP%C3%8DA_DE_KOLMOGOROV_SU_SENTIDO_F%C3%8DSICO_Y_SU_APLICACI%C3%93N_AL_ESTUDIO_DE_LECHOS_FLUIDIZADOS_2D (accessed on 29 January 2022).
- Shannon, C. A mathematical theory of communication. Bell Syst. Technol. J. 1948, 27, 379–423, 623–656. [Google Scholar] [CrossRef] [Green Version]
- Brillouin, L. Science and Information Theory, 2nd ed.; Academic Press: New York, NY, USA, 1962; 304p. [Google Scholar]
- Shaw, R. Strange attractors, chaotic behavior and information flow. Zeitschrift für Naturforschung A 1981, 36, 80–112. [Google Scholar] [CrossRef]
- Cohen, A.; Procaccia, I. Computing the Kolmogorov entropy from time signals of dissipative and conservative dynamical systems. Phys. Rev. A 1985, 31, 1872–1882. [Google Scholar] [CrossRef] [PubMed]
- SINCA. Chile, Sistema de Información Nacional de Calidad del Aire. 2022. Available online: https://sinca.mma.gob.cl/ (accessed on 23 April 2022).
- SINAICA. Mexico, Sistema Nacional de Información de la Calidad del Aire. 2022. Available online: https://sinaica.inecc.gob.mx/ (accessed on 12 February 2022).
- SUIA. Ecuador, Sistema Único de Información Ambiental. 2022. Available online: http://suia.ambiente.gob.ec/ambienteseam/home.seam (accessed on 2 January 2022).
- Norazian, M.N.; Shruki, Y.A.; Azam, R.M.; Mustafa Al Bakri, A.M. Estimation of missing values in air pollution data using single imputation techniques. ScienceAsia 2008, 34, 341–345. [Google Scholar] [CrossRef]
- Junninen, H.; Niska, H.; Tuppurainen, K.; Ruuskanen, J.; Kolehmainen, M. Methods for imputation of missing values in air quality data sets. Atmos. Environ. 2004, 38, 2895–2907. [Google Scholar] [CrossRef]
- Salini, G.A.; Medina, E. Estudio sobre la dinámica temporal de material particulado PM10 emitido en Cochabamba, Bolivia. Rev. Int. Contam. Ambient. 2017, 33, 437–448. [Google Scholar] [CrossRef] [Green Version]
- Asa, E.; Saafi, M.; Membah, J.; Billa, A. Comparison of linear and nonlinear Kriging methods for characterization and interpolation of soil data. J. Comput. Civil Eng. 2012, 26, 11–18. [Google Scholar] [CrossRef]
- Emery, X. Simple and Ordinary Multigaussian Kriging for Estimating Recoverable Reserves. Math. Geol. 2005, 37, 295–319. [Google Scholar] [CrossRef]
- Kyriakidis, P.; Journel, A. Geostatistical space-time models: A review. Math. Geol. 1999, 6, 651–684. [Google Scholar] [CrossRef]
- Kantz, H.; Schreiber, T. Nonlinear Time Series Analysis, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004; 387p. [Google Scholar]
- Sivakumar, B.; Wallender, W.W.; Horwath, W.R.; Mitchell, J.P. Nonlinear deterministic analysis of air pollution dynamics in a rural and agricultural setting. Adv. Complex Syst. 2007, 10, 581–597. [Google Scholar] [CrossRef]
- Sprott, J.C. Chaos Data Analyzer Software. 1995. Available online: http://sprott.physics.wisc.edu/cda.htm (accessed on 1 April 2022).
- Sprott, J.C. Chaos and Time-Series Analysis; Oxford University Press: Oxford, UK, 2003; 528p. [Google Scholar]
- Lorenz, E. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Kumar, U.; Prakash, A.; Jain, V.K. Characterization of chaos in air pollutants: A Volterra-Wiener-Korenberg series and numerical titration approach. Atmos. Environ. 2008, 42, 1537–1551. [Google Scholar] [CrossRef]
- Lee, C.-K.; Lin, S.-C. Chaos in Air Pollutant Concentration (APC) Time Series. Aerosol Air Qual. Res. 2008, 8, 381–391. [Google Scholar] [CrossRef]
- Salini, G.; Pérez, P. A study of the dynamic behavior of fine particulate matter in Santiago, Chile. Aerosol Air Qual. Res. 2015, 15, 154–165. [Google Scholar] [CrossRef] [Green Version]
- Takens, F. Detecting Strange Attractors in Turbulence. In Dynamical Systems and Turbulence, Warwick 1980; Springer: Berlin/Heidelberg, Germany, 1981; pp. 366–381. [Google Scholar]
- Fraser, A.M.; Swinney, H.L. Independent coordinates for strange attractors from mutual information. Phys. Rev. A 1986, 33, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Calderón, G.S.; Jara, P.P. estudio de series temporales de contaminación ambiental mediante técnicas de redes neuronales artificiales. Ingeniare 2006, 14, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Eckmann, J.P.; Oliffson, S.; Kamphorst, S.; Ruelle, D.; Ciliberto, C. Lyapunov exponents from time series. Phys. Rev. A 1986, 34, 4971–4979. [Google Scholar] [CrossRef]
- Grassberger, P.; Procaccia, L. Characterization of strange attractors. Phys. Rev. Lett. 1983, 50, 346–349. [Google Scholar] [CrossRef]
- Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D 1985, 16, 285–317. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Cao, Y.; Tung, W.-W.; Hu, J. Multiscale Analysis of Complex Time Series; Wiley and Sons Interscience: Hoboken, NJ, USA, 2007; 368p. [Google Scholar]
- Hernández, P.R.P.; Calderón, G.A.S.; Garrido, E.M.M. Entropía y neguentropía: Una aproximación al proceso de difusión de contaminantes y su sostenibilidad. Rev. Int. Contam. Ambient. 2021, 37, 167–185. [Google Scholar] [CrossRef]
- Chelani, A.B.; Devotta, S. Nonlinear analysis and prediction of coarse particulate matter concentration in ambient air. J. Air Waste Manag. Assoc. 2006, 56, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Horna, J.; Dionicio, J.; Martínez, R.; Zavaleta, A.; Brenis, Y. Dinámica simbólica y algunas aplicaciones. Sel. Mat. 2016, 3, 101–106. [Google Scholar] [CrossRef]
- Pacheco, P.R.; Parodi, M.C.; Mera, E.M.; Salini, G.A. Variables meteorológicas y niveles de concentración de material particulado de 10 μm en Andacollo, Chile: Un estudio de dispersión y entropías. Inform. Tecnol. 2020, 31, 171–182. [Google Scholar] [CrossRef]
- Araya-Osses, D.; Casanueva, A.; Román-Figueroa, C.; Uribe, J.M.; Paneque, M. Climate change projections of temperature and precipitation in Chile based on statistical downscaling. Clim. Dyn. 2020, 54, 4309–4330. [Google Scholar] [CrossRef] [Green Version]
- Borrego, C.; Rafael, S.; Rodrigues, V.; Monteiro, A.; Sorte, S.; Coelho, S.; Lopes, M. Air Quality, Urban Fluxes and Cities Resilience Under Climate Change—A Brief Overview. Int. J. Environ. Impacts 2018, 1, 14–27. [Google Scholar] [CrossRef]
- Balaban, O. The negative effects of construction boom on urban planning and environment in Turkey: Unraveling the role of the public sector. Habitat Int. 2012, 36, 26–35. [Google Scholar] [CrossRef]
- Munir, S.; Mayfield, M.; Coca, D.; Mihaylova, L.S.; Osammor, O. Analysis of Air Pollution in Urban Areas with Airviro Dispersion Model—A Case Study in the City of Sheffield, United Kingdom. Atmosphere 2020, 11, 285. [Google Scholar] [CrossRef] [Green Version]
- Coseo, P.; Larsen, L. How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain Urban Heat Islands in Chicago. Landsc. Urban Plan. 2014, 125, 117–129. [Google Scholar] [CrossRef]
- Huang, X.; Wang, Y. Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China. ISPRS J. Photogramm. Remote Sens. 2019, 152, 119–131. [Google Scholar] [CrossRef]
- Kadygrov, E.N.; Shur, G.N.; Viazankin, A.S. Investigation of atmospheric boundary layer temperature, turbulence, and wind parameters on the basis of passive microwave remote sensing. Radio Sci. 2003, 38, 8048. [Google Scholar] [CrossRef] [Green Version]
- Kolmogorov, A.N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numberst, Dokl. Akad. Nauk. SSSR 1941, 30, 301–305. [Google Scholar]
- Pacheco, P.; Mera, E. Study of the Effect of urban densification and micrometeorology on the sustainability of a coronavirus-type pandemic. Atmosphere 2022, 13, 1073. [Google Scholar] [CrossRef]
- MMA (Ministerio del Medioambiente de Chile). Sistema de Información Nacional de Calidad del Aire. 2021. Available online: https://mma.gob.cl/ (accessed on 30 April 2021).
Concentration in the Air | Effects |
---|---|
55 mg/m3 (50 ppm) | TLV–TWA * Normal working day of 8 h or one week 40 h without showing adverse effects. |
0.01% | Exposure of several hours without effect. |
0.04–0.05% | One hour exposure without effect. |
0.06–0.07% | Appreciable effects at the time. |
0.12–0.15% | Dangerous effects after one hour. |
165 mg/m3 (1200 ppm) | Immediate danger to life and health (IDLH). |
0.4% | Fatal after one hour. |
Station Name | Geography | Climate | Pollution | Wind | T (°C) | RH (%) |
---|---|---|---|---|---|---|
1. Pudahuel, EMO, masl: 469 (m) | Located at the bottom of the basin | Cold, dry winters, hot, dry summers. | Presence in descending order PM10, PM2.5, CO, SO2, NO2, O3 | South–East day East–South night | 15.3 | 57.7 |
2. Kingston College, NI, masl: 12 (m) | River edge plain | Cool, wet summers and cold, wet winters | Presence in descending order PM2.5, CO, PM10, SO2, NO2, O3 | North West–South East day East–North West night | 13.3 | 75.2 |
3. Coyhaique, NI, masl: 310 (m) | Inland valley plain | Cold and wet winters and summers | Presence in descending order PM2.5, PM10 | North West–East day East–West South night | 4.8 | 82 |
4. Las Encinas, NI, masl: 360 (m) | Inland valley plain | Cool, wet summers and cold, wet winters | Presence in descending order PM10, PM2.5, CO, SO2, NO2, O3 | West–North East day East–West night | 11.4 | 64.5 |
5. Entre Lagos, NI, masl: 39 (m) | Undulating sectors of the intermediate depression | Cool, wet summers and cold, wet winters | Presence in descending order PM2.5, CO, PM10, SO2, NO2 | East–West day West–East night | 14 | 83 |
6. Mexico City, BJU, masl: 2250 (m) | Valley bottom plain | Warm and dry in summer and cool and wet in winter | Presence in descending order PM10, PM2.5, CO | North–East day East–West night | 16 | 58.8 |
7. Center Station, NI, masl: 2400 (m) | Valley bottom plain | Cool, dry winters and mild, dry summers | Presence in descending order PM10, PM2.5, CO, SO2, NO2, O3 | West–North East day East–West night | 17.2 | 28.8 |
8. Andacollo, NI, masl: 1017 (m) | Coastal mountain range plain | Cool, dry winters and hot, dry summers | PM10 | North–South East day East–West night | 21 | 60 |
9. Tumbaco, NI, masl: 2331 (m) | Cordilleran plain | Cool and wet in winter and warm and wet in summer | Presence in descending order PM10, SO2, O3 | North West–South East day Sout East–North West night | 16 | 86 |
10. Carapungo, NI, masl: 2851 (m) | Cordilleran valley bottom plain | Cool and wet in winter and warm and wet in summer | Presence in descending order PM10, PM2.5, CO, SO2, NOx, O3 | North West–East day East–West night | 11.3 | 86.1 |
11. Concon, NI, masl: 2 (m) | Sector between coastal plain and coastal mountain range | Hot, dry summers, cold, wet winters | Presence in descending order PM10, PM2.5, CO, SO2, NO2, O3 | West–East day East–West night | 15 | 69.5 |
12. Loncura, NI, masl: 3 (m) | Hill near the coast | Hot, dry summers, cold, wet winters | Presence in descending order PM10, PM2.5, CO, SO2, NO2, O3 | West–East day East–West night | 15.1 | 71.5 |
13. Lota Rural Station, NI, masl: 16 (m) | Creek and coastal hill | Cool, wet summers and cold, wet winters | Presence in descending order PM2.5, CO, PM10, SO2, NO2, O3 | West–East day East–West night | 12.7 | 73.8 |
Station Name | Location | PM10 | PM2.5 | CO | T | RH | WV | Owner |
---|---|---|---|---|---|---|---|---|
1. Pudahuel, EMO, masl: 469 (m) | 33°27′06.2″ S 70°40′07.8″ W | A | A | B | C | C | D | SINCA |
2. Kingston College, NI, masl: 12 (m) | 36°47′4.74″ S 73°3′7.42″ O | E | E | F | G | G | H | SINCA |
3. Coyhaique, NI, masl: 310 (m) | 45°34′44.57″ S 72°2′59.88″ O | A | A | I | J | J | K | SINCA |
4. Las Encinas, NI, masl: 360 (m) | 38°44′55.38″ S 72°37′14.54″ O | A | A | I | L | L | L | SINCA |
5. Entre Lagos, NI, masl: 39 (m) | 40°41′2.36″ S 72°35′47.25″ O | E | E | F | F | F | F | SINCA |
6. Mexico City, BJU, Mexico masl: 2250 (m) | 19°22′12.00″ N 99°9′36.00″ O | F | F | F | F | F | F | SINAICA |
7. Center Station, NI, masl: 2400 (m) | 22°27′42.55″ S 68°55′41.45″ O | N | N | M | O | P | Q | SINCA |
8. Andacollo, NI, masl: 1017 (m) | 30°13′39.94″ S 71°5′10.09″ O | A | R | R | S | SINCA | ||
9. Tumbaco, NI, Ecuador masl: 2331 (m) | 0°12′36′’ S 78°24′00′’ W | T | T | U | V | V | D | SUIA |
10. Carapungo, NI, Ecuador masl: 2851 (m) | 0°5′54′’ S 78°26′50′’ W | T | W | B | V | V | D | SUIA |
11. Concon, NI, masl: 2 (m) | 32°55′29.12″ S 71°30′55.73″ O | N | N | X | O | Y | Z | SINCA |
12. Loncura, NI, masl: 3 (m) | 32°47′41.69″ S 71°29′47.11″ O | E | E | AA | P | Y | H | SINCA |
13. Lota Rural Station, NI, masl: 16 (m) | 37°6′0.70″ S 73°9′7.87″ O | AB | AB | AC | G | G | AD | SINCA |
Basin | Variables Each 17,520 h | λ (Bits) | Dc | Sk (Bits/h) | H | LZ | <ΔI> |
---|---|---|---|---|---|---|---|
CO | 0.017 ± 0.006 | 2.937 ± 0.115 | 0.459 | 0.933 | 0.014 | −0.056 | |
(a) Pudahuel | PM10 | 0.593 ± 0.030 | 3.531 ± 1.665 | 0.246 | 0.942 | 0.178 | −1.970 |
PM2.5 | 0.260 ± 0.026 | 1.231 ± 0.309 | 0.326 | 0.919 | 0.309 | −0.864 | |
0.931 | −0.963 | ||||||
(2018−2019, 584 masl) | T | 0.261 ± 0.016 | 2.551 ± 0.069 | 0.289 | 0.917 | 0.238 | −0.867 |
WS | 0.960 ± 0.018 | 4.029 ± 0.292 | 0.371 | 0.908 | 0.468 | −3.189 | |
RH | 0.305 ± 0.021 | 3.026 ± 0.119 | 0.355 | 0.936 | 0.449 | −1.013 | |
0.920 | −1.690 | ||||||
Variables each 17,520 h | |||||||
CO | 0.141 ± 0.012 | 2.240 ± 0.058 | 0.389 | 0.915 | 0.076 | −0.468 | |
(b) Kingston | PM10 | 0.224 ± 0.027 | 1.412 ± 0.183 | 0.179 | 0.908 | 0.204 | −0.744 |
College, | PM2.5 | 0.255 ± 0.025 | 2.435 ± 1.032 | 0.334 | 0.896 | 0.523 | −0.847 |
0.906 | −0.686 | ||||||
(2017−2018 12 masl) | T | 0.269 ± 0.017 | 1.879 ± 0.082 | 0.292 | 0.915 | 0.200 | −0.894 |
WS | 0.613 ± 0.018 | 4.749 ± 0.647 | 0.342 | 0.892 | 0.569 | −2.036 | |
RH | 1.060 ± 0.023 | 2.040 ± 0.327 | 0.161 | 0.893 | 0.595 | −3.521 | |
0.900 | −2.150 | ||||||
Variables each 17,520 h | |||||||
CO | 0.740 ± 0.026 | 3.765 ± 1.356 | 0.207 | 0.867 | 0.477 | −2.458 | |
(c) Coyhaique | PM10 | 0.500 ± 0.031 | 1.523 ± 0.996 | 0.656 | 0.926 | 0.236 | −1.661 |
PM2.5 | 0.531 ± 0.032 | 1.960 ± 0.737 | 0.312 | 0.925 | 0.256 | −1.764 | |
0.906 | −1.961 | ||||||
(2016−2017, 310 masl) | T | 0.718 ± 0.033 | 1.660 ± 0.605 | 0.436 | 0.903 | 0.486 | −2.385 |
WS | 0.331 ± 0.025 | 3.750 ± 0.975 | 0.211 | 0.816 | 0.364 | −1.100 | |
RH | 0.007 ± 0.005 | 1.660 ± 0.605 | 0.383 | 0.903 | 0.007 | −0.023 | |
0.874 | −1.169 | ||||||
Variables each 8760 h | |||||||
CO | 0.016 ± 0.008 | 1.107 ± 0.025 | 0.197 | 0.928 | 0.015 | −0.053 | |
(d) Las Encinas | PM10 | 0.146 ± 0.034 | 0.990 ± 0.031 | 0.218 | 0.909 | 0.307 | −0.485 |
Station | PM2.5 | 0.728 ± 0.053 | 3.108 ± 0.847 | 0.784 | 0.897 | 0.422 | −2.418 |
0.911 | −0.985 | ||||||
(2018, 360 masl) | T | 0.477 ± 0.023 | 2.823 ± 0.214 | 0.467 | 0.909 | 0.365 | −1.585 |
WS | 1.335 ± 0.039 | 1.138 ± 0.120 | 0.388 | 0.862 | 0.449 | −4.435 | |
RH | 0.823 ± 0.034 | 0.792 ± 0.113 | 0.317 | 0.897 | 0.308 | −2.734 | |
0.889 | −2.918 | ||||||
Variables each 8760 h | |||||||
CO | 1.090 ± 0.093 | 1.678 ± 0.269 | 0.626 | 0.854 | 0.353 | −3.621 | |
(e) Entre Lagos | PM10 | 0.586 ± 0.074 | 0.988 ± 0.611 | 0.624 | 0.767 | 0.587 | −1.947 |
Station | PM2.5 | 0.808 ± 0.082 | 1.025 ± 0.210 | 0.531 | 0.783 | 0.644 | −2.684 |
0.801 | −2.751 | ||||||
(2011, 39 masl) | T | 1.166 ± 0.087 | 1.110 ± 0.233 | 0.913 | 0.847 | 0.388 | −3.873 |
WS | 1.166 ± 0.096 | 2.158 ± 0.228 | 0.448 | 0.838 | 0.353 | −3.873 | |
RH | 0.527 ± 0.065 | 2.151 ± 0.105 | 0.379 | 0.958 | 0.400 | −1.751 | |
0.881 | −3.166 | ||||||
Variables each 17,520 h | |||||||
CO | 0.248 ± 0.025 | 2.602 ± 0.591 | 0.374 | 0.932 | 0.138 | −0.824 | |
(f) México | PM10 | 0.160 ± 0.039 | 1.112 ± 0.147 | 0.409 | 0.905 | 0.287 | −0.532 |
City | PM2.5 | 0.135 ± 0.030 | 1.107 ± 0.09 | 0.456 | 0.949 | 0.350 | −0.448 |
0.927 | −0.601 | ||||||
(2018, 2250 masl) | T | 0.803 ± 0.041 | 1.386 ± 0.794 | 0.083 | 0.998 | 0.283 | −2.668 |
WS | 0.532 ± 0.037 | 4.145 ± 0.154 | 0.190 | 0.933 | 0.211 | −1.767 | |
RH | 0.019 ± 0.009 | 2.279 ± 0.511 | 0.164 | 0.999 | 0.006 | −0.063 | |
0.976 | −1.499 | ||||||
Mountain | Variables each 17,520 h | ||||||
CO | 0.681 ± 0.018 | 4.316 ± 2.747 | 0.058 | 0.919 | 0.397 | −2.262 | |
(g) Center | PM10 | 0.071 ± 0.014 | 2.802 ± 1.566 | 0.197 | 0.919 | 0.088 | −0.236 |
Station | PM2.5 | 0.301 ± 0.021 | 4.067 ± 0.086 | 0.509 | 0.898 | 0.463 | −1.000 |
0.912 | −1.166 | ||||||
(2016–2017, | T | 0.318 ± 0.016 | 3.143 ± 0.086 | 0.298 | 0.913 | 0.266 | −1.056 |
2400 masl) | WS | 0.694 ± 0.037 | 4.180 ± 0.26 | 0.497 | 0.882 | 0.565 | −2.305 |
RH | 0.175 ± 0.012 | 3.016 ± 0.096 | 0.431 | 0.921 | 0.423 | −0.581 | |
0.905 | −1.314 | ||||||
Variables each 9468 h | |||||||
CO | 0.631 ± 0.098 | 1.929 ± 0.079 | 0.183 | 0.929 | 0.006 | −2.096 | |
(h) Tumbaco, Ecuador | PM10 | 0.493 ± 0.035 | 1.292 ± 0.130 | 0.425 | 0.809 | 0.044 | −1.637 |
PM2.5 | 0.874 ± 0.040 | 2.164 ± 0.636 | 0.436 | 0.892 | 0.044 | −2.903 | |
0.876 | −2.212 | ||||||
(2020–2021, | T | 0.033 ± 0.009 | 4.229 ± 0.085 | 0.498 | 0.928 | 0.002 | −0.110 |
2320 masl) | WS | 0.586 ± 0.086 | 3.719 ± 0.063 | 0.345 | 0.929 | 0.002 | −1.946 |
RH | 0.160 ± 0.017 | 1.731 ± 0.218 | 0.379 | 0.948 | 0.149 | −0.531 | |
0.935 | −0.862 | ||||||
Variables each 11,000 h | |||||||
CO | 0.695 ± 0.091 | 3.348 ± 0.199 | 0.296 | 0.930 | 0.002 | −2.308 | |
(i) Carapungo | PM10 | 0.296 ± 0.024 | 1.188 ± 0.076 | 0.273 | 0.843 | 0.050 | −0.983 |
Ecuador | PM2.5 | 0.893 ± 0.037 | 1.720 ± 0.390 | 0.275 | 0.897 | 0.050 | −2.966 |
0.890 | −2.086 | ||||||
(2020–2021, | T | 0.077 ± 0.010 | 4.259 ± 0.097 | 0.499 | 0.930 | 0.002 | −0.256 |
2697 masl) | WS | 0.610 ± 0.082 | 3.670 ± 0.048 | 0.389 | 0.930 | 0.002 | −2.026 |
RH | 0.137 ± 0.015 | 1.545 ± 0.132 | 0.294 | 0.947 | 0.142 | −0.455 | |
0.936 | −0.912 | ||||||
Variables each 29,008 h | |||||||
CO | * | * | * | * | * | * | |
(j) Andacollo | PM10 | 0.167 ± 0.020 | 4.477 ± 0.541 | 0.195 | 0.906 | 0.110 | −0.555 |
Station | PM2.5 | * | * | * | * | * | * |
0.906 | −0.555 | ||||||
(2016–2019, | T | 0.499 ± 0.021 | 1.928 ± 0.439 | 0.419 | 0.917 | 0.304 | −1.658 |
1017 masl) | WS | 0.670 ± 0.022 | 3.000 ± 0.968 | 0.306 | 0.895 | 0.380 | −2.226 |
RH | 0.027 ± 0.007 | 2.514 ± 0.05 | 0.146 | 0.974 | 0.113 | −0.090 | |
0.929 | −1.325 | ||||||
Coast | Variables each 17,520 h | ||||||
CO | 0.023 ± 0.010 | 2.457 ± 0.414 | 0.326 | 0.927 | 0.016 | −0.076 | |
(k) Concón | PM10 | 0.058 ± 0.024 | 0.861 ± 0.053 | 0.211 | 0.892 | 0.067 | −0.193 |
Station | PM2.5 | 0.475 ± 0.046 | 1.178 ± 0.271 | 0.474 | 0.989 | 0.166 | −1.578 |
0.936 | −0.616 | ||||||
(2018–2019, | T | 0.105 ± 0.018 | 1.462 ± 0.995 | 0.140 | 0.920 | 0.094 | −0.349 |
2 masl) | WS | 0.642 ± 0.028 | 3.902 ± 0.217 | 0.636 | 0.839 | 0.056 | −2.133 |
RH | 0.961 ± 0.033 | 2.999 ± 0.289 | 0.483 | 0.915 | 0.275 | −3.192 | |
0.891 | −1.891 | ||||||
Variables each 5399 h | |||||||
CO | 0.609 ± 0.084 | 2.189 ± 0.297 | 0.327 | 0.927 | 0.048 | −2.023 | |
(l) Loncura | PM10 | 0.184 ± 0.029 | 1.136 ± 0.058 | 0.284 | 0.835 | 0.031 | −0.611 |
Station | PM2.5 | 0.223± 0.032 | 1.848 ± 0.311 | 0.212 | 0.886 | 0.029 | −0.740 |
0.883 | −1.125 | ||||||
(2016−2017, | T | 0.149 ± 0.025 | 1.083 ± 0.380 | 0.619 | 0.917 | 0.051 | −0.495 |
3 masl) | WS | 0.718 ± 0.063 | 4.335 ± 0.060 | 0.331 | 0.927 | 0.066 | −2.385 |
RH | 0.553 ± 0.039 | 4.741 ± 0.203 | 0.415 | 0.947 | 0.295 | −1.837 | |
0.930 | −1.572 | ||||||
Variables each 17,520 h | |||||||
CO | 0.027 ± 0.009 | 1.997 ± 0.061 | 0.121 | 0.896 | 0.043 | −0.090 | |
(m) Lota Rural | PM10 | 0.366 ± 0.031 | 1.206 ± 0.341 | 0.305 | 0.890 | 0.242 | −1.216 |
Station | PM2.5 | 0.512± 0.030 | 1.603 ± 0.414 | 0.301 | 0.890 | 0.220 | −1.701 |
0.892 | −1.002 | ||||||
(2016–2017, | T | 0.314 ± 0.023 | 1.396 ± 0.380 | 0.319 | 0.913 | 0.052 | −1.043 |
16 masl) | WS | 0.068 ± 0.018 | 2.734 ± 0.034 | 0.202 | 0.843 | 0.038 | −0.226 |
RH | 0.210 ± 0.020 | 1.857 ± 0.376 | 0.209 | 0.938 | 0.182 | −0.698 | |
0.898 | −0.656 |
Σ(<ΔI>)P | Σ(<ΔI>)MV | <ΔI>MV/<ΔI>P | DFP | DFMV | |
---|---|---|---|---|---|
Basin: | |||||
Pudahuel | –2.89 | −5.07 | 1.75 | 1.069 | 1.080 |
Kingst. Coll | −2.06 | −6.45 | 3.13 | 1.094 | 1.100 |
Coyhaique * | −5.88 | −3.51 | 0.60 | 1.094 | 1.126 |
Las Enc. Stat | −3.00 | −8.75 | 2.92 | 1.089 | 1.111 |
Ent. Lag. Stat | −8.25 | −9.50 | 1.15 | 1.199 | 1.119 |
Mex. Cty | −1.80 | −4.50 | 2.50 | 1.073 | 1.024 |
Mountain: | |||||
Centro Stat | −3.50 | −3.94 | 1.13 | 1.088 | 1.095 |
Tumbaco * | −6.64 | −2.59 | 0.40 | 1.124 | 1.065 |
Carapungo * | −6.26 | −2.74 | 0.44 | 1.110 | 1.064 |
Andac. Stat | −0.56 | −3.97 | 7.09 | 1.094 | 1.071 |
Coast: | |||||
Con-Con Stat | −1.85 | −5.67 | 3.07 | 1.064 | 1.109 |
Loncura Stat | −3.37 | −4.72 | 1.40 | 1.117 | 1.070 |
Lot. Ru Stat * | −3.00 | −1.97 | 0.66 | 1.108 | 1.102 |
Morphology | Masl (m) | City | Σ Sk (Bits/h)P | Σ Sk (Bits/h)MV | CK |
---|---|---|---|---|---|
Basin (1) | 2250 | México, DF (1) | 1.240 | 0.440 | 0.350 |
Basin (2) | 469 | Pudahuel (2) | 1.030 | 1.020 | 0.980 |
Basin (3) | 12 | Kinston College (3) | 0.900 | 0.800 | 0.880 |
Basin (4) | 310 | Coyhaique (4) | 1.180 | 1.030 | 0.870 |
Basin (5) | 360 | Las Encinas (5) | 1.200 | 1.170 | 0.970 |
Basin (6) | 39 | Entre Lagos (6) | 1.780 | 1.740 | 0.970 |
Mountain (7) | 2400 | Centro Station (7) | 0.760 | 1.230 | 1.600 |
Mountain (8) | 1017 | Andacollo Station (8) | 0.200 | 0.870 | 4.460 |
Mountain (9) | 2320 | Tumbaco, Ecuador (9) | 1.044 | 1.222 | 1.170 |
Mountain (10) | 2697 | Carapungo, Ecuador (10) | 0.844 | 1.182 | 1.400 |
Coast (11) | 2 | Concón Station (11) | 1.010 | 1.260 | 1.240 |
Coast (12) | 3 | Loncura (12) | 0.820 | 1.360 | 1.660 |
Coast (13) | 16 | Lota Rural Station (13) | 0.730 | 0.733 | 1.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacheco, P.; Mera, E. Relations between Urban Entropies, Geographical Configurations, Habitability and Sustainability. Atmosphere 2022, 13, 1639. https://doi.org/10.3390/atmos13101639
Pacheco P, Mera E. Relations between Urban Entropies, Geographical Configurations, Habitability and Sustainability. Atmosphere. 2022; 13(10):1639. https://doi.org/10.3390/atmos13101639
Chicago/Turabian StylePacheco, Patricio, and Eduardo Mera. 2022. "Relations between Urban Entropies, Geographical Configurations, Habitability and Sustainability" Atmosphere 13, no. 10: 1639. https://doi.org/10.3390/atmos13101639
APA StylePacheco, P., & Mera, E. (2022). Relations between Urban Entropies, Geographical Configurations, Habitability and Sustainability. Atmosphere, 13(10), 1639. https://doi.org/10.3390/atmos13101639