Climate Change Impacts on Temperature and Chill Unit Trends for Apple (Malus domestica) Production in Ceres, South Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Type and Collection
2.2.1. Historical Observed Data
2.2.2. Projected Climate Data
2.3. Winter chill models and chilling metrics
3. Results
3.1. Future Temperature Trends
3.2. Historical Chill Unit Trends
3.3. Future Chill Unit Trends
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Midgley, S.J.E.; Lötze, E. Climate change in the western cape of South Africa: Trends, projections and implications for chill unit accumulation. Acta Hortic. 2011, 903, 1127–1134. [Google Scholar] [CrossRef]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.J.; Johns, T.; Krinner, G.; et al. IPCC WG1AR5 Chapter 12 Long-Term Climate Change: Projections, Commitments and Irreversibility; Climate Change 2013—The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013; pp. 1029–1136. [Google Scholar]
- Vose, R.S.; Easterling, D.R.; Gleason, B. Maximum and minimum temperature trends for the globe: An update through 2004. Geophys. Res. Lett. 2005, 32, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.L. Climate Risk and Vulnerability: A Handbook for Southern Africa; Council for Scientific and Industrial Research: Pretoria, South Africa, 2011; ISBN 9780620506274. [Google Scholar]
- WMO. State of the Global Climate 2020: Provisional Report; WMO: Geneva, Switzerland, 2021; ISBN 4146702018922. [Google Scholar]
- Davis, C.; Engelbrecht, F.; Tadross, M.; Wolski, P.; van Garderen, E.A. Future climate change over Southern Africa. In South African Risk Vulnerability Atlas; Understanding the Social and Environmental Implications of Global Change; Department of Science and Technology: Pretoria, South Africa, 2017; pp. 13–25. [Google Scholar]
- Midgley, G.; Champman, R..; Hewiston, B.; Johnston, P.; de Wit, M.; Ziervogel, G.; Mukheibir, P. A Status Quo, Vulnerability and Adaptation Assessment of the Physical and Socio-Economic Effects of Climate Change in the Western Cape; CSIR: Pretoria, South Africa, 2005. [Google Scholar]
- Kruger, A.C.; Shongwe, S. Temperature trends in South Africa: 1960–2003. Int. J. Climatol. 2004, 24, 1929–1945. [Google Scholar] [CrossRef]
- New, M.; Hewitson, B.; Stephenson, D.B.; Tsiga, A.; Kruger, A.; Manhique, A.; Gomez, B.; Coelho, C.A.S.; Masisi, D.N.; Kululanga, E.; et al. Evidence of trends in daily climate extremes over southern and west Africa. J. Geophys. Res. Atmos. 2006, 111, 1–11. [Google Scholar] [CrossRef]
- Allan, P. Winter chilling in areas with mild winters: Its measurement and supplementation. Acta Hortic. 2004, 662, 47–52. [Google Scholar] [CrossRef]
- Luedeling, E.; Brown, P.H. A global analysis of the comparability of winter chill models for fruit and nut trees. Int. J. Appl. Earth Obs. Geoinf. 2011, 55, 411–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldocchi, D.; Wong, S. Accumulated winter chill is decreasing in the fruit growing regions of California. Clim. Chang. 2007, 87, 153–166. [Google Scholar] [CrossRef]
- Maguylo, K.; Cook, N.C.; Theron, K.I. Environment and position of first bud to break on apple shoots affects lateral outgrowth. Trees 2012, 26, 663–675. [Google Scholar] [CrossRef]
- Campoy, J.A.; Ruiz, D.; Cook, N.; Allderman, L.; Egea, J. High temperatures and time to budbreak in low chill apricot “Palsteyn”. Towards a better understanding of chill and heat requirements fulfilment. Sci. Hortic. 2011, 129, 649–655. [Google Scholar] [CrossRef]
- Kaufmann, H. Effects of Warmer Winters due to Climate Change on Chilling and Dormancy Release of Sweet Cherry. Ph.D. Thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany, 2018. [Google Scholar]
- Kaufmann, H.; Blanke, M. Substitution of winter chilling by spring forcing for flowering using sweet cherry as model crop. Sci. Hortic. 2019, 244, 75–81. [Google Scholar] [CrossRef]
- Campoy, J.A.; Ruiz, D.; Allderman, L.; Cook, N.; Egea, J. The fulfilment of chilling requirements and the adaptation of apricot (Prunus armeniaca L.) in warm winter climates: An approach in Murcia (Spain) and the Western Cape (South Africa). Eur. J. Agron. 2012, 37, 43–55. [Google Scholar] [CrossRef]
- Alburquerque, N.; García-Montiel, F.; Carrillo, A.; Burgos, L. Chilling and heat requirements of sweet cherry cultivars and the relationship between altitude and the probability of satisfying the chill requirements. Environ. Exp. Bot. 2008, 64, 162–170. [Google Scholar] [CrossRef]
- Campoy, J.A.; Ruiz, D.; Egea, J. Dormancy in temperate fruit trees in a global warming context: A review. Sci. Hortic. 2011, 130, 357–372. [Google Scholar] [CrossRef]
- Luedeling, E. Climate change impacts on winter chill for temperate fruit and nut production: A review. Sci. Hortic. 2012, 144, 218–229. [Google Scholar] [CrossRef] [Green Version]
- Sheard, A.G.; Johnson, S.D.; Cook, N.C. Effect of timing and concentration of rest breaking agents on budburst in ‘bing’ sweet cherry under conditions of inadequate winter chilling in South Africa. S. Afr. J. Plant Soil 2009, 26, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Cook, N.C.; Jacobs, G. Progression of apple (Malus x domestica Borkh.) bud dormancy in two mild winter climates. J. Hortic. Sci. Biotechnol. 2000, 75, 233–236. [Google Scholar] [CrossRef]
- Linsley-Noakes, G.C.; Allan, P.; Matthee, G. Modification of rest completion prediction models for improved accuracy in south african stone fruit orchards. J. S. Afr. Soc. Hortic. Sci. 1994, 4, 13–15. [Google Scholar]
- Melke, A. The Physiology of Chilling Temperature Requirements for Dormancy Release and Bud-break in Temperate Fruit Trees Grown at Mild Winter Tropical Climate. J. Plant Stud. 2015, 4, 110–156. [Google Scholar] [CrossRef]
- Chuine, I.; Cour, P. Climatic determinants of budburst seasonality in four temperate-zone tree species. New Phytol. 1999, 143, 339–349. [Google Scholar] [CrossRef]
- Luedeling, E.; Guo, L.; Dai, J.; Leslie, C.; Blanke, M.M. Differential responses of trees to temperature variation during the chilling and forcing phases. Agric. For. Meteorol. 2013, 181, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Darbyshire, R.; López, J.N.; Song, X.; Wenden, B.; Close, D. Modelling cherry full bloom using ‘space-for-time’ across climatically diverse growing environments. Agric. For. Meteorol. 2020, 284, 107901. [Google Scholar] [CrossRef]
- Tharaga, P.C.; Steyn, A.S.; Coetzer, G.M. Impacts of climate change on accumulated chill units at selected fruit production sites in South Africa. Acta Hortic. 2016, 1130, 63–70. [Google Scholar] [CrossRef]
- Carranca, C.; Brunetto, G.; Tagliavini, M. Nitrogen nutrition of fruit trees to reconcile productivity and environmental concerns. Plants 2018, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Lobell, D.B.; Nicholas, K.; Field, C.B. Historical effects of temperature and precipitation on California crop yields. Clim. Chang. 2007, 81, 187–203. [Google Scholar] [CrossRef]
- Schulze, B.R. The Climates of South Africa According to the Classifications of Köppen and Thornthwaite. S. Afr. Geogr. J. 2012, 29, 32–42. [Google Scholar] [CrossRef]
- Ogundeji, A.A.; Jordaan, H.; Groenewald, J. Economics of climate change adaptation: A case study of Ceres—South Africa. Clim. Dev. 2015. [Google Scholar] [CrossRef]
- Linvill, D.E. Calculating chilling hours and chill units from daily maximum and minimum temperature observations. Hortscience 1990, 25, 14–16. [Google Scholar] [CrossRef] [Green Version]
- Landman, W.A.; Engelbrecht, F.; Hewitson, B.; Malherbe, J.; van der Merwe, J. Towards bridging the gap between climate change projections and maize producers in South Africa. Theor. Appl. Climatol. 2018, 132, 1153–1163. [Google Scholar] [CrossRef] [Green Version]
- McGregor, J.; Gordon, H.; Watterson, I.; Dix, M.; Rotstayn, L. The CSIRO 9-Level Atmospheric General Circulation Model; CSIRO: Melbourne, VIC, Australia, 1993. [Google Scholar]
- Corney, S.; Grose, M.; Bennett, J.C.; White, C.; Katzfey, J.; McGregor, J.; Holz, G.; Bindoff, N.L. Performance of downscaled regional climate simulations using a variable-resolution regional climate model: Tasmania as a test case. J. Geophys. Res. Atmos. 2013, 118, 11936–11950. [Google Scholar] [CrossRef] [Green Version]
- Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Chang. 2011, 109, 213–241. [Google Scholar] [CrossRef] [Green Version]
- Riahi, K.; van Vuuren, D.P.; Kriegler, E.; Edmonds, J.; O’Neill, B.C.; Fujimori, S.; Bauer, N.; Calvin, K.; Dellink, R.; Fricko, O.; et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: An overview. Glob. Environ. Chang. 2017, 42, 153–168. [Google Scholar] [CrossRef] [Green Version]
- Van Vuuren, D.P.; Stehfest, E.; den Elzen, M.G.J.; Kram, T.; van Vliet, J.; Deetman, S.; Isaac, M.; Goldewijk, K.K.; Hof, A.; Beltran, A.M.; et al. RCP2.6: Exploring the possibility to keep global mean temperature increase below 2 °C. Clim. Chang. 2011, 109, 95–116. [Google Scholar] [CrossRef]
- Westerling, A.L.; Turner, M.G.; Smithwick, E.A.H.; Romme, W.H.; Ryan, M.G. Continued warming could transform greater yellowstone fire regimes by mid-21st century. Proc. Natl. Acad. Sci. USA 2011, 108, 13165–13170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.L.; Richardson, E.A.; Kesner, C.D. Validation of Chill Unit and Flower Bud Phenology Models for “Montmorency” Sour Cherry. Acta Hortic. 1986, 184, 71–78. [Google Scholar] [CrossRef]
- Schwartz, M.D.; Hanes, J.M. Continental-scale phenology: Warming and chilling. Int. J. Climatol. 2010, 30, 1595–1598. [Google Scholar] [CrossRef]
- Allan, P.; Savage, M.J.; Criveano, T.; Mork, T.; Blore, N. Supplementing winter chilling in kiwifruit in subtropical areas by evaporative cooling and shading. Acta Hortic. 1999, 498, 133–141. [Google Scholar] [CrossRef]
- Mahmood, K.; Carew, J.G.; Hadley, P.; Battey, N.H. Chill unit models for the sweet cherry cvs Stella, Sunburst and Summit. J. Hortic. Sci. Biotechnol. 2000, 75, 602–606. [Google Scholar] [CrossRef]
Apple Cultivar | Chilling Requirement | Accumulated Positive Chill Units (PCUs) |
---|---|---|
Braeburn | High | 800–1000+ |
Pink Lady | Medium | 450–800 |
Fuji | High | 800–1000+ |
Golden Delicious | High | 800–1000+ |
Granny Smith | Medium to low | <800 |
Royal Gala | Medium to low | 500–800 |
Star King | High | 800–1000+ |
Area | Lat (S) | Long (E) | Altitude (m) | Annual Rainfall (mm) | January Average Tmax (°C) | July Average Tmax (°C) | January Average Tmin (°C) | July Average Tmin (°C) |
---|---|---|---|---|---|---|---|---|
Ceres | 19°12′ | 33°27′ | 250 | 720 | 30.7 | 17.9 | 16.6 | 6.1 |
Ensemble Member | Boundary Forcing Model | Emission Scenario |
---|---|---|
EN1 | GFDL-ESM2M | RCP8.5 |
EN2 | HadGEM2-CC | RCP8.5 |
EN3 | MIROC5 | RCP8.5 |
Temperature (°C) | RCU (per hour) |
---|---|
T < 1.5 | 0 |
1.5 ≤ T < 2.5 | 0.5 |
2.5 ≤ T < 9.2 | 1 |
9.2 ≤ T < 12.5 | 0.5 |
12.5 ≤ T ≤ 16.0 | 0 |
16.0 ≤ T ≤ 18.0 | −0.5 |
T > 18.0 | −1 |
Variable | Base (1981–2010) | 2011–2040 | 2041–2070 | 2071–2100 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
EN1 | EN2 | EN3 | EN1 | EN2 | EN3 | EN1 | EN2 | EN3 | EN1 | EN2 | EN3 | |
Tmin (°C) | 3.6 | 2.5 | 3.6 | 4.6 | 3.1 | 4.2 | 5.6 | 4.1 | 4.9 | 7.0 | 5.3 | 6.1 |
Tmax (°C) | 14.3 | 13.8 | 14.3 | 15.0 | 14.3 | 14.6 | 15.8 | 15.5 | 15.2 | 17.2 | 16.3 | 16.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tharaga, P.C.; Steyn, A.S.; Coetzer, G.M. Climate Change Impacts on Temperature and Chill Unit Trends for Apple (Malus domestica) Production in Ceres, South Africa. Atmosphere 2021, 12, 740. https://doi.org/10.3390/atmos12060740
Tharaga PC, Steyn AS, Coetzer GM. Climate Change Impacts on Temperature and Chill Unit Trends for Apple (Malus domestica) Production in Ceres, South Africa. Atmosphere. 2021; 12(6):740. https://doi.org/10.3390/atmos12060740
Chicago/Turabian StyleTharaga, Phumudzo Charles, Abraham Stephanus Steyn, and Gesine Maria Coetzer. 2021. "Climate Change Impacts on Temperature and Chill Unit Trends for Apple (Malus domestica) Production in Ceres, South Africa" Atmosphere 12, no. 6: 740. https://doi.org/10.3390/atmos12060740
APA StyleTharaga, P. C., Steyn, A. S., & Coetzer, G. M. (2021). Climate Change Impacts on Temperature and Chill Unit Trends for Apple (Malus domestica) Production in Ceres, South Africa. Atmosphere, 12(6), 740. https://doi.org/10.3390/atmos12060740