Air Mercury Monitoring at the Baikal Area
Abstract
:1. Introduction
2. Experimental
2.1. Monitoring Site
2.2. Stationary Air Mercury Monitoring
2.3. Air Mercury Survey over Baikal
2.4. Determination of Particulate Bound Mercury
3. Air Mercury Monitoring at the Listvyanka Station
3.1. Seasonal Variations
3.2. Diurnal Variations
3.3. Short-Term Variations
4. Mercury in the Air over Lake Baikal
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sprovieri, F.; Pirrone, N.; Bencardino, M.; D’amore, F.; Carbone, F.; Cinnirella, S.; Mannarino, V.; Landis, M.; Ebinghaus, R.; Weigelt, A.; et al. Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network. Atmos. Chem. Phys. 2016, 16, 11915–11935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cinnirella, S.; D’Amore, F.; Bencardino, M.; Sprovieri, F.; Pirrone, N. The GMOS cyber(e)-infrastructure: Advanced services for supporting science and policy. Environ. Sci. Pollut. 2014, 21, 4193–4208. [Google Scholar] [CrossRef]
- Sholupov, S.; Pogarev, S.; Ryzhov, V.; Mashyanov, N.; Stroganov, A. Zeeman atomic absorption spectrometer RA-915 for direct determination of mercury in air and complex matrix samples. Fuel Process. Technol. 2004, 85, 473–485. [Google Scholar] [CrossRef]
- Brown, R.J.C.; Pirrone, N.; van Hoek, C.; Sprovieri, F.; Fernandez, R.; Tote, K. Standardisation of a European measurement method for the determination of total gaseous mercury: Results of the field trial campaign and determination of a measurement uncertainty and working range. J. Environ. Monit. 2010, 12, 689–695. [Google Scholar] [CrossRef] [PubMed]
- Weigelt, A.; Ebinghaus, R.; Pirrone, N.; Bieser, J.; Bödewadt, J.; Esposito, G.; Slemr, F.; van Velthoven, P.F.J.; Zahn, A.; Ziereis, H. Tropospheric mercury vertical profiles between 500 and 10 000 m in central Europe. Atmos. Chem. Phys. 2015, 15, 28217–28247. [Google Scholar]
- Osterwalder, S.; Eugster, W.; Feigenwinter, I.; Jiskra, M. First eddy covariance flux measurements of gaseous elemental mercury (Hg0) over a grassland. Atmos. Meas. Tech. 2020, 13, 2057–2074. [Google Scholar] [CrossRef] [Green Version]
- Sommar, J.; Osterwalder, S.; Zhu, W. Recent advances in understanding and measurement of Hg in the environment: Surface-atmosphere exchange of gaseous elemental mercury (Hg0). Sci. Total Environ. 2020, 721, 137648. [Google Scholar] [CrossRef] [PubMed]
- Obolkin, V.A.; Potemkin, V.L.; Makukhin, V.L.; Chipanina, E.V.; Marinayte, I.I. Low-level atmospheric jets as main mechanism of long-range transport of power plant plumes in the Lake Baikal Region. Intern. J. Environ. Stud. 2014, 71, 391–397. [Google Scholar]
- Obolkin, V.A.; Potemkin, V.L.; Makukhin, V.L.; Khodzher, T.V.; Chipanina, E.V. Long-range transport of plumes of atmospheric emissions from regional coal power plants to the South Baikal water basin. Atmos. Ocean Opt. 2017, 30, 360–365. [Google Scholar] [CrossRef]
- Hegg, D.; Hobbs, P.V.; Radke, L.F.; Harrison, H. Reactions of ozone and nitrogen oxides in power plant plumes. Atmos. Environ. 1977, 11, 521–526. [Google Scholar] [CrossRef]
- Cocks, A.T.; Kallend, A.S.; Marsh, A.R.W. Dispersion limitations of oxidation in power plant plumes during long-range transport. Nature 1983, 305, 122–123. [Google Scholar] [CrossRef]
- Draxler, R.R.; Rolph, G.D. HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory Model). 2013. Available online: https://www.scienceopen.com/document?vid=3c4d79f1-5098-4dbd-83f3-64a0020f78da (accessed on 21 June 2021).
Season | 2011–2012 | 2012–2013 | 2013–2014 | 2014–2015 | 2015–2016 | 2016–2017 | 2017–2018 | 2018–2019 | 2019–2020 | Seasonal Average |
---|---|---|---|---|---|---|---|---|---|---|
Cold (November–February) | 1.89 | 1.67 | 1.70 | 1.71 | 1.70 | 1.56 | 1.95 | 1.84 | 1.72 | 1.75 |
Warm (June–September) | 1.42 | 1.37 | 1.50 | 1.51 | 1.31 | 1.12 | 1.53 | 1.63 | 1.55 | 1.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mashyanov, N.; Obolkin, V.; Pogarev, S.; Ryzhov, V.; Sholupov, S.; Potemkin, V.; Molozhnikova, E.; Khodzher, T. Air Mercury Monitoring at the Baikal Area. Atmosphere 2021, 12, 807. https://doi.org/10.3390/atmos12070807
Mashyanov N, Obolkin V, Pogarev S, Ryzhov V, Sholupov S, Potemkin V, Molozhnikova E, Khodzher T. Air Mercury Monitoring at the Baikal Area. Atmosphere. 2021; 12(7):807. https://doi.org/10.3390/atmos12070807
Chicago/Turabian StyleMashyanov, Nikolay, Vladimir Obolkin, Sergey Pogarev, Vladimir Ryzhov, Sergey Sholupov, Vladimir Potemkin, Elena Molozhnikova, and Tamara Khodzher. 2021. "Air Mercury Monitoring at the Baikal Area" Atmosphere 12, no. 7: 807. https://doi.org/10.3390/atmos12070807
APA StyleMashyanov, N., Obolkin, V., Pogarev, S., Ryzhov, V., Sholupov, S., Potemkin, V., Molozhnikova, E., & Khodzher, T. (2021). Air Mercury Monitoring at the Baikal Area. Atmosphere, 12(7), 807. https://doi.org/10.3390/atmos12070807