Sensitivity of Simulations of Extreme Mediterranean Storms to the Specification of Sea Surface Temperature: Comparison of Cases of a Tropical-Like Cyclone and Explosive Cyclogenesis
Abstract
:1. Introduction
1.1. Tropical-Like Cyclones (Medicanes)
1.2. Explosive Cyclones (Meteorological Bombs)
1.3. Sensitivity of Storm Development to the Specification of SST
2. Synoptic Summary of the Two Test Cases
2.1. The Tropical-Like Cyclone of December 2005
2.2. The Explosive Cyclone of December 2010
3. Model Configuration and Experimental Design
4. Results
4.1. Results for the TLC of December 2005
4.1.1. The TLC R2 and MFS Simulations
4.1.2. Sensitivity of the TLC to SST Anomalies
4.2. Results for the Explosive Cyclone of December 2010
4.2.1. The Explosive Cyclone R2 and MFS Simulations
4.2.2. Sensitivity of the Explosive Cyclone to SST Anomalies
5. Discussion and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Michaelides, S.; Karacostas, T.; Sanchez, J.L.; Retalis, A.; Pytharoulis, I.; Homar, V.; Romero, R.; Zanis, P.; Giannakopoulos, C.; Bühl, J.; et al. Reviews and perspectives of high impact atmospheric processes in the Mediterranean. Atmos. Res. 2018, 208, 4–44. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Moscatello, A.; Conte, D.; Mannarini, G.; Lacorata, G.; Rotunno, R. Numerical analysis of a Mediterranean ‘hurricane’ over south-eastern Italy: Sensitivity experiments to sea surface temperature. Atmos. Res. 2011, 101, 412–426. [Google Scholar] [CrossRef]
- Pytharoulis, I. Analysis of a Mediterranean tropical-like cyclone and its sensitivity to the sea surface temperatures. Atmos. Res. 2018, 208, 167–179. [Google Scholar] [CrossRef]
- Fita, L.; Romero, R.; Luque, A.; Emanuel, K.; Ramis, C. Analysis of the environments of seven Mediterranean tropical-like storms using an axisymmetric, nonhydrostatic, cloud resolving model. Nat. Hazards Earth Syst. Sci. 2007, 7, 41–56. [Google Scholar] [CrossRef]
- Cavicchia, L.; von Storch, H. The simulation of medicanes in a high-resolution regional climate model. Clim. Dyn. 2011, 39, 2273–2290. [Google Scholar] [CrossRef]
- Lolis, C.J.; Bartzokas, A.; Katsoulis, B.D. Relation between sensible and latent heat fluxes in the Mediterranean and precipitation in the Greek area during winter. Int. J. Clim. 2004, 24, 1803–1816. [Google Scholar] [CrossRef]
- Tous, M.; Romero, R. Meteorological environments associated with medicane development. Int. J. Clim. 2012, 33, 1–14. [Google Scholar] [CrossRef]
- Nastos, P.; Papadimou, K.K.; Matsangouras, I. Mediterranean tropical-like cyclones: Impacts and composite daily means and anomalies of synoptic patterns. Atmos. Res. 2018, 208, 156–166. [Google Scholar] [CrossRef]
- Fita, L.; Flaounas, E. Medicanes as subtropical cyclones: The December 2005 case from the perspective of surface pressure tendency diagnostics and atmospheric water budget. Q. J. R. Meteorol. Soc. 2018, 144, 1028–1044. [Google Scholar] [CrossRef]
- Kouroutzoglou, J.; Avgoustoglou, E.N.; Flocas, H.A.; Hatzaki, M.; Skrimizeas, P.; Keay, K. Assessment of the role of sea surface fluxes on eastern Mediterranean explosive cyclogenesis with the aid of the limited-area model COSMO.GR. Atmos. Res. 2018, 208, 132–147. [Google Scholar] [CrossRef]
- Black, M.T.; Pezza, A.B. A universal, broad-environment energy conversion signature of explosive cyclones. Geophys. Res. Lett. 2013, 40, 452–457. [Google Scholar] [CrossRef]
- Sanders, F.; Gyakum, J.R. Synoptic-Dynamic Climatology of the “Bomb”. Mon. Weather. Rev. 1980, 108, 1589–1606. [Google Scholar] [CrossRef] [Green Version]
- Kouroutzoglou, J.; Flocas, H.A.; Keay, K.; Simmonds, I.; Hatzaki, M. On the vertical structure of Mediterranean explosive cyclones. Theor. Appl. Clim. 2012, 110, 155–176. [Google Scholar] [CrossRef]
- Pastor, F.; Valiente, J.A.; Palau, J.L. Sea Surface Temperature in the Mediterranean: Trends and Spatial Patterns (1982–2016). Pure Appl. Geophys. 2017, 175, 4017–4029. [Google Scholar] [CrossRef] [Green Version]
- Ricchi, A.; Miglietta, M.M.; Bonaldo, D.; Cioni, G.; Rizza, U.; Carniel, S. Multi-Physics Ensemble versus Atmosphere–Ocean Coupled Model Simulations for a Tropical-Like Cyclone in the Mediterranean Sea. Atmosphere 2019, 10, 202. [Google Scholar] [CrossRef] [Green Version]
- Tiesi, A.; Pucillo, A.; Bonaldo, D.; Ricchi, A.; Carniel, S.; Miglietta, M.M. Initialization of WRF Model Simulations with Sentinel-1 Wind Speed for Severe Weather Events. Front. Mar. Sci. 2021, 8. [Google Scholar] [CrossRef]
- Miglietta, M.M.; Mastrangelo, D.; Conte, D. Influence of physics parameterization schemes on the simulation of a tropical-like cyclone in the Mediterranean Sea. Atmos. Res. 2015, 153, 360–375. [Google Scholar] [CrossRef]
- Pytharoulis, I.; Kartsios, S.; Tegoulias, I.; Feidas, H.; Miglietta, M.M.; Matsangouras, I.; Karacostas, T. Sensitivity of a Mediterranean Tropical-Like Cyclone to Physical Parameterizations. Atmosphere 2018, 9, 436. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F. Climate Change Hot-Spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA Hourly Data on Single Levels from 1979 to Present. Copernicus Climate Change Service (C35) Climate Data Store (CDS). 2018. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 12 October 2020).
- Claud, C.; Alhammoud, B.; Funatsu, B.; Chaboureau, J.-P. Mediterranean hurricanes: Large-scale environment and convective and precipitating areas from satellite microwave observations. Nat. Hazards Earth Syst. Sci. 2010, 10, 2199–2213. [Google Scholar] [CrossRef]
- Huffman, G.J.; Adler, R.F.; Bolvin, D.T.; Gu, G.; Nelkin, E.J.; Bowman, K.P.; Hong, Y.; Stocker, E.F.; Wolff, D.B. The TRMM multi-satellite precipitation analysis: Quasi-global, multi-year, combined-sensor precipitation estimates at fine scale. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Shapiro, M.A.; Keyser, D. Fronts, Jet Streams and the Tropopause. In Extratropical Cyclones; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 1990; pp. 167–191. [Google Scholar]
- Kanamaru, H.; Kanamitsu, M. Scale-Selective Bias Correction in a Downscaling of Global Analysis Using a Regional Model. Mon. Weather. Rev. 2007, 135, 334–350. [Google Scholar] [CrossRef]
- Juang, H.-M.H.; Kanamitsu, M. The NMC Nested Regional Spectral Model. Mon. Weather. Rev. 1994, 122, 3–26. [Google Scholar] [CrossRef] [Green Version]
- Juang, H.-M.H.; Hong, S.-Y.; Kanamitsu, M. The NCEP Regional Spectral Model: An Update. Bull. Am. Meteorol. Soc. 1997, 78, 2125–2143. [Google Scholar] [CrossRef] [Green Version]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.-K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1644. [Google Scholar] [CrossRef]
- Selman, C.; Misra, V. Simulating diurnal variations over the southeastern United States. J. Geophys. Res. Atmos. 2015, 120, 180–198. [Google Scholar] [CrossRef]
- Nguyen, T.V.; Mai, K.V.; Nguyen, P.N.; Juang, H.-M.H.; Nguyen, D.V. Evaluation of summer monsoon climate predictions over the Indochina Peninsula using regional spectral model. Weather. Clim. Extrem. 2019, 23, 100195. [Google Scholar] [CrossRef]
- He, X.; Kim, H.; Kirstetter, P.-E.; Yoshimura, K.; Chang, E.-C.; Ferguson, C.R.; Erlingis, J.M.; Hong, Y.; Oki, T. The Diurnal Cycle of Precipitation in Regional Spectral Model Simulations over West Africa: Sensitivities to Resolution and Cumulus Schemes. Weather. Forecast. 2015, 30, 424–445. [Google Scholar] [CrossRef]
- Zong, P.; Zhu, Y.; Tang, J. Sensitivity of summer precipitation in regional spectral model simulations over eastern China to physical schemes: Daily, extreme and diurnal cycle. Int. J. Clim. 2019, 39, 4340–4357. [Google Scholar] [CrossRef]
- Nobre, P.; Moura, A.D.; Sun, L. Dynamical Downscaling of Seasonal Climate Prediction over Nordeste Brazil with ECHAM3 and NCEP’s Regional Spectral Models at IRI. Bull. Am. Meteorol. Soc. 2001, 82, 2787–2796. [Google Scholar] [CrossRef] [Green Version]
- Chou, M.-D.; Lee, K.-T. Parameterizations for the Absorption of Solar Radiation by Water Vapor and Ozone. J. Atmos. Sci. 1996, 53, 1203–1208. [Google Scholar] [CrossRef] [Green Version]
- Chou, M.D.; Suarez, M.J. An efficient thermal infrared radiation parameterization for use in general circulation models. In Technical Report Series on Global Modeling and Data Assimilation; NASA/TM-1994-104606; Goddard Space Flight Center: Greenbelt, MD, USA, November 1994; Volume 3, 85p. [Google Scholar]
- Hong, S.-Y.; Pan, H.-L. Nonlocal boundary layer vertical diffusion in a medium-range forecast model. Mon. Weather Rev. 1996, 124, 2322–2339. [Google Scholar] [CrossRef] [Green Version]
- Ek, M.B.; Mitchell, K.E.; Lin, Y.; Rogers, E.; Grunmann, P.; Koren, V.; Gayno, G.; Tarpley, J.D. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. Space Phys. 2003, 108. [Google Scholar] [CrossRef]
- Moorthi, S.; Suarez, M.J. Relaxed Arakawa-Schubert: A parameterization of moist convection for general circula-tion models. Mon. Weather. Rev. 1992, 120, 978–1002. [Google Scholar] [CrossRef] [Green Version]
- Reynolds, R.W.; Smith, T.M. Improved Global Sea Surface Temperature Analyses Using Optimum Interpolation. J. Clim. 1994, 7, 929–948. [Google Scholar] [CrossRef] [Green Version]
- Simoncelli, S.; Fratianni, C.; Pinardi, N.; Grandi, A.; Drudi, M.; Oddo, P.; Dobricic, S. Mediterranean Sea Physical Reanalysis (MEDREA 1987–2015) (Version 1). E.U. Copernicus Marine Service Information. 2014. Available online: https://www.cmcc.it/mediterranean-sea-physical-reanalysis-cmems-med-physics (accessed on 1 December 2020).
- Ricchi, A.; Bonaldo, D.; Cioni, G.; Carniel, S.; Miglietta, M.M. Simulation of a flash-flood event over the Adriatic Sea with a high-resolution atmosphere–ocean–wave coupled system. Sci. Rep. 2021, 11, 9388. [Google Scholar] [CrossRef]
- Raveh-Rubin, S.; Wernli, H. Large-scale wind and precipitation extremes in the Mediterranean: Dynamical aspects of five selected cyclone events. Q. J. R. Meteorol. Soc. 2016, 142, 3097–3114. [Google Scholar] [CrossRef]
- Adloff, F.; Somot, S.; Sevault, F.; Jorda, G.; Aznar, R.; Déqué, M.; Herrmann, M.; Marcos, M.; Dubois, C.; Padorno, E.; et al. Mediterranean Sea response to climate change in an ensemble of twenty first century scenarios. Clim. Dyn. 2015, 45, 2775–2802. [Google Scholar] [CrossRef]
Run Name | SST Data Resolution | Remarks |
---|---|---|
R2 (CNTL) | 1° × 1° (~100 km) | Data from NCEP R2 |
MFS | 1/16° × 1/16° (~6.25 km) smoothed to 1/4° | Data from CMEMS |
P1 | 1/16° × 1/16° (~6.25 km) smoothed to 1/4° | MFS + 1 °C |
P2 | 1/16° × 1/16° (~6.25 km) smoothed to 1/4° | MFS + 2 °C |
P3 | 1/16° × 1/16° (~6.25 km) smoothed to 1/4° | MFS + 3 °C |
P4 | 1/16° × 1/16° (~6.25 km) smoothed to 1/4° | MFS + 4 °C |
P5 | 1/16° × 1/16° (~6.25 km) smoothed to 1/4° | MFS + 5 °C |
M1 | 1/16° × 1/16° (~6.25 km) smoothed to 1/4° | MFS − 1 °C |
M2 | 1/16° × 1/16° (~6.25 km) smoothed to 1/4° | MFS − 2 °C |
M3 | 1/16° × 1/16° (~6.25 km) smoothed to 1/4° | MFS − 3 °C |
M4 | 1/16° × 1/16° (~6.25 km) smoothed to 1/4° | MFS − 4 °C |
M5 | 1/16° × 1/16° (~6.25 km) smoothed to 1/4° | MFS − 5 °C |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hagay, O.; Brenner, S. Sensitivity of Simulations of Extreme Mediterranean Storms to the Specification of Sea Surface Temperature: Comparison of Cases of a Tropical-Like Cyclone and Explosive Cyclogenesis. Atmosphere 2021, 12, 921. https://doi.org/10.3390/atmos12070921
Hagay O, Brenner S. Sensitivity of Simulations of Extreme Mediterranean Storms to the Specification of Sea Surface Temperature: Comparison of Cases of a Tropical-Like Cyclone and Explosive Cyclogenesis. Atmosphere. 2021; 12(7):921. https://doi.org/10.3390/atmos12070921
Chicago/Turabian StyleHagay, Omer, and Steve Brenner. 2021. "Sensitivity of Simulations of Extreme Mediterranean Storms to the Specification of Sea Surface Temperature: Comparison of Cases of a Tropical-Like Cyclone and Explosive Cyclogenesis" Atmosphere 12, no. 7: 921. https://doi.org/10.3390/atmos12070921
APA StyleHagay, O., & Brenner, S. (2021). Sensitivity of Simulations of Extreme Mediterranean Storms to the Specification of Sea Surface Temperature: Comparison of Cases of a Tropical-Like Cyclone and Explosive Cyclogenesis. Atmosphere, 12(7), 921. https://doi.org/10.3390/atmos12070921