Spatio-Temporal Evolution and Prediction of Tourism Comprehensive Climate Comfort in Henan Province, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Evaluation Method of the TCCI
2.4. Statistical Analysis Method
3. Results
3.1. Temporal and Spatial Variation of the TCCI in Henan Province
3.2. The Relationship between Different Types of TCCI Changes and Climate Factors Based on Hierarchical Classification
3.3. Future Development Trends of the TCCI and Climate Factors in Henan Province
4. Discussion
4.1. Comparison of Evaluation Results with Other Results in the Study Area
4.2. Analysis of Driving Forces of the TCCI in the Study Area
4.3. Future Development of the TCCI in the Study Area
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scott, D.J.; Lemieux, C.J.; Malone, L. Climate services to support sustainable tourism and adaptation to climate change. Clim. Res. 2011, 47, 111–122. [Google Scholar] [CrossRef] [Green Version]
- United Nations World Tourism Organization. Tourism Towards 2030; United Nations World Tourism Organization: Madrid, Spain, 2011. [Google Scholar]
- Martin, B.G. Weather, climate and tourism-A geographical perspective. Ann. Tour. Res. 2005, 32, 571–591. [Google Scholar] [CrossRef]
- Rutty, M.; Scott, D. Comparison of Climate Preferences for Domestic and International Beach Holidays: A Case Study of Canadian Travelers. Atmosphere 2016, 7, 30. [Google Scholar] [CrossRef] [Green Version]
- Sobhani, B.; Zengir, V.S. Evaluation and zoning of environmental climatic parameters for tourism feasibility in northwestern Iran, located on the western border of Turkey. Model. Earth Syst. Environ. 2020, 6, 853–864. [Google Scholar] [CrossRef]
- Becker, S. Bioclimatological rating of cities and resorts in South Africa according to the climate index. Int. J. Climatol. 2000, 20, 1403–1414. [Google Scholar] [CrossRef]
- Hernández-Lobato, L.; Solis-Radilla, M.M.; Moliner-Tena, M.A.; Sanchez-Garcia, J. Tourism destination image, satisfaction and loyalty: A study in Ixtapa-Zihuatanejo, Mexico. Tour. Geogr. 2006, 8, 343–358. [Google Scholar] [CrossRef]
- Olya, H.G.T.; Alipour, H. Risk assessment of precipitation and the tourism climate index. Tour. Manag. 2015, 50, 73–80. [Google Scholar] [CrossRef]
- Zang, Y.; Dai, J.; Tao, Z.; Wang, H.; Ge, Q. Effects of Climate Change on the Season of Botanical Tourism: A Case Study in Beijing. Adv. Meteorol. 2020, 2020, 1–11. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis: Summary for Policymakers. Working Group I Contribution to the IPCC Fifth Assessment Report; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Cetin, M. Climate comfort depending on different altitudes and land use in the urban areas in Kahramanmaras City. Air Qual. Atmos. Health 2020, 13, 991–999. [Google Scholar] [CrossRef]
- Rossello-Nadal, J. How to evaluate the effects of climate change on tourism. Tour. Manag. 2014, 42, 334–340. [Google Scholar] [CrossRef]
- Scott, D.; Hall, C.M.; Gossling, S. Global tourism vulnerability to climate change. Ann. Tourism Res. 2019, 77, 49–61. [Google Scholar] [CrossRef]
- Hewer, M.J.; Gough, W.A. Thirty years of assessing the impacts of climate change on outdoor recreation and tourism in Canada. Tour. Manag. Perspect. 2018, 26, 179–192. [Google Scholar] [CrossRef]
- Beccali, M.; Strazzeri, V.; Germana, M.L.; Melluso, V.; Galatioto, A. Vernacular and bioclimatic architecture and indoor thermal comfort implications in hot-humid climates: An overview. Renew. Sustain. Energ. Rev. 2018, 82, 1726–1736. [Google Scholar] [CrossRef]
- Vanos, J.K.; Kosaka, E.; Iida, A.; Yokohari, M.; Middel, A.; Scott-Fleming, J.; Brown, R.D. Planning for spectator thermal comfort and health in the face of extreme heat: The Tokyo 2020 Olympic marathons. Sci. Total Environ. 2019, 657, 904–917. [Google Scholar] [CrossRef]
- Fletcher, J.; Higham, J.; Longnecker, N. Climate change risk perception in the USA and alignment with sustainable travel behaviours. PLoS ONE 2021, 16, e0244545. [Google Scholar] [CrossRef]
- Hoppe, P. The physiological equivalent temperature-a universal index for the biometeorological assessment of the thermal environment. Int. J. Climatol. 1999, 43, 71–75. [Google Scholar] [CrossRef]
- Wu, Y.; Graw, K.; Matzarakis, A. Comparison of Thermal Comfort between Sapporo and Tokyo-The Case of the Olympics 2020. Atmosphere 2020, 11, 444. [Google Scholar] [CrossRef]
- Blazejczyk, K.; Epstein, Y.; Jendritzky, G.; Staiger, H.; Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Climatol. 2012, 56, 515–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zeng, D.; Wu, J.; Mu, Y.; Deng, M.; Wei, Y.; Sun, W. Spatial-Temporal Pattern Changes of UTCI in the China-Pakistan Economic Corridor in Recent 40 Years. Atmosphere 2020, 11, 858. [Google Scholar] [CrossRef]
- Lin, T.P.; Matzarakis, A. Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int. J. Biometeorol. 2008, 52, 281–290. [Google Scholar] [CrossRef]
- Matzarakis, A.; Froehlich, D.; Bermon, S.; Adami, P.E. Visualization of Climate Factors for Sports Events and Activities-The Tokyo 2020 Olympic Games. Atmosphere 2019, 10, 572. [Google Scholar] [CrossRef] [Green Version]
- Mieczkowski, Z. The tourism climatic index-a method of evaluating world climates for tourism. Can. Geogr.-Geogr. Can. 1985, 29, 220–233. [Google Scholar] [CrossRef]
- Masoudi, M. Estimation of the spatial climate comfort distribution using tourism climate index (TCI) and inverse distance weighting (IDW) (case study: Fars Province, Iran). Arab. J. Geosci. 2021, 14, 5. [Google Scholar] [CrossRef]
- Humphreys, M.A.; Nicol, J.F. Understanding the adaptive approach to thermal comfort. Ashrae Trans. 1998, 104, 991–1004. [Google Scholar]
- Lin, T.P. Thermal perception, adaptation and attendance in a public square in hot and humid regions. Build. Environ. 2009, 44, 2017–2026. [Google Scholar] [CrossRef]
- Rutty, M.; Scott, D. Thermal range of coastal tourism resort microclimates. Tour. Geogr. 2014, 16, 346–363. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Proietti, R.; Vollaro, A.D.L. Implications of climate and outdoor thermal comfort on tourism: The case of Italy. Int. J. Biometeorol. 2017, 61, 2229–2244. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, J.; Grigorieva, E.; Egidarev, E.; Zhang, W. Comprehensive Spatio-Temporal Analysis of Travel Climate Comfort Degree and Rainstorm-Flood Disaster Risk in the China-Russia Border Region. Sustainability 2020, 12, 3254. [Google Scholar] [CrossRef] [Green Version]
- Xi, T.; Wang, Q.; Qin, H.; Jin, H. Influence of outdoor thermal environment on clothing and activity of tourists and local people in a severely cold climate city. Build. Environ. 2020, 173, 106757. [Google Scholar] [CrossRef]
- Salata, F.; Golasi, I.; Ciancio, V.; Rosso, F. Dressed for the season: Clothing and outdoor thermal comfort in the Mediterranean population. Build. Environ. 2018, 146, 50–63. [Google Scholar] [CrossRef]
- Lai, D.; Chen, Q. A two-dimensional model for calculating heat transfer in the human body in a transient and non-uniform thermal environment. Energy Build. 2016, 118, 114–122. [Google Scholar] [CrossRef]
- Yu, Z.K.; Sun, G.N.; Luo, Z.W.; Feng, Q. An analysis of climate comfort degree and tourism potential power of cities in Northern China in summer to the north of 40° N. Nat. Resour. J. 2015, 30, 327–339. (In Chinese) [Google Scholar]
- Zare, S.; Hasheminejad, N.; Shirvan, H.E.; Hemmatjo, R.; Sarebanzadeh, K.; Ahmadi, S. Comparing Universal Thermal Climate Index (UTCI) with selected thermal indices/environmental parameters during 12 months of the year. Weather Clim. Extreme 2018, 19, 49–57. [Google Scholar] [CrossRef]
- Yu, D.D.; Li, S.; Guo, Z.Y. Evaluating the Tourist Climate Comfortable Period of China in a Changing Climate. Adv. Meteorol. 2020, 2020, 8886316. [Google Scholar] [CrossRef]
- Cheng, Q.Q.; Zhong, F.L. Evaluation of tourism climate comfort in the Grand Shangri-La region. J. Mt. Sci.-Engl. 2019, 16, 1452–1469. [Google Scholar] [CrossRef]
- Liu, S.; Long, B.; Pan, Z.; Lun, F.; Song, Y.; Yuan, W.; Huang, N.; Zhang, Z.; Ma, S. Evaluation of Climatic Comfort of Living Environment based on Age Differentials in Beijing-Tianjin-Hebei Area. Ecosyst. Health Sustain. 2020, 6, 1–12. [Google Scholar] [CrossRef]
- Yu, G.; Schwartz, Z.; Walsh, J.E. Effects of Climate Change on the Seasonality of Weather for Tourism in Alaska. Arctic 2009, 62, 443–457. [Google Scholar] [CrossRef]
- Eugenio-Martin, J.L.; Campos-Soria, J.A. Climate in the region of origin and destination choice in outbound tourism demand. Tour. Manag. 2010, 31, 744–753. [Google Scholar] [CrossRef]
- Wilkins, E.; de Urioste-Stone, S.; Weiskittel, A.; Gabe, T. Effects of Weather Conditions on Tourism Spending: Implications for Future Trends under Climate Change. J. Travel. Res. 2018, 57, 1042–1053. [Google Scholar] [CrossRef]
- Xu, P.; Du, M.Z.; Zhang, W. Fuzzy Comprehensive Evaluation for the Tourism Climate Comfort Degree in Henan Province. Hennan. Sci. 2020, 38, 1800–1805. (In Chinese) [Google Scholar]
- Kong, Q.; Zheng, J.; Fowler, H.J.; Ge, Q.; Xi, J. Climate change and summer thermal comfort in China. Theor. Appl. Climatol. 2019, 137, 1077–1088. [Google Scholar] [CrossRef] [Green Version]
- Brekke, L.; Thrasher, B.; Maurer, E.; Pruitt, T. Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections: Release of Downscaled CMIP5 Climate Projections, Comparison with Preceding Information, and Summary of User Needs; US Department of the Interior, Bureau of Reclamation, Technical Services Center: Denver, CO, USA, 2013. [Google Scholar]
- Ma, L.J.; Sun, G.N. Evaluation of climate comfort index for tourism hot-nbspot cities in West China. Arid Land Geogr. 2009, 32, 791–797. (In Chinese) [Google Scholar]
- Cao, W.H.; He, Y.Q.; Li, Z.X.; Wang, S.X.; Wang, C.F.; Chang, L.A. Correlation Analysis Between Climate Comfort Degree and Monthly Variation of Tourists in Lijiang. Sci. Geogr. Sin. 2012, 32, 1459–1464. (In Chinese) [Google Scholar]
- Hu, Y.; Li, P.; Yang, J.G. Applied Meteorology; China Meteorological Press: Beijing, China, 2005. [Google Scholar]
- Siple, P.A.; Passel, C.F. Measurements of dry atmospheric cooling in sub-freezing temperatures. Proc. Am. Philos. Soc. 1945, 89, 177–199. [Google Scholar]
- Defreitas, C.R. Human climates of northern China. Atmos. Environ. 1979, 13, 71–77. [Google Scholar] [CrossRef]
- Haining, R.; Wise, S.; Ma, J. Designing and Implementing Software for Spatial Statistical Analysis in a GIS Environment. J. Geogr. Syst. 2000, 2, 257–286. [Google Scholar] [CrossRef]
- Hsieh, D.A. Chaos and nonlinear dynamics-application to financial-markets. J. Finance 1991, 46, 1839–1877. [Google Scholar] [CrossRef]
- Fang, Y.; Yin, J. National Assessment of Climate Resources for Tourism Seasonality in China Using the Tourism Climate Index. Atmosphere 2015, 6, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Ge, Q.; Kong, Q.; Xi, J.; Zheng, J. Application of UTCI in China from tourism perspective. Theor. Appl. Climatol. 2017, 128, 551–561. [Google Scholar] [CrossRef]
- Kicovic, D.; Vuckovic, D.; Markovic, D.; Jovic, S. Assessment of visitors’ thermal comfort based on physiologically equivalent temperature in open urban areas. Urban Clim. 2019, 28, 100466. [Google Scholar] [CrossRef]
- Rodriguez-Algeciras, J.; Rodriguez-Algeciras, A.; Chaos-Yeras, M.; Matzarakis, A. Tourism-related climate information for adjusted and responsible planning in the tourism industry in Barcelona, Spain. Theor. Appl. Climatol. 2020, 142, 1003–1014. [Google Scholar] [CrossRef]
- Ryan, C.; Sun, M.; Zhang, X.; Li, F.; Li, P.; Gao, J.; Jin, Y.; Lin, H. Illustrations of Chinese tourism research. Tour. Manag. 2017, 58, 229–234. [Google Scholar] [CrossRef]
- Sharmin, T.; Steemers, K. Effects of microclimate and human parameters on outdoor thermal sensation in the high-density tropical context of Dhaka. Int. J. Biometeorol. 2020, 64, 187–203. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ren, M.; Li, Q.; Song, H.; Liu, R. Tree-ring delta O-18-based July-August relative humidity reconstruction on Mt. Shimen, China, for the last 400 years. Atmos. Res. 2020, 243, 105024. [Google Scholar] [CrossRef]
- Grillakis, M.G.; Koutroulis, A.G.; Tsanis, I.K. The 2 °C global warming effect on summer European tourism through different indices. Int. J. Climatol. 2016, 60, 1205–1215. [Google Scholar] [CrossRef] [PubMed]
- Rutty, M.; Scott, D.; Matthews, L.; Burrowes, R.; Trotman, A.; Mahon, R.; Charles, A. An Inter-Comparison of the Holiday Climate Index (HCI:Beach) and the Tourism Climate Index (TCI) to Explain Canadian Tourism Arrivals to the Caribbean. Atmosphere 2020, 11, 412. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Chi, X. Thermal comfort and tourism climate changes in the Qinghai-Tibet Plateau in the last 50 years. Theor. Appl. Climatol. 2014, 117, 613–624. [Google Scholar] [CrossRef]
- Cai, Q.; Liu, Y.; Wang, Y.; Ma, Y.; Liu, H. Recent warming evidence inferred from a tree-ring-based winter-half year minimum temperature reconstruction in northwestern Yichang, South Central China, and its relation to the large-scale circulation anomalies. Int. J. Climatol. 2016, 60, 1885–1896. [Google Scholar] [CrossRef]
- Zhu, L.; Cooper, D.J.; Han, S.; Yang, J.; Zhang, Y.; Li, Z.; Zhao, H.; Wang, X. Influence of the Atlantic Multidecadal Oscillation on drought in northern Daxing’an Mountains, Northeast China. Catena 2021, 198, 105017. [Google Scholar] [CrossRef]
- Valizadeh, M.; Khoorani, A. An evaluation of climatic conditions pertaining to outdoor tourism in Bandar Abbas, Iran. Int. J. Biometeorol. 2020, 64, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xu, Y.; Dong, W.; Cao, L.; Sparrow, M. A future climate scenario of regional changes in extreme climate events over China using the PRECIS climate model. Geophys. Res. Lett. 2006, 33, L24702. [Google Scholar] [CrossRef]
- Leng, G.; Tang, Q.; Huang, S.; Zhang, X. Extreme hot summers in China in the CMIP5 climate models. Clim. Chang. 2016, 135, 669–681. [Google Scholar] [CrossRef]
THI | WEI | ICL | Level | Assign N | |||
---|---|---|---|---|---|---|---|
Scope | Sensory Degree | Scope | Sensory Degree | Scope | Appropriate Clothing | ||
<40 | Extremely cold and uncomfortable | <−1200 | Very cold | >2.5 | Down or fur garment | e | −4 |
40~45 | Cold, uncomfortable | −1200~−1000 | Cold | 1.8~2.5 | Casual clothes and thick coats | d | −3 |
45~55 | Cold and less comfortable | −1000~−800 | Cold and cool | 1.5~1.8 | Traditional winter clothing | c | −2 |
55~60 | Cool and comfortable | −800~−600 | Cool | 1.3~1.5 | Common casual clothes in spring and autumn | b | −1 |
60~65 | Cool, very comfortable | −600~−300 | Comfort | 0.7~1.3 | Shirts and casual clothes | A | 0 |
65~70 | Warm and comfortable | −300~−200 | Warm | 0.5~0.7 | Light summer clothes | B | −1 |
70~75 | Hot and less comfortable | −200~−50 | Warm heat | 0.3~0.5 | Short sleeve open neck Shirt | C | −2 |
75~80 | Hot and uncomfortable | −50~80 | Heat | 0.1~0.3 | Tropical single coat | D | −3 |
>80 | Extremely sultry and uncomfortable | >80 | Hot | <0.1 | Short sleeves, shorts | E | −4 |
Hierarchical Clustering | Altitude Equal Interval Classification | ||||
---|---|---|---|---|---|
TCCI—Low | TCCI—High | TCCI—Middle | Low | Middle | High |
Anyang | Xixia | Mengjin | Anyang | Xixia | Mengjin |
Baofeng | Sanmenxia | Baofeng | Sanmenxia | ||
Gushi | Xinyang | Gushi | |||
Kaifeng | Kaifeng | ||||
Nanyang | Nanyang | ||||
Shangqiu | Shangqiu | ||||
Xihua | Xihua | ||||
Xinxiang | Xinxiang | ||||
Xuchang | Xuchang | ||||
Zhengzhou | Zhengzhou | ||||
Zhumadian | Zhumadian | ||||
Xinyang |
Month | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
KTCCI–high | 0.0034 | 0.0063 | 0.0056 | 0.0068 | −0.0030 | 0.0024 | −0.0010 | 0.0011 | −0.0055 | 0.0029 | 0.0004 | 0.0103 |
H | 0.6146 | 0.5331 | 0.6005 | 0.6097 | 0.6697 | 0.6062 | 0.5324 | 0.4153 | 0.5260 | 0.5197 | 0.5332 | 0.6156 |
KT-high | 0.0138 | 0.0366 | 0.0441 | 0.0407 | 0.0256 | −0.0036 | 0.0015 | 0.0029 | 0.0200 | 0.0161 | 0.0174 | 0.0213 |
H | 0.5727 | 0.8383 | 0.9154 | 0.8320 | 0.7552 | 0.8089 | 0.7852 | 0.7852 | 0.6314 | 0.6429 | 0.5502 | 0.6142 |
KR-high | 0.0362 | −0.0512 | −0.1623 | −0.0194 | −0.1489 | 0.0888 | −0.0191 | −0.0450 | −0.0650 | −0.0664 | −0.0377 | −0.0776 |
H | 0.6956 | 0.5717 | 0.8327 | 0.8296 | 0.7651 | 0.8698 | 0.8050 | 0.9064 | 0.5646 | 0.4089 | 0.3799 | 0.6636 |
KTCCI–middle | 0.0035 | 0.0068 | 0.0056 | 0.0084 | −0.0044 | −0.0013 | 0.0007 | 0.0009 | −0.0045 | 0.0024 | 0.0032 | 0.0058 |
H | 0.5210 | 0.8319 | 0.8480 | 0.8289 | 0.6922 | 0.7004 | 0.5443 | 0.7095 | 0.6674 | 0.5739 | 0.6235 | 0.5993 |
KT-middle | 0.0137 | 0.0191 | 0.0284 | 0.0308 | 0.0175 | −0.0011 | 0.0014 | −0.0016 | 0.0207 | 0.0163 | 0.0160 | 0.0196 |
H | 0.6121 | 0.8561 | 0.9275 | 0.8213 | 0.7302 | 0.7923 | 0.7653 | 0.7336 | 0.7629 | 0.6124 | 0.5917 | 0.6396 |
KR-middle | 0.0260 | −0.0166 | −0.1900 | −0.1590 | −0.0612 | 0.0901 | −0.0142 | 0.0047 | −0.0421 | −0.0538 | −0.0685 | −0.0689 |
H | 0.4915 | 0.5564 | 0.8319 | 0.7913 | 0.6929 | 0.8064 | 0.6429 | 0.7685 | 0.6094 | 0.5652 | 0.5236 | 0.5825 |
KTCCI–low | 0.0038 | 0.0085 | 0.0053 | 0.0064 | −0.0058 | −0.0030 | −0.0004 | 0.0003 | −0.0068 | 0.0036 | 0.0017 | 0.0053 |
H | 0.6850 | 0.8805 | 0.8181 | 0.7366 | 0.8244 | 0.7170 | 0.6026 | 0.5645 | 0.7284 | 0.6554 | 0.4380 | 0.5824 |
KT-low | 0.0135 | 0.0208 | 0.0300 | 0.0289 | 0.0203 | 0.0072 | 0.0055 | 0.0035 | 0.0231 | 0.0218 | 0.0140 | 0.0182 |
H | 0.5927 | 0.8771 | 0.9270 | 0.8064 | 0.7939 | 0.7874 | 0.7941 | 0.6409 | 0.7232 | 0.7200 | 0.5971 | 0.6460 |
KR-low | 0.0091 | −0.0443 | −0.1617 | −0.1105 | −0.0756 | 0.0262 | −0.0609 | −0.0386 | −0.0650 | −0.1259 | −0.0755 | −0.0654 |
H | 0.5704 | 0.5387 | 0.8266 | 0.7292 | 0.7770 | 0.8327 | 0.7908 | 0.8056 | 0.5169 | 0.6860 | 0.4459 | 0.6753 |
High | Middle | Low | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Month | KTCCI/KT/r | KTCCI/KR/r | KT-rcp4.5 | KR-rcp4.5 | KTCCI/KT/r | KTCCI/KR/r | KT-rcp4.5 | KR-rcp4.5 | KTCCI/KT/r | KTCCI/KR/r | KT-rcp4.5 | KR-rcp4.5 |
1 | ↗↗+ | ↗↗− | ↗ | ↗ | ↗↗+ | ↗↗− | ↗ | ↗ | ↗↗+ | ↗↗− | ↗ | ↘ |
2 | ↗↗+ | ↗↘− | ↗ | ↗ | ↗↗+ | ↗↘− | ↗ | ↗ | ↗↗+ | ↗↘− | ↗ | ↗ |
3 | ↗↗+ | ↗↘− | ↗ | ↘ | ↗↗+ | ↗↘− | ↗ | ↘ | ↗↗+ | ↗↘− | ↗ | ↘ |
4 | ↗↗+ | ↗↘− | ↗ | ↗ | ↗↗+ | ↗↘− | ↗ | ↗ | ↗↗+ | ↗↘− | ↗ | ↗ |
5 | ↘↗− | ↘↘+ | ↗ | ↘ | ↘↗− | ↘↘+ | ↗ | ↘ | ↘↗− | ↘↘+ | ↗ | ↘ |
6 | ↗↘− | ↗↗+ | ↗ | ↘ | ↘↘− | ↘↗+ | ↗ | ↘ | ↘↗− | ↘↗+ | ↗ | ↘ |
7 | ↘↗− | ↘↘+ | ↗ | ↘ | ↗↗− | ↗↘+ | ↗ | ↘ | ↘↗− | ↘↘+ | ↗ | ↘ |
8 | ↗↗− | ↗↘+ | ↗ | ↘ | ↗↘− | ↗↗+ | ↗ | ↘ | ↗↗− | ↘↗+ | ↗ | ↘ |
9 | ↘↗− | ↘↘+ | ↗ | ↘ | ↘↗− | ↘↘+ | ↗ | ↘ | ↘↗− | ↘↘+ | ↗ | ↘ |
10 | ↗↗+ | ↗↘− | ↗ | ↘ | ↗↗+ | ↗↘− | ↗ | ↘ | ↗↗+ | ↗↘+ | ↗ | ↘ |
11 | ↗↗+ | ↗↘− | ↗ | ↘ | ↗↗+ | ↗↘− | ↗ | ↘ | ↗↗+ | ↗↘+ | ↗ | ↘ |
12 | ↗↗+ | ↗↘− | ↗ | ↗ | ↗↗+ | ↗↘− | ↗ | ↗ | ↗↗+ | ↗↘+ | ↗ | ↗ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Wang, S. Spatio-Temporal Evolution and Prediction of Tourism Comprehensive Climate Comfort in Henan Province, China. Atmosphere 2021, 12, 823. https://doi.org/10.3390/atmos12070823
Zhao J, Wang S. Spatio-Temporal Evolution and Prediction of Tourism Comprehensive Climate Comfort in Henan Province, China. Atmosphere. 2021; 12(7):823. https://doi.org/10.3390/atmos12070823
Chicago/Turabian StyleZhao, Junyuan, and Shengjie Wang. 2021. "Spatio-Temporal Evolution and Prediction of Tourism Comprehensive Climate Comfort in Henan Province, China" Atmosphere 12, no. 7: 823. https://doi.org/10.3390/atmos12070823
APA StyleZhao, J., & Wang, S. (2021). Spatio-Temporal Evolution and Prediction of Tourism Comprehensive Climate Comfort in Henan Province, China. Atmosphere, 12(7), 823. https://doi.org/10.3390/atmos12070823