The Diurnal Variation in Stratospheric Ozone from MACC Reanalysis, ERA-Interim, WACCM, and Earth Observation Data: Characteristics and Intercomparison
Abstract
:Foreword
1. Introduction
2. Model Systems and Observations
2.1. MACC Reanalysis System
2.2. ERA-Interim
WACCM | MACC Reanalysis | ERA-Interim | |
---|---|---|---|
Model type | Global Circulation-Chemistry | Chemical Weather Forecast System | Weather Forecast System |
Model (free-running) | |||
Vertical range | global, 0–140 km | global, 0–65 km | global, 0–65 km |
Coupling | chemistry dynamics | chemistry dynamics | humidity dynamics |
ozone dynamics | |||
Dynamics | |||
Resolution | 1.9 lat × 2.5 lon, 66 lev | T255: 0.7 lat × 0.7 lon, 60 lev | T255: 0.7 lat × 0.7 lon, 60 lev |
Time step | 15 min | IFS: 30 min | IFS: 30 min |
Assimilation | - | 4D-VAR (12 h); , p, T | 4D-VAR (12 h); , p, T |
Chemistry | |||
Model | 3D MOZART | 3D MOZART | linearized 2D photochemical |
(stratosphere) | (tropo- and stratosphere) | model, (lat-alt, no daily cycle) | |
Resolution | same as Dynamics | T159: 1.125 lat × 1.125 lon, 60 lev | same as Dynamics |
Ozone | |||
Assimilation | - | 4D-VAR (12 h); gases, aerosols | 4D-VAR (12 h); , humidity |
tropo- and stratosphere | tropo- and stratosphere | ||
Sources | - | e.g., GOME, MIPAS, MLS, … | e.g., GOME, MIPAS, MLS, … |
References | [42] | [25] | [34,41] |
[43] | [36] |
2.3. WACCM
2.4. SMILES Climatology
2.5. GROMOS Measurements
2.6. MLO Ozone Measurements
2.7. OZORAM Measurements
3. Results and Discussion
3.1. Intercomparison with Respect to Ground- and Satellite-Based Measurements
3.2. Discussion of Uncertainities
3.3. Intercomparison of the Model Systems
3.4. Diurnal Variation in the Arctic and Antarctic
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schanz, A.; Hocke, K.; Kämpfer, N.; Chabrillat, S.; Inness, A.; Palm, M.; Notholt, J.; Boyd, I.; Parrish, A.; Kasai, Y. The diurnal variation in stratospheric ozone from the MACC reanalysis, the ERA-Interim reanalysis, WACCM and Earth observation data: Characteristics and intercomparison. Atmos. Chem. Phys. Discuss. 2014, 14, 32667–32708. [Google Scholar] [CrossRef] [Green Version]
- Frith, S.M.; Bhartia, P.K.; Oman, L.D.; Kramarova, N.A.; McPeters, R.D.; Labow, G.J. Model-based climatology of diurnal variability in stratospheric ozone as a data analysis tool. Atmos. Meas. Tech. 2020, 13, 2733–2749. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Gelaro, R.; Mccarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Brakebusch, M.; Randall, C.E.; Kinnison, D.E.; Tilmes, S.; Santee, M.L.; Manney, G.L. Evaluation of whole atmosphere community climate model simulations of ozone during Arctic winter 2004–2005. J. Geophys. Res. Atmos. 2013, 118, 2673–2688. [Google Scholar] [CrossRef]
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barré, J.; Benedictow, A.; Blechschmidt, A.-M.; Dominguez, J.J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. Discuss. 2019, 19, 3515–3556. [Google Scholar] [CrossRef] [Green Version]
- Bhartia, P.K.; McPeters, R.D.; Flynn, L.E.; Taylor, S.; Kramarova, N.A.; Frith, S.; Fisher, B.; Deland, M. Solar Backscatter UV (SBUV) total ozone and profile algorithm. Atmos. Meas. Tech. 2013, 6, 2533–2548. [Google Scholar] [CrossRef] [Green Version]
- Jonsson, A.I.; Fomichev, V.I.; Shepherd, T.G. The effect of nonlinearity in CO2 heating rates on the attribution of stratospheric ozone and temperature changes. Atmos. Chem. Phys. 2009, 9, 8447–8452. [Google Scholar] [CrossRef] [Green Version]
- Garny, H.; Bodeker, G.E.; Smale, D.; Dameris, M.; Grewe, V. Drivers of hemispheric differences in return dates of mid-latitude stratospheric ozone to historical levels. Atmos. Chem. Phys. Discuss. 2013, 13, 7279–7300. [Google Scholar] [CrossRef] [Green Version]
- Chehade, W.; Burrows, J.P.; Weber, M. Total ozone trends and variability during 1979–2012 from merged datasets of various satellites. Atmos. Chem. Phys. 2014, 14, 7059–7074. [Google Scholar] [CrossRef] [Green Version]
- Kyrölä, E.; Laine, M.; Sofieva, V.; Tamminen, J.; Päivärinta, S.-M.; Tukiainen, S.; Zawodny, J.; Thomason, L. Combined SAGE II–GOMOS ozone profile data set for 1984–2011 and trend analysis of the vertical distribution of ozone. Atmos. Chem. Phys. Discuss. 2013, 13, 10645–10658. [Google Scholar] [CrossRef] [Green Version]
- Gebhardt, C.; Rozanov, A.; Hommel, R.; Weber, M.; Bovensmann, H.; Burrows, J.P.; Degenstein, D.; Froidevaux, L.; Thompson, A.M. Stratospheric ozone trends and variability as seen by SCIAMACHY from 2002 to 2012. Atmos. Chem. Phys. Discuss. 2014, 14, 831–846. [Google Scholar] [CrossRef] [Green Version]
- Kramarova, N.A.; Frith, S.M.; Bhartia, P.K.; McPeters, R.D.; Taylor, S.L.; Fisher, B.L.; Labow, G.J.; DeLand, M.T. Validation of ozone monthly zonal mean profiles obtained from the version 8.6 Solar Backscatter Ultraviolet algorithm. Atmos. Chem. Phys. 2013, 13, 6887–6905. [Google Scholar] [CrossRef] [Green Version]
- Sakazaki, T.; Fujiwara, M.; Mitsuda, C.; Imai, K.; Manago, N.; Naito, Y.; Nakamura, T.; Akiyoshi, H.; Kinnison, D.; Sano, T.; et al. Diurnal ozone variations in the stratosphere revealed in observations from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) on board the International Space Station (ISS). J. Geophys. Res. Atmos. 2013, 118, 2991–3006. [Google Scholar] [CrossRef] [Green Version]
- Parrish, A.; Boyd, I.S.; Nedoluha, G.E.; Bhartia, P.K.; Frith, S.M.; Kramarova, N.A.; Connor, B.J.; Bodeker, G.E.; Froidevaux, L.; Shiotani, M.; et al. Diurnal variations of stratospheric ozone measured by ground-based microwave remote sensing at the Mauna Loa NDACC site: Measurement validation and GEOSCCM model comparison. Atmos. Chem. Phys. Discuss. 2014, 14, 7255–7272. [Google Scholar] [CrossRef] [Green Version]
- Studer, S.; Hocke, K.; Pastel, M.; Godin-Beekmann, S.; Kämpfer, N. Intercomparison of stratospheric ozone profiles for the assessment of the upgraded GROMOS radiometer at Bern. Atmos. Meas. Tech. Discuss. 2013, 6, 6097–6146. [Google Scholar] [CrossRef] [Green Version]
- Schanz, A.; Hocke, K.; Kämpfer, N. Daily ozone cycle in the stratosphere: Global, regional and seasonal behavior modelled with the Whole Atmosphere Community Climate Model. Atmos. Chem. Phys. 2014, 14, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Palm, M.; Golchert, S.H.W.; Sinnhuber, M.; Hochschild, G.; Notholt, J. Influence of Solar Radiation on the Diurnal and Seasonal Variability of O3 and H2O in the Stratosphere and Lower Mesosphere, Based on Continuous Observations in the Tropics and the High Arctic. In Climate and Weather of the Sun-Earth System (CAWSES); Lübken, F.J., Ed.; Springer: Dordrecht, The Netherlands, 2013; pp. 125–147. [Google Scholar] [CrossRef]
- Kikuchi, K.-I.; Nishibori, T.; Ochiai, S.; Ozeki, H.; Irimajiri, Y.; Kasai, Y.; Koike, M.; Manabe, T.; Mizukoshi, K.; Murayama, Y.; et al. Overview and early results of the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES). J. Geophys. Res. Space Phys. 2010, 115, D23. [Google Scholar] [CrossRef]
- Duncan, B.N.; Strahan, S.E.; Yoshida, Y.; Steenrod, S.D.; Livesey, N. Model study of the cross-tropopause transport of biomass burning pollution. Atmos. Chem. Phys. Discuss. 2007, 7, 3713–3736. [Google Scholar] [CrossRef] [Green Version]
- Strahan, S.E.; Duncan, B.N.; Hoor, P. Observationally derived transport diagnostics for the lowermost stratosphere and their application to the GMI chemistry and transport model. Atmos. Chem. Phys. Discuss. 2007, 7, 2435–2445. [Google Scholar] [CrossRef] [Green Version]
- Oman, L.D.; Ziemke, J.R.; Douglass, A.R.; Waugh, D.W.; Lang, C.; Rodriguez, J.M.; Nielsen, J.E. The response of tropical tropospheric ozone to ENSO. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Studer, S.; Hocke, K.; Schanz, A.; Schmidt, H.; Kämpfer, N. A climatology of the diurnal variation of stratospheric and mesospheric ozone over Bern, Switzerland. Atmos. Chem. Phys. 2014, 14, 5905–5919. [Google Scholar] [CrossRef] [Green Version]
- De Maziere, M.; Thompson, A.M.; Kurylo, M.J.; Wild, J.D.; Bernhard, G.; Blumenstock, T.; Braathen, G.O.; Hannigan, J.W.; Lambert, J.-C.; Leblanc, T.; et al. The Network for the Detection of Atmospheric Composition Change (NDACC): History, status and perspectives. Atmos. Chem. Phys. 2018, 18, 4935–4964. [Google Scholar] [CrossRef] [Green Version]
- Inness, A.; Baier, F.; De Benedetti, A.; Bouarar, I.; Chabrillat, S.; Clark, H.L.; Clerbaux, C.; Coheur, P.F.; Engelen, R.J.; Errera, Q.; et al. The MACC reanalysis: An 8 yr data set of atmospheric composition. Atmos. Chem. Phys. Discuss. 2013, 13, 4073–4109. [Google Scholar] [CrossRef] [Green Version]
- Flemming, J.; Inness, A.; Flentje, H.; Huijnen, V.; Moinat, P.; Schultz, M.G.; Stein, O. Coupling global chemsitry transport models to ECMWF’s integrated forecast system. Geosci. Model Dev. 2009, 2, 253–265. [Google Scholar] [CrossRef] [Green Version]
- Stein, O.; Flemming, J.; Inness, A.; Kaiser, J.W.; Schultz, M.G. Global reactive gases forecasts and reanalysis in the MACC project. J. Integr. Environ. Sci. 2012, 9, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Redler, R.; Valcke, S.; Ritzdorf, H. OASIS4—A coupling software for the next generation earth system modelling. Geosci. Model Dev. 2010, 3, 87–104. [Google Scholar] [CrossRef] [Green Version]
- Kinnison, D.E.; Brasseur, G.P.; Walters, S.; Garcia, R.R.; Marsh, D.R.; Sassi, F.; Harvey, V.L.; Randall, C.E.; Emmons, L.; Lamarque, J.F.; et al. Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Phillips, N.A. A coordinate system having some special advantages for numerical forecasting. J. Meteorol. 1957, 14, 184–185. [Google Scholar] [CrossRef] [Green Version]
- Talagrand, O.; Courtier, P. Variational Assimilation of Meteorological Observations With the Adjoint Vorticity Equation. R. Meteorol. Soc. 1987, 113, 1311–1328. [Google Scholar] [CrossRef]
- Courtier, P.; Thépaut, J.-N.; Hollingsworth, A. A strategy for operational implementation of 4D-Var, using an incremental approach. Q. J. R. Meteorol. Soc. 1994, 120, 1367–1388. [Google Scholar] [CrossRef]
- Courtier, P. Dual formulation of four-dimensional variational assimilation. Q. J. R. Meteorol. Soc. 1997, 123, 2449–2461. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Geer, A.J.; Lahoz, W.A.; Jackson, D.R.; Cariolle, D.; McCormack, J.P. Evaluation of linear ozone photochemistry parametrizations in a stratosphere-troposphere data assimilation system. Atmos. Chem. Phys. Discuss. 2007, 7, 939–959. [Google Scholar] [CrossRef] [Green Version]
- Cariolle, D.; Teyssèdre, H. A revised linear ozone photochemistry parametrization for use in transport and general circulation models: Multi-annual simulations. Atmos. Chem. Phys. 2007, 7, 2183–2196. [Google Scholar] [CrossRef] [Green Version]
- Cariolle, D.; Déqué, M. Southern hemisphere medium-scale waves and total ozone disturbances in a spectral general circulation model. J. Geophys. Res. Space Phys. 1986, 91, 10825. [Google Scholar] [CrossRef]
- Rabier, F.; Järvinen, H.; Klinker, E.; Mahfouf, J.-F.; Simmons, A. The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Q. J. R. Meterol. Soc. 2000, 126, 1143–1170. [Google Scholar] [CrossRef]
- Goncharenko, L.P.; Coster, A.J.; Plumb, R.A.; Domeisen, D.I.V. The potential role of stratospheric ozone in the stratosphere-ionosphere coupling during stratospheric warmings. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef] [Green Version]
- Hocke, K.; Studer, S.; Martius, O.; Scheiben, D.; Kampfer, N. A 20-day period standing oscillation in the northern winter stratosphere. Ann. Geophys. 2013, 31, 755–764. [Google Scholar] [CrossRef] [Green Version]
- Dragani, R. On the quality of the ERA-Interim ozone reanalyses: Comparisons with satellite data. Q. J. R. Meteorol. Soc. 2011, 137, 1312–1326. [Google Scholar] [CrossRef]
- Garcia, R.R.; Marsh, D.R.; Kinnison, D.E.; Boville, B.A.; Sassi, F. Simulation of secular trends in the middle atmosphere, 1950–2003. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef]
- Marsh, D.R.; Garcia, R.R.; Kinnison, D.E.; Boville, B.A.; Sassi, F.; Solomon, S.C.; Matthes, K. Modeling the whole atmosphere response to solar cycle changes in radiative and geomagnetic forcing. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Tilmes, S.; Kinnison, D.E.; Garcia, R.R.; Müller, R.; Sassi, F.; Marsh, D.R.; Boville, B.A. Evaluation of heterogeneous processes in the polar lower stratosphere in the Whole Atmosphere Community Climate Model. J. Geophys. Res. Space Phys. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Sakazaki, T.; Fujiwara, M.; Zhang, X.; Hagan, M.E.; Forbes, J.M. Diurnal tides from the troposphere to the lower mesosphere as deduced from TIMED/SABER satellite data and six global reanalysis data sets. J. Geophys. Res. Space Phys. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Sato, T.O.; Sagawa, H.; Yoshida, N.; Kasai, Y. Vertical profile of δ18OOO from the middle stratosphere to lower mesosphere from SMILES spectra. Atmos. Meas. Tech. 2014, 7, 941–958. [Google Scholar] [CrossRef]
- Kuribayashi, K.; Sagawa, H.; Lehmann, R.; Sato, T.O.; Kasai, Y. Direct estimation of the rate constant of the reaction ClO + HO2→HOCl + O2 from SMILES atmospheric observations. Atmos. Chem. Phys. 2014, 14, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Kreyling, D.; Sagawa, H.; Wohltmann, I.; Lehmann, R.; Kasai, Y. SMILES zonal and diurnal variation climatology of stratospheric and mesospheric trace gasses: O3, HCl, HNO3, ClO, BrO, HOCl, HO2, and temperature. J. Geophys. Res. 2013, 118, 11888–11903. [Google Scholar] [CrossRef]
- Dumitru, M.; Hocke, K.; Kämpfer, N.; Calisesi, Y. Comparison and validation studies related to ground-based microwave observations of ozone in the stratosphere and mesosphere. J. Atmos. Sol. Terr. Phys. 2006, 68, 745–756. [Google Scholar] [CrossRef]
- Hocke, K.; Kämpfer, N.; Ruffieux, D.; Froidevaux, L.; Parrish, A.; Boyd, I.; von Clarmann, T.; Steck, T.; Timofeyev, Y.M.; Polyakov, A.V.; et al. Comparison and synergy of strato-spheric ozone measurements by satellite limb sounders and the ground-based microwave radiometer SOMORA. Atmos. Chem. Phys. 2007, 7, 4117–4131. [Google Scholar] [CrossRef] [Green Version]
- Flury, T.; Hocke, K.; Haefele, A.; Kampfer, N.; Lehmann, R. Ozone depletion, water vapor increase, and PSC generation at midlatitudes by the 2008 major stratospheric warming. J. Geophys. Res. Space Phys. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Parrish, A.; Connor, B.J.; Tsou, J.J.; McDermid, I.S.; Chu, W.P. Ground-based microwave monitoring of stratospheric ozone. J. Geophys. Res. Space Phys. 1992, 97, 2541. [Google Scholar] [CrossRef]
- Palm, M.; Hoffmann, C.G.; Golchert, S.H.W.; Notholt, J. The ground-based microwave radiometer OZORAM on Spitzbergen—Description and status of stratospheric and mesospheric O3-measurements. Atmos. Meas. Tech. 2010, 3, 1533–1545. [Google Scholar] [CrossRef] [Green Version]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2000. [Google Scholar]
- Schranz, F.; Hagen, J.; Stober, G.; Hocke, K.; Murk, A.; Kämpfer, N. Small-scale variability of stratospheric ozone during the sudden stratospheric warming 2018/2019 observed at Ny-Alesund, Svalbard. Atmos. Chem. Phys. 2020, 20, 10791–10806. [Google Scholar] [CrossRef]
- Daae, M.; Straub, C.; Espy, P.J.; Newnham, D.A. Atmospheric ozone above Troll station, Antarctica observed by a ground based microwave radiometer. Earth Syst. Sci. Data 2014, 6, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Waugh, D.W.; Polvani, L.M. Stratospheric Polar Vortices. In Geophysical Monograph Series 190, The Stratosphere: Dynamics, Transport, and Chemistry; AGU: Washington, DC, USA, 2010; pp. 43–57. [Google Scholar] [CrossRef] [Green Version]
- Fernandez, S.; Murk, A.; Kampfer, N. Design and Characterization of a Peltier-Cold Calibration Target for a 110-GHz Radiometer. IEEE Trans. Geosci. Remote. Sens. 2014, 53, 344–351. [Google Scholar] [CrossRef]
- Schranz, F.; Fernandez, S.; Kämpfer, N.; Palm, M. Diurnal variation in middle-atmospheric ozone observed by ground-based microwave radiometry at Ny-Ålesund over 1 year. Atmos. Chem. Phys. Discuss. 2018, 18, 4113–4130. [Google Scholar] [CrossRef] [Green Version]
Data Set | Bern, Switzerland | Mauna Loa, Hawaii |
---|---|---|
MACC | −0.8%/3.2% | −0.6%/5.2% |
ERA-Interim | −0.0%/0.8% | −0.0%/0.8% |
WACCM | −0.8%/1.9% | −0.7%/2.5% |
MWRs | −0.0%/2.4% | −0.7%/2.6% |
SMILES | −0.5%/3.8% | −1.7%/6.9% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schanz, A.; Hocke, K.; Kämpfer, N.; Chabrillat, S.; Inness, A.; Palm, M.; Notholt, J.; Boyd, I.; Parrish, A.; Kasai, Y. The Diurnal Variation in Stratospheric Ozone from MACC Reanalysis, ERA-Interim, WACCM, and Earth Observation Data: Characteristics and Intercomparison. Atmosphere 2021, 12, 625. https://doi.org/10.3390/atmos12050625
Schanz A, Hocke K, Kämpfer N, Chabrillat S, Inness A, Palm M, Notholt J, Boyd I, Parrish A, Kasai Y. The Diurnal Variation in Stratospheric Ozone from MACC Reanalysis, ERA-Interim, WACCM, and Earth Observation Data: Characteristics and Intercomparison. Atmosphere. 2021; 12(5):625. https://doi.org/10.3390/atmos12050625
Chicago/Turabian StyleSchanz, Ansgar, Klemens Hocke, Niklaus Kämpfer, Simon Chabrillat, Antje Inness, Mathias Palm, Justus Notholt, Ian Boyd, Alan Parrish, and Yasuko Kasai. 2021. "The Diurnal Variation in Stratospheric Ozone from MACC Reanalysis, ERA-Interim, WACCM, and Earth Observation Data: Characteristics and Intercomparison" Atmosphere 12, no. 5: 625. https://doi.org/10.3390/atmos12050625
APA StyleSchanz, A., Hocke, K., Kämpfer, N., Chabrillat, S., Inness, A., Palm, M., Notholt, J., Boyd, I., Parrish, A., & Kasai, Y. (2021). The Diurnal Variation in Stratospheric Ozone from MACC Reanalysis, ERA-Interim, WACCM, and Earth Observation Data: Characteristics and Intercomparison. Atmosphere, 12(5), 625. https://doi.org/10.3390/atmos12050625