Arctic Stratosphere Dynamical Processes in the Winter 2021–2022
Abstract
:1. Introduction
2. Data and Methods
3. Results
3.1. External Factors Affected Stratospheric Polar Vortex
3.2. Zonal Circulation and Temperature
3.3. Planetary Wave Activity
3.4. Northern Annular Mode (NAM)
3.5. Changes in Volume of Polar Stratospheric Clouds
3.6. Spring Breakup of Stratospheric Circulation
3.7. Changes in the Zonal Mean and Residual Meridional Circulation
4. Summary
- A large volume of PSC formed in the lower stratosphere and was comparable (at the end of February even exceeding) with the corresponding values of the winters with the highest ozone layer depletion (2010–2011 and 2019–2020); it quickly decreased to close to zero values in the middle of March 2022, which prevented significant ozone depletion.
- Spring breakup of the Northern Hemisphere stratosphere circulation occurred on 4 March 2022, i.e., 1 month earlier than the climatic date from 1980 to 2017 (4 April).
- The strengthening of the AO index in late November–early December 2021 and the weakening of this index in early April 2022 could be associated with strengthening/weakening of the stratospheric polar vortex. The reasons for the strengthening of the stratospheric polar vortex in winter 2021–2022 presumably were the following: the cold phase of ENSO—La Niña, minimal propagation of wave activity from the lower stratosphere to the middle–upper stratosphere in January–February since 1979 that could also be related to La Niña [73,74], and formation of the zonal mean wind jet structure with a double-peaked maximum in the second half of January 2022.
- Weakening (strengthening) of the descending branch of the residual circulation, observed in the subpolar upper (middle) stratosphere during both minor and, in particular, major SSW, contributed to additional cooling (warming) of the Arctic stratosphere.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SSW | sudden stratospheric warming |
PW | planetary wave |
PSC | polar stratospheric clouds |
Vpsc | volume of air masses with temperature below the threshold of PSC formation of the type I |
RMC | residual mean meridional circulation |
AO | arctic oscillation |
NAM | northern annular mode |
References
- Baldwin, M.; Birner, T.; Brasseur, G.; Burrows, J.; Butchart, N.; Garcia, R.; Geller, M.; Gray, L.; Hamilton, K.; Harnik, N.; et al. 100 Years of Progress in Understanding the Stratosphere and Mesosphere. Meteorol. Monogr. 2019, 59, 27.1–27.62. [Google Scholar] [CrossRef]
- Baldwin, M.; Ayarzaguena, B.; Birner, T.; Butchart, N.; Butler, A.; Charlton-Perez, A.; Domeisen, D.; Garfinkel, C.; Garny, H.; Gerber, E.; et al. Sudden Stratospheric Warmings. Rev. Geophys. 2021, 58, e2020RG000708. [Google Scholar] [CrossRef]
- Holton, J.R.; Mass, C. Stratospheric Vacillation Cycles. J. Atmos. Sci. 1976, 33, 2218–2225. [Google Scholar] [CrossRef]
- Pogoreltsev, A.; Savenkova, E.; Aniskina, O.; Ermakova, T.; Chen, W.; Wei, K. Interannual and intraseasonal variability of stratospheric dynamics and stratosphere-troposphere coupling during northern winter. J. Atmos. Sol. Terr. Phys. 2015, 136, 187–200. [Google Scholar] [CrossRef]
- Scaife, A.A.; James, I.N. Response of the stratosphere to interannual variability of tropospheric planetary waves. Q. J. R. Meteorol. Soc. 2000, 126, 275–297. [Google Scholar] [CrossRef]
- Gavrilov, N.M.; Koval, A.V.; Pogoreltsev, A.I.; Savenkova, E.N. Simulating planetary wave propagation to the upper atmosphere during stratospheric warming events at different mountain wave scenarios. Adv. Space Res. 2018, 61, 1819–1836. [Google Scholar] [CrossRef]
- Wittman, M.A.; Polvani, L.M.; Scott, R.K.; Charlton, A.J. Stratospheric influence on baroclinic lifecycles and its connection to the Arctic Oscillation. Geophys. Res. Lett. 2004, 31, L16113. [Google Scholar] [CrossRef]
- Song, Y.; Robinson, W.A. Dynamical mechanisms for stratospheric influences on the troposphere. J. Atmos. Sci. 2004, 61, 1711–1725. [Google Scholar] [CrossRef]
- Kunz, T.; Greatbatch, R.J. On the Northern Annular Mode Surface Signal Associated with Stratospheric Variability. J. Atmos. Sci. 2013, 70, 2103–2118. [Google Scholar] [CrossRef]
- Ogawa, F.; Omrani, N.-F.; Nishii, K.; Nakamura, H.; Keenlyside, N. Ozone-induced climate change propped up by the Southern Hemisphere oceanic front. Geophys. Res. Lett. 2015, 42, 10056–10063. [Google Scholar] [CrossRef] [Green Version]
- Lubis, S.W.; Huang, C.S.; Nakamura, N. Role of Finite-Amplitude Rossby Waves and Nonconservative Processes in Downward Migration of Extratropical Flow Anomalies. J. Atmos. Sci. 2018, 75, 1385–1401. [Google Scholar] [CrossRef]
- Tritscher, I.; Pitts, M.C.; Poole, L.R.; Alexander, S.P.; Cairo, F.; Chipperfield, M.P.; Groo, J.-U.; Höpfner, M.; Lambert, A.; Luo, B.; et al. Polar stratospheric clouds: Satellite observations, processes, and role in ozone depletion. Rev. Geophys. 2021, 59, e2020RG000702. [Google Scholar] [CrossRef]
- Ma, Z.; Gong, Y.; Zhang, S.; Zhou, Q.; Huang, C.; Huang, K.; Li, G. First observational evidence for the role of polar vortex strength in modulating the activity of planetary waves in the MLT region. Geophys. Res. Lett. 2022, 49, e2021GL096548. [Google Scholar] [CrossRef]
- Funke, B.; Ball, W.; Bender, S.; Gardini, A.; Harvey, V.; Lambert, A.; López-Puertas, M.; Marsh, D.; Meraner, K.; Nieder, H.; et al. HEPPA-II model–measurement intercomparison project: EPP indirect effects during the dynamically perturbed NH winter 2008–2009. Atmos. Chem. Phys. 2017, 17, 3573–3604. [Google Scholar] [CrossRef]
- Rex, M.; Salawitch, R.; Gathen, P.; Harris, N.; Chipperfield, M.; Naujokat, B. Arctic ozone loss and climate change. Geophys. Res. Lett. 2004, 31, L04116. [Google Scholar] [CrossRef]
- Rex, M.; Salawitch, R.; Deckelmann, H.; von der Gathen, P.; Harris, N.; Chipperfield, M.; Naujokat, B.; Reimer, E.; Allaart, M.; Andersen, S.; et al. Arctic winter 2005: Implications for stratospheric ozone loss and climate change. Geophys. Res. Lett. 2006, 33, L23808. [Google Scholar] [CrossRef]
- Gathen, P.; Kivi, R.; Wohltmann, I.; Salawitch, R.; Rex, M. Climate change favours large seasonal loss of Arctic ozone. Nat. Commun. 2021, 12, 3886. [Google Scholar] [CrossRef]
- Vargin, P.N.; Kostrykin, S.V.; Volodin, E.M.; Pogoreltsev, A.I.; Wei, K. Arctic Stratosphere Circulation Changes in the 21st Century in Simulations of INM CM5. Atmosphere 2022, 13, 25. [Google Scholar] [CrossRef]
- Vargin, P.N.; Kiryushov, B.M. Major Sudden Stratospheric Warming in the Arctic in February 2018 and Its Impacts on the Troposphere, Mesosphere, and Ozone Layer. Russ. Meteorol. Hydrol. 2019, 44, 112–123. [Google Scholar] [CrossRef]
- Wang, Y.; Milinevsky, G.; Evtushevsky, O.; Klekociuk, A.; Han, W.; Grytsai, A.; Antyufeyev, O.; Shi, Y.; Ivaniha, O.; Shulga, V. Planetary Wave Spectrum in the Stratosphere–Mesosphere during Sudden Stratospheric Warming 2018. Remote Sens. 2021, 13, 1190. [Google Scholar] [CrossRef]
- Rao, J.; Garfinkel, C.; Chen, H.; White, I. The 2019 New Year Stratospheric Sudden Warming and Its Real-Time Predictions in Multiple S2S Models. J. Geophys. Res. Atmos. 2019, 124, 11155–11174. [Google Scholar] [CrossRef]
- Vargin, P.N.; Lukyanov, A.N.; Kiryushov, B.M. Dynamical processes of Arctic stratosphere in the winter 2018–2019. Russ. Meteorol. Hydrol. 2020, 45, 387–397. [Google Scholar] [CrossRef]
- Lawrence, Z.; Perlwitz, J.; Butler, A.; Manney, G.; Newman, P.; Lee, S.; Nash, E. The remarkably strong Arctic stratospheric polar vortex of winter 2020: Links to record-breaking Arctic oscillation and ozone loss. J. Geophys. Res. 2020, 125, e2020JD033271. [Google Scholar] [CrossRef]
- Wohltmann, I.; von der Gathen, P.; Lehmann, R.; Maturilli, M.; Deckelmann, H.; Manney, G.; Davies, J.; Tarasick, D.; Jepsen, N.; Kivi, R.; et al. Near-complete local reduction of Arctic stratospheric ozone by severe chemical loss in spring 2020. Geophys. Res. Lett. 2020, 47, e2020GL089547. [Google Scholar] [CrossRef]
- Smyshlyaev, S.P.; Vargin, P.N.; Motsakov, M.A. Numerical modeling of ozone loss in the exceptional Arctic stratosphere winter-spring of 2020. Atmosphere 2021, 12, 1470. [Google Scholar] [CrossRef]
- Lukyanov, A.N.; Vargin, P.N.; Yushkov, V.A. Lagrange Studies of Anomalously Stable Arctic Stratospheric Vortex Observed in Winter 2019–2020. Izv. Atmos. Ocean. Phys. 2021, 57, 247–253. [Google Scholar] [CrossRef]
- Tsvetkova, N.D.; Vargin, P.N.; Lukyanov, A.N.; Kirushov, B.M.; Yushkov, V.A.; Khattatov, V.U. Investigation of chemistry ozone destruction and dynamical processes in Arctic stratosphere in winter 2019–2020. Russ. Meteorol. Hydrol. 2021, 46, 597–606. [Google Scholar]
- Shi, Y.; Evtushevsky, O.; Shulga, V.; Milinevsky, G.; Klekociuk, A.; Andrienko, Y.; Han, W.; Shi, Y.; Evtushevsky, O.; Milinevsky, G.; et al. Zonal Asymmetry of the Stratopause in the 2019/2020 Arctic Winter. Remote Sens. 2022, 14, 1496. [Google Scholar] [CrossRef]
- Hardiman, S.C.; Dunstone, N.J.; Scaife, A.A.; Smith, D.M.; Knight, J.R.; Davies, P.D.; Claus, M.; Greatbatch, R.J. Predictability of European winter 2019/20: Indian Ocean dipole impacts on the NAO. Atmos. Sci. Lett. 2020, 21, e1005. [Google Scholar] [CrossRef]
- Wright, C.; Hall, R.; Banyard, T.; Hindley, N.; Mitchell, D.; Seviour, W. Dynamical and Surface Impacts of the January 2021 Sudden Stratospheric Warming in Novel Aeolus Wind Observations, MLS and ERA5. Weather Clim. Dyn. 2021, 2, 1283–1301. [Google Scholar] [CrossRef]
- Vargin, P.N.; Guryanov, V.V.; Lukyanov, A.N.; Vyzankin, A.S. Dynamic Processes of the Arctic Stratosphere in the 2020–2021 Winter. Izv. Atmos. Ocean. Phys. 2021, 57, 568–580. [Google Scholar] [CrossRef]
- Lu, Q.; Rao, J.; Liang, Z.; Guo, D.; Luo, J.; Liu, S.; Wang, C.; Wang, T. The sudden stratospheric warming in January 2021. Environ. Res. Lett. 2021, 16, 084029. [Google Scholar] [CrossRef]
- Hongming, Y.; Yuan, Y.; Guirong, T.; Yucheng, Z. Possible impact of sudden stratospheric warming on the intraseasonal reversal of the temperature over East Asia in winter 2020/21. Atmos. Res. 2022, 268, 106016. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 1996, 77, 437–470. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis 1999-2049. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Plumb, R. On the Three-Dimensional Propagation of Stationary Waves. J. Atmos. Sci. 1985, 42, 217–229. [Google Scholar] [CrossRef]
- Wei, K.; Ma, J.; Chen, W.; Vargin, P. Longitudinal peculiarities of planetary waves-zonal flow interactions and their role in stratosphere-troposphere dynamical coupling. Clim. Dyn. 2021, 57, 2843–2862. [Google Scholar] [CrossRef]
- Gečaitė, I. Climatology of Three-Dimensional Eliassen–Palm Wave Activity Fluxes in the Northern Hemisphere Stratosphere from 1981 to 2020. Climate 2021, 9, 124. [Google Scholar] [CrossRef]
- Perlwitz, J.; Harnik, N. Downward coupling between the stratosphere and troposphere: The relative roles of wave and zonal mean processes. J. Clim. 2004, 17, 4902–4909. [Google Scholar] [CrossRef]
- Baldwin, M.P.; Dunkerton, T.J. Stratospheric Harbingers of Anomalous Weather Regimes. Science 2001, 294, 581–584. [Google Scholar] [CrossRef]
- NASA Ozone Watch. Available online: https://ozonewatch.gsfc.nasa.gov/meteorology/about_plots.html (accessed on 1 May 2022).
- Lawrence, Z.; Manney, G.; Wargan, K. Reanalysis intercomparisons of stratospheric polar processing diagnostics. Atmos. Chem. Phys. 2018, 18, 13547–13579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savenkova, E.N.; Kanukhina, A.Y.; Pogoreltsev, A.I.; Merzlyakov, E.G. Variability of the springtime transition date and planetary waves in the stratosphere. J. Atmos. Sol. Terr. Phys. 2012, 90–91, 1–8. [Google Scholar] [CrossRef]
- Tibaldi, S.; Molteni, F. On the operational predictability of blocking. Tellus 1990, 42A, 343–365. [Google Scholar] [CrossRef]
- Andrews, D.G.; McIntyre, M.E. Planetary waves in horizontal and vertical shear: The generalized Eliassen–Palm relation and the mean zonal acceleration. J. Atmos. Sci. 1976, 33, 2031–2048. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.; Darmenov, A.; Bosilovich, M.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, T.G. Transport in the middle atmosphere. J. Meteorol. Soc. Jpn. 2007, 85, 165–191. [Google Scholar] [CrossRef]
- Koval, A.V.; Chen, W.; Didenko, K.A.; Ermakova, T.S.; Gavrilov, N.M.; Pogoreltsev, A.I.; Toptunova, O.N.; Wei, K.; Yarusova, A.N.; Zarubin, A.S. Modelling the residual mean meridional circulation at different stages of sudden stratospheric warming events. Ann. Geophys. 2021, 39, 357–368. [Google Scholar] [CrossRef]
- Domeisen, D.I.; Garfinkel, C.I.; Butler, A.H. The teleconnection of El Nino Southern Oscillation to the stratosphere. Rev. Geophys. 2019, 57, 5–47. [Google Scholar] [CrossRef]
- Holton, J.R.; Tan, H.-C. The Quasi-Biennial Oscillation in the Northern Hemisphere lower stratosphere. J. Meteorol. Soc. Jpn. 1982, 60, 140–148. [Google Scholar] [CrossRef]
- Schwartz, C.; Garfinkel, C.I. Relative roles of the MJO and stratospheric variability in North Atlantic and European winter climate. J. Geophys. Res. Atmos. 2017, 122, 4184–4201. [Google Scholar] [CrossRef]
- Ayarzagüena, B.; Manzini, E.; Calvo, N.; Matei, D. Interaction between decadal-to-multidecadal oceanic variability and sudden stratospheric warmings. Ann. N. Y. Acad. Sci. 2021, 1504, 215–229. [Google Scholar] [CrossRef] [PubMed]
- Hurwitz, M.; Newman, P.; Garfinkel, C. On the influence of North Pacific sea surface temperature on the Arctic winter climate. J. Geophys. Res. 2012, 117, D19110. [Google Scholar] [CrossRef]
- Zhang, P.; Wu, Y.; Smith, K.L. Prolonged effect of the stratospheric pathway in linking Barents–Kara Sea ice variability to the mid-latitude circulation in a simplified model. Clim. Dyn. 2018, 50, 527–539. [Google Scholar] [CrossRef]
- Watson, P.A.; Gray, L.J. How Does the Quasi-Biennial Oscillation Affect the Stratospheric Polar Vortex? J. Atmos. Sci. 2014, 71, 391–409. [Google Scholar] [CrossRef]
- Silverman, V.; Lubis, S.W.; Harnik, N.; Matthes, K. A Synoptic View of the Onset of the Midlatitude QBO Signal. J. Atmos. Sci. 2021, 78, 3759–3780. [Google Scholar] [CrossRef]
- Silverman, V.; Harnik, N.; Matthes, K.; Lubis, S.W.; Wahl, S. Radiative effects of ozone waves on the Northern Hemisphere polar vortex and its modulation by the QBO. Atmos. Chem. Phys. 2018, 18, 6637–6659. [Google Scholar] [CrossRef]
- Vargin, P.N.; Kolennikova, M.A.; Kostrykin, S.V.; Volodin, E.M. Influence of equatorial and north Pacific SST anomalies on Arctic stratosphere in INM RAS climate model simulations. Russ. Meteorol. Hydrol. 2021, 46, 1–9. [Google Scholar] [CrossRef]
- Hoshi, K.; Ukita, J.; Honda, M.; Nakamura, T.; Yamazaki, K.; Miyoshi, Y.; Jaiser, R. Weak stratospheric polar vortex events modulated by the Arctic sea-ice loss. J. Geophys. Res. 2019, 124, 858–869. [Google Scholar] [CrossRef]
- Newman, P.; Nash, E.; Rosenfeld, J. What controls the temperature of the Arctic stratosphere during the spring? J. Geophys. Res. 2001, 106, 19999–20010. [Google Scholar] [CrossRef]
- Kodera, K.; Mukougawa, H.; Itoh, S. Tropospheric Impact of Reflected Planetary Waves from the Stratosphere. Geophys. Res. Lett. 2008, 35, 2008GL034575. [Google Scholar] [CrossRef]
- Nath, D.; Chen, W.; Wang, L.; Ma, Y. Planetary wave reflection and its impact on tropospheric cold weather over Asia during January 2008. Adv. Atmos. Sci. 2014, 31, 851–862. [Google Scholar] [CrossRef]
- Matthias, V.; Kretschmer, M. The Influence of Stratospheric Wave Reflection on North American Cold Spells. Mon. Weather Rev. 2020, 148, 1675–1690. [Google Scholar] [CrossRef]
- Lubis, S.W.; Matthes, K.; Omrani, N.-E.; Harnik, N.; Wahl, S. Influence of the Quasi-Biennial Oscillation and Sea Surface Temperature Variability on Downward Wave Coupling in the Northern Hemisphere. J. Atmos. Sci. 2016, 73, 1943–1965. [Google Scholar] [CrossRef]
- Lubis, S.W.; Matthes, K.; Harnik, N.; Omrani, N.; Wahl, S. Downward Wave Coupling between the Stratosphere and Troposphere under Future Anthropogenic Climate Change. J. Clim. 2018, 31, 4135–4155. [Google Scholar] [CrossRef]
- Lubis, S.W.; Huang, C.S.Y.; Nakamura, N. Role of Finite-Amplitude Eddies and Mixing in the Life Cycle of Stratospheric Sudden Warmings. J. Atmos. Sci. 2018, 75, 3987–4003. [Google Scholar] [CrossRef]
- Nakamura, N.; Falk, J.; Lubis, S.W. Why Are Stratospheric Sudden Warmings Sudden (and Intermittent)? J. Atmos. Sci. 2020, 77, 943–964. [Google Scholar] [CrossRef]
- Lubis, S.W.; Silverman, V.; Matthes, K.; Harnik, N.; Omrani, N.-E.; Wahl, S. How Does Downward Planetary Wave Coupling Affect Polar Stratospheric Ozone in the Arctic Winter Stratosphere? Atmos. Chem. Phys. 2017, 17, 2437–2458. [Google Scholar] [CrossRef]
- Vargin, P.N.; Kostrykin, S.V.; Rakushina, E.V.; Volodin, E.M.; Pogoreltzev, A.I. Study of the Variability of Spring Breakup Dates and Arctic Stratospheric Polar Vortex Parameters from Simulation and Reanalysis Data. Izv. Atmos. Ocean. Phys. 2020, 56, 458–469. [Google Scholar] [CrossRef]
- Vorobyeva, V.V.; Volodin, E.M. Investigation of the Structure and Predictability of the First Mode of Stratospheric Variability Based on the INM RAS Climate Model. Russ. Meteorol. Hydrol. 2018, 43, 737–742. [Google Scholar] [CrossRef]
- Lukianova, R.; Kozlovsky, A.; Lester, M. Upper stratosphere mesosphere- lower thermosphere perturbations during the formation of the Arctic polar night jet in 2019–2020. Geophys. Res. Lett. 2021, 48, e2021GL094926. [Google Scholar] [CrossRef]
- Scaife, A.A.; Baldwin, M.P.; Butler, A.H.; Charlton-Perez, A.J.; Domeisen, D.I.; Garfinkel, C.I.; Hardiman, S.C.; Haynes, P.; Karpechko, A.Y.; Lim, E.-P.; et al. Long-range prediction and the stratosphere. Atmos. Chem. Phys. 2022, 22, 2601–2623. [Google Scholar] [CrossRef]
- Taguchi, M.; Hartmann, D.L. Increased occurrence of stratospheric sudden warming during El Niño as simulated by WAACM. J. Clim. 2006, 19, 324–332. [Google Scholar] [CrossRef]
- Bell, C.J.; Gray, L.J.; Charlton-Perez, A.J.; Joshi, M.M.; Scaife, A.A. Stratospheric Communication of El Niño Teleconnections to European Winter. J. Clim. 2009, 22, 4083–4096. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vargin, P.N.; Koval, A.V.; Guryanov, V.V. Arctic Stratosphere Dynamical Processes in the Winter 2021–2022. Atmosphere 2022, 13, 1550. https://doi.org/10.3390/atmos13101550
Vargin PN, Koval AV, Guryanov VV. Arctic Stratosphere Dynamical Processes in the Winter 2021–2022. Atmosphere. 2022; 13(10):1550. https://doi.org/10.3390/atmos13101550
Chicago/Turabian StyleVargin, Pavel N., Andrey V. Koval, and Vladimir V. Guryanov. 2022. "Arctic Stratosphere Dynamical Processes in the Winter 2021–2022" Atmosphere 13, no. 10: 1550. https://doi.org/10.3390/atmos13101550
APA StyleVargin, P. N., Koval, A. V., & Guryanov, V. V. (2022). Arctic Stratosphere Dynamical Processes in the Winter 2021–2022. Atmosphere, 13(10), 1550. https://doi.org/10.3390/atmos13101550