Prediction and Source Contribution Analysis of PM2.5 Using a Combined FLEXPART Model and Bayesian Method over the Beijing-Tianjin-Hebei Region in China
Abstract
:1. Introduction
2. Study Area
3. Materials and Methods
3.1. Model Development
3.2. Methods
3.2.1. Inventory Inversion
3.2.2. Source Analysis
3.3. Statistical Analysis Methods
4. Results and Discussion
4.1. Evaluation of the Posteriori Inventory
4.2. Evaluation of Site Forecasts
4.3. Analysis of the Spatiotemporal Forecasts of Pollution Sources
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, X.; Shi, H.; Yu, H.; Yang, P. Inversion of Nighttime PM2.5 Mass Concentration in Beijing Based on the VIIRS Day-Night Band. Atmosphere 2016, 7, 136. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, J.; Wang, H.; Zhou, X.; Lu, D. Experimental Study Of Remote Sensing Of Atmospheric Aerosol Size Distribution By Combined Solar Extinction And Forward Scattering Method. Adv. Atmos. Sci. 1985, 2, 307–315. [Google Scholar] [CrossRef]
- Watson, J.G. Visibility: Science and Regulation. J. Air Waste Manag. Assoc. 2002, 52, 628–713. [Google Scholar] [CrossRef] [Green Version]
- Hyslop, N.P. Impaired visibility: The air pollution people see. Atmos. Environ. 2009, 43, 182–195. [Google Scholar] [CrossRef]
- Gao, B.; Hai, G.; Wang, X.M.; Zhao, X.Y.; Ling, Z.H.; Zhou, Z.; Liu, T.Y. Polycyclic aromatic hydrocarbons in PM2.5 in Guangzhou, southern China: Spatiotemporal patterns and emission sources. J. Hazard. Mater. 2012, 239–240, 78–87. [Google Scholar] [CrossRef]
- Wang, N.; Ling, Z.; Deng, X.; Deng, T.; Lyu, X.; Tingyuan, L.I.; Gao, X.; Chen, X. Source Contributions to PM2.5 under Unfavorable Weather Conditions in Guangzhou City, China. Adv. Atmos. Sci. 2018, 35, 1145–1159. [Google Scholar] [CrossRef]
- Pope, C.A.; Ezzati, M.; Dockery, D.W. Fine-particulate air pollution and life expectancy in the United States. N. Engl. J. Med. 2009, 360, 376. [Google Scholar] [CrossRef] [Green Version]
- Tie, X.; Wu, D.; Brasseur, G. Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China. Atmos. Environ. 2009, 43, 2375–2377. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I Contribution to the Fifth Assessment Report of the International Panel on Climate Change; Cambridge University Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Yan, D.Y.; Kong, Y.B.; Xiang, H. Spatio-temporal variation and daily prediction of PM2.5 concentration in world-class urban agglomerations of China. Environ. Geochem. Health 2021, 43, 301–316. [Google Scholar] [CrossRef]
- Feng, J.; Yu, H.; Liu, S.; Su, X.; Li, Y.; Pan, Y.; Sun, J. PM2.5 levels, chemical composition and health risk assessment in Xinxiang, a seriously air-polluted city in North China. Environ. Geochem. Health 2016, 39, 1071–1083. [Google Scholar] [CrossRef]
- Shang, Z.; Deng, T.; He, J.; Duan, X. A novel model for hourly PM2.5 concentration prediction based on CART and EELM. Sci. Total Environ. 2018, 651, 3043–3052. [Google Scholar] [CrossRef]
- Qin, S.; Liu, F.; Wang, J.; Sun, B. Analysis and forecasting of the particulate matter (PM) concentration levels over four major cities of China using hybrid models. Atmos. Environ. 2014, 98, 665–675. [Google Scholar] [CrossRef]
- Huang, G.; Li, X.; Zhang, B.; Ren, J. PM2.5 Concentration Forecasting at Surface Monitoring Sites Using GRU Neural Network Based on Empirical Mode Decomposition. Sci. Total Environ. 2021, 768, 144516. [Google Scholar] [CrossRef]
- Wen, C.; Liu, S.; Yao, X.; Peng, L.; Li, X.; Hu, Y.; Chi, T. A novel spatiotemporal convolutional long short-term neural network for air pollution prediction. Sci. Total Environ. 2019, 654, 1091–1099. [Google Scholar] [CrossRef]
- Zhu, J.; Deng, F.; Zhao, J.; Zheng, H. Attention-based parallel networks (APNet) for PM2.5 spatiotemporal prediction—ScienceDirect. Sci. Total Environ. 2021, 769, 145082. [Google Scholar] [CrossRef]
- Gupta, P.; Christopher, S.A. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach. J. Geophys. Res. Atmos. 2009, 114, D14. [Google Scholar] [CrossRef] [Green Version]
- Vlachogianni, A.; Kassomenos, P.; Karppinen, A.; Karakitsios, S.; Kukkonen, J. Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki. Sci. Total Environ. 2011, 409, 1559–1571. [Google Scholar] [CrossRef]
- Garcia, J.M.; Teodoro, F.; Cerdeira, R.; Coelho, L.M.R.; Prashant, K.; Carvalho, M.G. Developing a methodology to predict PM10 concentrations in urban areas using generalized linear models. Environ. Technol. 2016, 37, 2316–2325. [Google Scholar] [CrossRef] [Green Version]
- Loy-Benitez, J.; Vilela, P.; Li, Q.; Yoo, C. Sequential prediction of quantitative health risk assessment for the fine particulate matter in an underground facility using deep recurrent neural networks. Ecotoxicol. Environ. Saf. 2019, 169, 316–324. [Google Scholar] [CrossRef]
- Tong, W.; Li, L.; Zhou, X.; Hamilton, A.; Zhang, K. Deep learning PM2.5 concentrations with bidirectional LSTM RNN. Air Qual. Atmos. Health 2019, 12, 411–423. [Google Scholar] [CrossRef]
- Tharwat, E. Alhanafy, Fareed Zaghlooland Abdou Saad El Din Moustafa. Neuro Fuzzy Modeling Scheme for the Prediction of Air Pollution. J. Am. Sci. 2010, 6, 605–616. [Google Scholar]
- Goyal, P.; Chan, A.T.; Jaiswal, N. Statistical models for the prediction of respirable suspended particulate matter in urban cities. Atmos. Environ. 2006, 40, 2068–2077. [Google Scholar] [CrossRef]
- Islam, M.M.; Sharmin, M.; Ahmed, F. Predicting air quality of Dhaka and Sylhet divisions in Bangladesh: A time series modeling approach. Air Qual. Atmos. Health 2020, 13, 607–615. [Google Scholar] [CrossRef]
- Biancofiore, F.; Busilacchio, M.; Verdecchia, M.; Tomassetti, B.; Aruffo, E.; Bianco, S.; Tommaso, S.D.; Colangeli, C.; Rosatelli, G.; Carlo, P.D. Recursive neural network model for analysis and forecast of PM10 and PM2.5. Atmos. Pollut. Res. 2017, 8, 652–659. [Google Scholar] [CrossRef]
- Rahimi, A. Short-term prediction of NO2 and NOx concentrations using multilayer perceptron neural network: A case study of Tabriz, Iran. Ecol. Process. 2017, 6, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Xiao, F.; Qi, L.; Zhu, Y.; Hou, J.; Jin, L.; Wang, J. Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos. Environ. 2015, 107, 118–128. [Google Scholar]
- Mao, X.; Shen, T.; Feng, X. Prediction of hourly ground-level PM2.5 concentrations 3 days in advance using neural networks with satellite data in eastern China. Atmos. Pollut. Res. 2017, 8, 1005–1015. [Google Scholar] [CrossRef]
- Qi, Y.; Li, Q.; Karimian, H.; Liu, D. A hybrid model for spatiotemporal forecasting of PM2.5 based on graph convolutional neural network and long short-term memory. Ence Total Environ. 2019, 664, 1–10. [Google Scholar] [CrossRef]
- Heald, C.L.; Henze, D.K.; Horowitz, L.W.; Feddema, J.; Lamarque, J.F.; Guenther, A.; Hess, P.G.; Vitt, F.; Seinfeld, J.H.; Goldstein, A.H. Predicted change in global secondary organic aerosol concentrations in response to future climate, emissions, and land use change. J. Geophys. Res. Atmos. 2008, 113, 79–88. [Google Scholar] [CrossRef]
- Kukkonen, J.; Partanen, L.; Karppinen, A.; Ruuskanen, J.; Junninen, H.; Kolehmainen, M.; Niska, H.; Dorling, S.; Chatterton, T.; Foxall, R.; et al. Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki. Atmos. Environ. 2003, 37, 4539–4550. [Google Scholar] [CrossRef]
- Qie, G.; Wang, Y.; Wu, C.; Mao, H.; Zhang, P.; Li, T.; Li, Y.; Talbot, R.; Hou, C.; Yue, T. Distribution and sources of particulate mercury and other trace elements in PM2.5 and PM10 atop Mount Tai, China. J. Environ. Manag. 2018, 215, 195–205. [Google Scholar] [CrossRef] [Green Version]
- Draxler, R.R.; Hess, G.D. Description of the Hysplit_4 Modeling System; NOAA Tech Memo, ERL ARL-224, NOAA; Air Resources Laboratory: Silver Spring, MD, USA, 1997; Volume 24. [Google Scholar]
- Caili, L.; Shaoqing, Z.; Yang, G.; Yuhang, W.; Lifang, S.; Huiwang, G.; Fung, J.C.H. Optimal estimation of initial concentrations and emission sources with 4D-Var for air pollution prediction in a 2D transport model. Sci. Total Environ. 2021, 773, 145580. [Google Scholar]
- Guo, L.; Chen, B.; Zhang, H.; Xu, G.; Lu, L.; Lin, X.; Kong, Y.; Wang, F.; Li, Y. Improving PM2.5 Forecasting and Emission Estimation Based on the Bayesian Optimization Method and the Coupled Flexpart-Wrf Model. Atmosphere 2018, 9, 428. [Google Scholar] [CrossRef] [Green Version]
- Oliver, J.G.J.; Bouwman, A.F.; van der Maas, C.W.N.; Berdowski, J.J.M.; Veldt, C.; Bloos, J.P.J.; Visschedijk, A.J.H.; Zandveld, P.Y.J.; Haverlag, J.L. Description of EDGAR Version 2.0: A Set of Global Emission Inventories of Greenhouse Gases and Ozonedepleting Substances for All Anthropogenic and Most Natural Sources on a Per Country Basis and on 1 Degree x 1 Degree Grid. RIVM/TNO Rep. 771060-002; Rijksinstituut voor Volksgezondheid en Milieu: Bilthoven, The Netherlands, 1996; 140p. [Google Scholar]
- Zhang, Q.; Streets, D.G.; Carmichael, G.R.; He, K.B.; Huo, H.; Kannari, A.; Klimont, Z.; Park, I.S.; Reddy, S.; Fu, J.S.; et al. Asian emissions in 2006 for the NASA INTEX-B mission. Atmos. Chem. Phys. 2009, 9, 5131–e5153. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Feng, L.; Wang, Y.; Shang, B.; Han, P. Study on Pollution Characterization and Source Apportionment of Daytime and Nighttime PM2.5 Samples in an Urban Residential Community in Different Weather Conditions. Bull. Environ. Contam. Toxicol. 2020, 104, 673–681. [Google Scholar] [CrossRef]
- Fan, X.; Chen, Z.; Liang, L.; Qiu, G. Atmospheric PM2.5—Bound Polycyclic Aromatic Hydrocarbons (PAHs) in Guiyang City, Southwest China: Concentration, Seasonal Variation, Sources and Health Risk Assessment. Arch. Environ. Contam. Toxicol. 2018, 76, 102–113. [Google Scholar] [CrossRef]
- Hu, R.; Liu, G.; Hong, Z.; Xue, H.; Xin, W. Levels and Sources of PAHs in Air-borne PM2.5 of Hefei City, China. Bull. Environ. Contam. Toxicol. 2017, 98, 270–276. [Google Scholar] [CrossRef]
- Yu, H.; Feng, J.; Su, X.; Li, Y.; Sun, J. A seriously air pollution area affected by anthropogenic in the central China: Temporal-spatial distribution and potential sources. Environ. Geochem. Health 2020, 42, 3199–3211. [Google Scholar] [CrossRef]
- Wu, D.; Wu, X.J.; Li, F. Temporal and spatial variation of haze during 1951–2005 in Chinese mainland. J. Meteorol. Res. 2010, 68, 680–688. [Google Scholar]
- Hu, J.; Wang, Y.; Qi, Y.; Zhang, H. Spatial and temporal variability of PM2.5 and PM10 over the North China Plain and the Yangtze River Delta, China. Atmos. Environ. 2014, 95, 598–609. [Google Scholar] [CrossRef]
- Tan, J.; Duan, J.; Zhen, N.; He, K.; Hao, J. Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing. Atmos. Res. 2015, 167, 24–33. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection P.R.C. (MEP). China Environmental Status Bulletin; MEP: Beijing, China, 2017. (In Chinese)
- Zhang, Q.; Tong, P.; Liu, M.; Lin, H.; Wang, X. A WRF-Chem model-based future vehicle emission control policy simulation and assessment for the Beijing-Tianjin-Hebei region, China. J. Environ. Manag. 2019, 253, 109751. [Google Scholar] [CrossRef]
- Stohl, A.; Hittenberger, M.; Wotawa, G. Validation of the Lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data. Atmos. Environ. 1998, 32, 4245–4264. [Google Scholar] [CrossRef]
- Fast, J.D.; Easter, R.C. A Lagrangian particle dispersion model compatible with WRF. In Proceedings of the 7th Annual WRF User’s Workshop, Boulder, CO, USA, 19–22 June 2006. [Google Scholar]
- Bei, N.; Bo, X.; Ning, M.; Tian, F. Critical role of meteorological conditions in a persistent haze episode in the Guanzhong basin, China. Sci. Total Environ. 2016, 550, 273–284. [Google Scholar] [CrossRef]
- Guo, L.; Chen, B.; Zhang, H.; Zhang, Y. A new approach combining a simplified FLEXPART model and a Bayesian-RAT method for forecasting PM10 and PM2.5. Environ. Sci. Pollut. Res. 2020, 27, 2165–2183. [Google Scholar] [CrossRef]
- Willmott, C.J.; Matsuura, K. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79. [Google Scholar] [CrossRef]
- Willmott, C.J.; Ackleson, S.G.; Davis, R.E.; Feddema, J.J.; Klink, K.M.; Legates, D.R.; O’Donnell, J.; Rowe, C.M. Statistics for the evaluation and comparison of models. J. Geophys. Res. Oceans. 1985, 90, 8995–9005. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Zhang, Q.; Kurokawa, J.-I.; Woo, J.-H.; He, K.; Lu, Z.; Ohara, T.; Song, Y.; Streets, D.G.; Carmichael, G.R.; et al. MIX: A mosaic Asian anthropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP. Atmos. Chem. Phys. 2017, 17, 935–963. [Google Scholar] [CrossRef] [Green Version]
- Qi, M.; Wang, L.; Ma, S.; Zhao, L.; Xu, R. Evaluation of PM2.5 fluxes in the “2+26” cities: Transport pathways and intercity contributions. Atmos. Pollut. Res. 2021, 12, 101048. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, D.; Wen, W.; Zhuang, Y.; Kwan, M.P.; Chen, B.; Zhao, B.; Yang, L.; Gao, B.; Li, R. Evaluating the “2+ 26” regional strategy for air quality improvement during two air pollution alerts in Beijing: Variations in PM 2.5 concentrations, source apportionment, and the relative contribution of local emission and regional transport. Atmos. Chem. Phys. 2019, 19, 6879–6891. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.Y.; Gao, Y.X.; Wang, W.; Lu, N.; Li, J.J. Assessment of Emergency Emission Reduction Effect During the Heavy Air Pollution Episodes in Beijing, Tianjin, Hebei, and Its Surrounding Area (“2+26” Cities) from October to December 2019. Huan Jing Ke Xue Huanjing Kexue 2020, 41, 4402–4412. [Google Scholar] [PubMed]
- Zhu, S.; Qiu, X.; Yin, Y.; Fang, M.; Liu, X.; Zhao, X.; Shi, Y. Two-step-hybrid model based on data preprocessing and intelligent optimization algorithms (CS and GWO) for NO2 and SO2 forecasting. Atmos. Pollut. Res. 2019, 10, 1326–1335. [Google Scholar] [CrossRef]
- Cheng, Y.; Zhang, H.; Liu, Z.; Chen, L.; Wang, P. Hybrid algorithm for short-term forecasting of PM2.5 in China. Atmos. Environ. 2019, 200, 264–279. [Google Scholar] [CrossRef]
- Liu, H.; Jin, K.; Duan, Z. Air PM2.5 concentration multi-step forecasting using a new hybrid modeling method: Comparing cases for four cities in China. Atmos. Pollut. Res. 2019, 10, 1588–1600. [Google Scholar] [CrossRef]
- Liu, H.; Chen, C. Prediction of outdoor PM2.5 concentrations based on a three-stage hybrid neural network model. Atmos. Pollut. Res. 2020, 11, 469–481. [Google Scholar] [CrossRef]
- Wang, L.; Wei, Z.; Wei, W.; Fu, J.S.; Meng, C.; Ma, S. Source apportionment of PM2.5 in top polluted cities in Hebei, China using the CMAQ model. Atmos. Environ. 2015, 122, 723–736. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Cheng, M.; Liu, S.; Xu, J.; He, Y.; Meng, F. The contribution of residential coal combustion to PM2.5 pollution over China’s Beijing-Tianjin-Hebei region in winter. Atmos. Environ. 2017, 159, 147–161. [Google Scholar] [CrossRef]
- Tian, Y.Z.; Chen, G.; Wang, H.T.; Huang-Fu, Y.Q.; Shi, G.L.; Han, B.; Feng, Y.C. Source regional contributions to PM2.5 in a megacity in China using an advanced source regional apportionment method. Chemosphere 2016, 147, 256–263. [Google Scholar] [CrossRef]
- Zhe, W.; Wang, L.; Chen, M.; Yan, Z. The 2013 severe haze over the Southern Hebei, China: PM2.5 composition and source apportionment. Atmos. Pollut. Res. 2014, 5, 759–768. [Google Scholar]
- Jin, X.; Xiao, C.; Li, J.; Huang, D.; Ni, B. Source apportionment of PM2.5 in Beijing using positive matrix factorization. J. Radioanal. Nucl. Chem. 2015, 307, 2147–2154. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, B.; Gao, J.; Kang, H.; Peng, Y.; Wang, L.; Zhang, L. The Source Apportionment of Primary PM2.5 in an Aerosol Pollution Event over Beijing-Tianjin-Hebei Region Using WRF-Chem, China. Aerosol Air Qual. Res. 2017, 17, 2966–2980. [Google Scholar] [CrossRef] [Green Version]
Name | Raw_R | Opt_R | Raw_RMSE (μg/m3) | Opt_RMSE (μg/m3) | Raw_IOA | Opt_IOA |
---|---|---|---|---|---|---|
Aotizhongxin-Beijing | 0.70 | 0.81 | 39.44 | 25.80 | 0.73 | 0.83 |
Beichenkejiyuanqu-Tianjin | 0.73 | 0.79 | 33.30 | 25.18 | 0.73 | 0.85 |
Dahuoquan-Xingtai | 0.75 | 0.83 | 32.65 | 25.06 | 0.74 | 0.84 |
Renmingongyuan-Zhangjiakou | 0.80 | 0.83 | 26.03 | 17.60 | 0.71 | 0.86 |
Name | Base (%) | Industry (%) | Power (%) | Residential (%) | Transportation (%) |
---|---|---|---|---|---|
Aotizhongxin-Beijing | 10.36 | 33.25 | 3.54 | 44.27 | 8.58 |
Beichenkejiyuanqu-Tianjin | 7.62 | 35.52 | 7.00 | 42.73 | 7.13 |
Dahuoquan-Xingtai | 16.44 | 32.41 | 1.72 | 42.95 | 6.48 |
Renmingongyuan-Zhangjiakou | 19.39 | 26.06 | 1.39 | 45.66 | 7.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, L.; Chen, B.; Zhang, H.; Fang, J. Prediction and Source Contribution Analysis of PM2.5 Using a Combined FLEXPART Model and Bayesian Method over the Beijing-Tianjin-Hebei Region in China. Atmosphere 2021, 12, 860. https://doi.org/10.3390/atmos12070860
Guo L, Chen B, Zhang H, Fang J. Prediction and Source Contribution Analysis of PM2.5 Using a Combined FLEXPART Model and Bayesian Method over the Beijing-Tianjin-Hebei Region in China. Atmosphere. 2021; 12(7):860. https://doi.org/10.3390/atmos12070860
Chicago/Turabian StyleGuo, Lifeng, Baozhang Chen, Huifang Zhang, and Jingchun Fang. 2021. "Prediction and Source Contribution Analysis of PM2.5 Using a Combined FLEXPART Model and Bayesian Method over the Beijing-Tianjin-Hebei Region in China" Atmosphere 12, no. 7: 860. https://doi.org/10.3390/atmos12070860
APA StyleGuo, L., Chen, B., Zhang, H., & Fang, J. (2021). Prediction and Source Contribution Analysis of PM2.5 Using a Combined FLEXPART Model and Bayesian Method over the Beijing-Tianjin-Hebei Region in China. Atmosphere, 12(7), 860. https://doi.org/10.3390/atmos12070860